1
|
He M, Zhong W, Dai R, Long S, Zhou Y, Zhang T, Zhou B, Tang T, Yang L, Jiang S, Xiao W, Fu Y, Guo J, Gao Z. Linalool exhibit antimicrobial ability against Elizabethkingia miricola by disrupting cellular and metabolic functions. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100380. [PMID: 40225044 PMCID: PMC11986607 DOI: 10.1016/j.crmicr.2025.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Elizabethkingia miricola is a gram-negative bacillus, a life-threatening pathogen in humans and animals. Linalool, a naturally occurring monoterpene alcohol found in plant volatile oils, exhibits highly effective antibacterial properties. This study investigated the antibacterial activity and mechanism of linalool against E. miricola. Initially, linalool showed potent antibacterial activity against E. miricola, with inhibition zone (ZOI), MIC, and MBC values of 36.41 ± 1.23 mm, 0.125 % (v/v, 1.0775 mg/mL), and 0.125 % (v/v, 1.0775 mg/mL), respectively. Secondly, it was observed by electron microscopy that linalool caused crumpling, depression, and size reduction of the cells. Linalool affected cell membrane integrity, causing membrane damage and rupture. Thirdly, transcriptome analysis suggested that linalool affected C5-branched-chain dicarboxylic acid metabolism and the biosynthesis of valine, leucine, and isoleucine, result in increased energy production to linalool stress. Linalool disrupted cell division and RNA function in E. miricola, and the cells responded to linalool-induced oxidative damage by up-regulating the expression of msrB and katG genes. Fourthly, metabolome analysis revealed an increase in metabolites related to the glycerophospholipid metabolic pathway and NADP content in E. miricola, which may be a metabolic response to linalool stress. Taken together, these findings provide a theoretical basis for the antibacterial mechanism of linalool and suggest potential applications for preventing E. miricola infections.
Collapse
Affiliation(s)
- Mingwang He
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Weiming Zhong
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Rongsi Dai
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Su Long
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Ying Zhou
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Tongping Zhang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Boyang Zhou
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Tao Tang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Linlin Yang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Sifan Jiang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Wenbin Xiao
- Hunan Agriculture Product Processing Institute, Dongting Laboratory; International Joint Lab on Fruits &Vegetables Processing, Quality and Safety; Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety; Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - YanJiao Fu
- Hunan Agriculture Product Processing Institute, Dongting Laboratory; International Joint Lab on Fruits &Vegetables Processing, Quality and Safety; Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety; Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Dongting Laboratory; International Joint Lab on Fruits &Vegetables Processing, Quality and Safety; Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety; Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| |
Collapse
|
2
|
Vessely MB, Siddiqui M, Kling K, Guenette A, Bachta KER. Successful Treatment of Recurrent Extensively Drug-Resistant Elizabethkingia anophelis Bacteremia Secondary to Ventricular Assist Device-Associated Infection. Open Forum Infect Dis 2024; 11:ofae611. [PMID: 39494452 PMCID: PMC11528664 DOI: 10.1093/ofid/ofae611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Elizabethkingia anophelis is an emerging pathogen increasingly implicated in health care-associated infections. Here, we report a case of recurrent ventricular assist device-associated infection caused by multidrug-resistant Elizabethkingia anophelis and describe the clinical course, treatment challenges, and ultimate case resolution. Our results demonstrate that standard clinical methodologies for determining trimethoprim-sulfamethoxazole minimum inhibitory concentration, including VITEK2 and gradient diffusion tests, may be unsuitable for Elizabethkingia anophelis as they result in false-negative susceptibility results. The discrepancy between antimicrobial susceptibility testing reported here highlights the importance of investigating and validating the applicability of standard clinical antimicrobial susceptibility testing and interpretation when treating emerging pathogens such as Elizabethkingia anophelis.
Collapse
Affiliation(s)
- Madeleine B Vessely
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marrium Siddiqui
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kendall Kling
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexis Guenette
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kelly E R Bachta
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Zhang S, Zhang Y, Liu R, Yuan S, Chen Y, Li W, Lu X, Tong Y, Hou L, Chen L, Sun G. Characterization and Molecular Mechanism of Aminoglycoside-6-Adenyl Transferase Associated with Aminoglycoside Resistance from Elizabethkingia meningoseptica. Infect Drug Resist 2023; 16:5523-5534. [PMID: 37638067 PMCID: PMC10460174 DOI: 10.2147/idr.s423418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose Elizabethkingia meningoseptica (EM) is a multi-drug-resistant bacterium of global concern for its role in nosocomial infection and is generally resistant to aminoglycoside antibiotics. In the whole genome of an EM strain (FMS-007), an aminoglycoside-6-adenyl transferase gene (ant(6)FMS-007) was predicted. This study aimed to characterize the biochemical function of ANT(6)FMS-007 and analyze the relationship between genotype and phenotype of ant(6) in clinical EM isolates, so as to provide evidence for clinical precision drug use. This study could establish a method for the verification of known or unknown functionally resistant genes. Methods A total of 42 EM clinical isolates were collected from clinical departments during 2015-2023. The phenotype of aminoglycoside antibiotics was analyzed by broth microdilution (BMD) and Kirby-Bauer (K-B) methods. The whole-length ant(6) from EM clinical isolates was analyzed by polymerase chain reaction (PCR) and sequencing. The biochemical function of predictive ANT(6)FMS-007 from the FMS-007 whole genome was identified by 3D plate experiment and mass spectrometry analysis. Candidate active sites were predicted by multi-species sequence alignment and molecular docking, and other important sites were identified in the comparison of ant(6) genotypes and phenotypes of EM clinical isolates. Drug susceptibility test was used to verify the function of these sites. Results The predictive ANT(6)FMS-007 protein could inactivate STR by modifying STR with ATP to form STR-AMP. Four active sites (Asp-38, Asp-42, Lys-95, and Lys-213) of ANT(6)FMS-007 were identified. Thirty-one EM clinical isolates (74%) carried the ant(6) gene. Eight EM clinical isolates containing the ant(6) gene had MIC values (<=32μg/mL) lower by at least 16-fold than FMS-007 (512μg/mL) for STR, and N59H and K204Q were the common mutations in the ant(6) gene. Conclusion This assay verified the biochemical function of the predictive gene ant(6)FMS-007 and could provide an alternative method to study resistant gene function in multi-drug-resistant bacteria. The inconsistency between genotype and phenotype of resistant genes indicated that the combination of resistance gene detection and functional analysis could better provide precision medicine for clinical use.
Collapse
Affiliation(s)
- Shaoxing Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuxin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Ruijie Liu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuying Yuan
- Clinical Laboratory Department, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, People’s Republic of China
| | - Yanwen Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjie Li
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xinrong Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Yongliang Tong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Linlin Hou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, People’s Republic of China
| | - Li Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Guiqin Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
Li Y, Liu T, Shi C, Wang B, Li T, Huang Y, Xu Y, Tang L. Epidemiological, clinical, and laboratory features of patients infected with Elizabethkingia meningoseptica at a tertiary hospital in Hefei City, China. Front Public Health 2022; 10:964046. [PMID: 36225778 PMCID: PMC9549487 DOI: 10.3389/fpubh.2022.964046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 01/24/2023] Open
Abstract
Background Elizabethkingia meningoseptica is a bacterium causing potential nosocomial infections and is associated with a high mortality rate; however, the date of patients in the Hefei population who have been diagnosed with this infection is generally limited. Purpose The clinical and laboratory data of patients from a tertiary hospital in Hefei City who had E. meningoseptica infection were evaluated in this retrospective analysis. Patients and methods From May 2017 to November 2021, there were 24 patients infected with E. meningoseptica in the First Affiliated Hospital of Anhui Medical University. Data were gathered from the hospital's electronic medical records for all patients. Results The most prevalent symptom among the 24 patients was fever (83.3%), followed by edema (41.7%), cough (37.5%), altered consciousness (41.7%), and sputum (37.5%), and laboratory results presented with anemia (75%), hypoproteinemia (75%), elevated C-reactive protein (CRP) (66.7%), neutrophilia (54.2%), and leukocytosis (50.0%). Hepatic disease (1 vs. 7, P = 0.009) was the only significant risk factor for underlying diseases. The mean value of lymphocyte (LYMPH#) (1.4 vs. 0.83 × 109/L, P = 0.033) counts was higher in the survival group than death group, while both anemia (8 vs. 10, P = 0.024) and hypoproteinemia (8 vs. 10, P = 0.024) occurred more frequently in the death group compared with the survival one. Conclusion Fever was the most common symptom and the only significant factor of underlying diseases was hepatic disease (P = 0.009) that often occurred in death groups. In this investigation, the risk factors for death in patients were anemia, hypoproteinemia, and lymphocyte count. The susceptibility of some quinolones, piperacillin-tazobactam, and cotrimoxazole was relatively high, suggesting that they may be the preferred drugs for the treatment of E. meningoseptica infection. As E. meningoseptica can produce biofilm to pollute the hospital environment and cause infection in patients, the disinfection of the hospital environment should be strengthened and medical staff should pay attention to aseptic operations.
Collapse
|
5
|
Elizabethkingia anophelis: An Important Emerging Cause of Neonatal Sepsis and Meningitis in China. Pediatr Infect Dis J 2022; 41:e228-e232. [PMID: 35067644 DOI: 10.1097/inf.0000000000003464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Elizabethkingia anophelis, originally isolated from the midgut of Anopheles gambiae in 2011, is an important cause of sepsis in adults and children and meningitis in newborns, with several reported outbreaks worldwide. Accumulating molecular biological and whole-genome sequencing (WGS) evidence suggests that E. anophelis is the major human pathogen belonging to the genus Elizabethkingia. The source of infection, routes of transmission and pathogenicity of E. anophelis are unclear and should be better understood as the bacterium is capable of causing sepsis and meningitis in newborns, with complications and high mortality rates. Here, we describe two healthy neonates who developed meningitis caused by Elizabethkingia infection. Initial conventional laboratory results revealed that the pathogen was E. meningoseptica; metagenomic findings later confirmed it as E. anophelis. We also summarize reported E. anophelis infections among newborns in China and elsewhere and describe the clinical, pathogenic and genetic characteristics of this bacillus.
Collapse
|
6
|
Zajmi A, Teo J, Yeo CC. Epidemiology and Characteristics of Elizabethkingia spp. Infections in Southeast Asia. Microorganisms 2022; 10:microorganisms10050882. [PMID: 35630327 PMCID: PMC9144721 DOI: 10.3390/microorganisms10050882] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Elizabethkingia spp. is a ubiquitous pathogenic bacterium that has been identified as the causal agent for a variety of conditions such as meningitis, pneumonia, necrotizing fasciitis, endophthalmitis, and sepsis and is emerging as a global threat including in Southeast Asia. Elizabethkingia infections tend to be associated with high mortality rates (18.2–41%) and are mostly observed in neonates and immunocompromised patients. Difficulties in precisely identifying Elizabethkingia at the species level by traditional methods have hampered our understanding of this genus in human infections. In Southeast Asian countries, hospital outbreaks have usually been ascribed to E. meningoseptica, whereas in Singapore, E. anophelis was reported as the main Elizabethkingia spp. associated with hospital settings. Misidentification of Elizabethkingia spp. could, however, underestimate the number of cases attributed to the bacterium, as precise identification requires tools such as MALDI-TOF MS, and particularly whole-genome sequencing, which are not available in most hospital laboratories. Elizabethkingia spp. has an unusual antibiotic resistance pattern for a Gram-negative bacterium with a limited number of horizontal gene transfers, which suggests an intrinsic origin for its multidrug resistance. Efforts to prevent and further understand Elizabethkingia spp. infections and limit its spread must rise to this new challenge.
Collapse
Affiliation(s)
- Asdren Zajmi
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia;
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, Shah Alam 40100, Malaysia
| | - Jeanette Teo
- Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia;
- Correspondence: ; Tel.: +60-9-627-5506
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Neonatal bloodstream infections (BSI) are a major contributor to morbidity and mortality within neonatal intensive care units. BSI, including central line-associated BSI, have decreased over the past 15 years but remain common in extremely preterm infants. The purpose of this review is to highlight recent advances in the causes, diagnosis, management, and prevention of neonatal BSI. RECENT FINDINGS Continued quality improvement efforts and bundles have reduced BSI incidence, and novel approaches are highlighted. An update of emerging pathogens as well as traditional pathogens with novel antimicrobial resistance, which are an increasingly common cause of neonatal BSI, is included. Finally, current and future investigations into serum or noninvasive biomarkers for neonatal BSI are reviewed. SUMMARY Neonatal BSIs continue to decrease due to enhanced infection control and prevention techniques. However, many challenges remain, including emerging bacterial and fungal resistance and the continued need for novel diagnostics that hasten time to pathogen identification and effective treatment. This review of the past 18 months highlights the rapid changes in this area. Ongoing efforts to reduce the morbidity and mortality caused by neonatal BSI must remain a priority.
Collapse
Affiliation(s)
| | - Joseph B Cantey
- Department of Pediatrics, Division of Neonatology
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|