1
|
Manus MB, Sardaro MLS, Dada O, Davis MI, Romoff MR, Torello SG, Ubadigbo E, Wu RC, Miller ES, Amato KR. Interactions with alloparents are associated with the diversity of infant skin and fecal bacterial communities in Chicago, United States. Am J Hum Biol 2025; 37:e23972. [PMID: 37632331 PMCID: PMC11667966 DOI: 10.1002/ajhb.23972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/28/2023] Open
Abstract
INTRODUCTION Social interactions shape the infant microbiome by providing opportunities for caregivers to spread bacteria through physical contact. With most research focused on the impact of maternal-infant contact on the infant gut microbiome, it is unclear how alloparents (i.e., caregivers other than the parents) influence the bacterial communities of infant body sites that are frequently contacted during bouts of caregiving, including the skin. METHODS To begin to understand how allocare may influence the diversity of the infant microbiome, detailed questionnaire data on infant-alloparent relationships and specific allocare behaviors were coupled with skin and fecal microbiome samples (four body sites) from 48 infants living in Chicago, United States. RESULTS Data from 16S rRNA gene amplicon sequencing indicated that infant skin and fecal bacterial diversity showed strong associations (positive and negative) to having female adult alloparents. Alloparental feeding and co-sleeping displayed stronger associations to infant bacterial diversity compared to playing or holding. The associations with allocare behaviors differed in magnitude and direction across infant body sites. Bacterial relative abundances varied by infant-alloparent relationship and breastfeeding status. CONCLUSION This study provides some of the first evidence of an association between allocare and infant skin and fecal bacterial diversity. The results suggest that infants' exposure to bacteria from the social environment may vary based on infant-alloparent relationships and allocare behaviors. Since the microbiome influences immune system development, variation in allocare that impacts the diversity of infant bacterial communities may be an underexplored dimension of the social determinants of health in early life.
Collapse
Affiliation(s)
- Melissa B. Manus
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Maria Luisa Savo Sardaro
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
- Department of Human Science and Promotion of the Quality of LifeUniversity of San RaffaeleRomeItaly
| | - Omolola Dada
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Maya I. Davis
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Melissa R. Romoff
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | | | - Esther Ubadigbo
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Rebecca C. Wu
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Emily S. Miller
- Department of Obstetrics and Gynecology, Division of Maternal Fetal MedicineFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | | |
Collapse
|
2
|
Torkashvand N, Kamyab H, Aarabi P, Shahverdi AR, Torshizi MAK, Khoshayand MR, Sepehrizadeh Z. Evaluating the effectiveness and safety of a novel phage cocktail as a biocontrol of Salmonella in biofilm, food products, and broiler chicken. Front Microbiol 2024; 15:1505805. [PMID: 39669779 PMCID: PMC11634810 DOI: 10.3389/fmicb.2024.1505805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Salmonella is a foodborne pathogen of animal and public health significance. Considering the disadvantages of antibiotics or chemical preservatives traditionally used to eliminate this pathogen, attention has shifted, in recent years, toward biocontrol agents such as bacteriophages, used either separately or in combination to prevent food contamination. However, extensive use of phage-based biocontrol agents in the food industry requires further studies to ensure their safety and efficacy. In the present study, we investigated the effectiveness and safety of phage cocktail, a phage cocktail comprising three pre-characterized Salmonella phages (vB_SenS_TUMS_E4, vB_SenS_TUMS_E15 and vB_SenS_TUMS_E19). First, we performed an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] assay on a human foreskin fibroblast cell line, in which the resulting high cell viability revealed the safety of the phage cocktail. Next, we performed a time-kill assay in which a 4 Log decline in bacterial levels was detected. Additionally, we utilized a colorimetric method to evaluate the anti-biofilm activity of phage cocktail, in which it proved more efficacious compared to the MIC and MBEC levels of the antibiotic control. Then, we assessed the ability of phage cocktail to eradicate Salmonella in different food samples, where it considerably reduced the bacterial count regardless of the temperature (4°C and 25°C). Lastly, we used broiler chickens as an animal model to measure the growth-promoting activity of phage cocktail. Salmonella-infected chickens orally treated with modified phage cocktail demonstrated no mortality and a significant increase in weight gain compared to the untreated group (p ≤ 0.0002). The study presents a novel research evaluating the effectiveness and safety of a phage cocktail as a biocontrol agent against Salmonella in various contexts, including biofilms, food products, and broiler chickens. This multifaceted approach underscores the promising role of phage therapy as a sustainable biocontrol strategy in food safety and public health contexts.
Collapse
Affiliation(s)
- Narges Torkashvand
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Kamyab
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Aarabi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Khoshayand
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
E S, Gummadi SN. Advances in the applications of Bacteriophages and phage products against food-contaminating bacteria. Crit Rev Microbiol 2024; 50:702-727. [PMID: 37861086 DOI: 10.1080/1040841x.2023.2271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
Food-contaminating bacteria pose a threat to food safety and the economy by causing foodborne illnesses and spoilage. Bacteriophages, a group of viruses that infect only bacteria, have the potential to control bacteria throughout the "farm-to-fork continuum". Phage application offers several advantages, including targeted action against specific bacterial strains and minimal impact on the natural microflora of food. This review covers multiple aspects of bacteriophages applications in the food industry, including their use as biocontrol and biopreservation agents to fight over 20 different genera of food-contaminating bacteria, reduce cross-contamination and the risk of foodborne diseases, and also to prolong shelf life and preserve freshness. The review also highlights the benefits of using bacteriophages in bioprocesses to selectively inhibit undesirable bacteria, such as substrate competitors and toxin producers, which is particularly valuable in complex microbial bioprocesses where physical or chemical methods become inadequate. Furthermore, the review briefly discusses other uses of bacteriophages in the food industry, such as sanitizing food processing environments and detecting specific bacteria in food products. The review also explores strategies to enhance the effectiveness of phages, such as employing multi-phage cocktails, encapsulated phages, phage products, and synergistic hurdle approaches by combining them with antimicrobials.
Collapse
Affiliation(s)
- Suja E
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
4
|
Zaki BM, Fahmy NA, Aziz RK, Samir R, El-Shibiny A. Characterization and comprehensive genome analysis of novel bacteriophage, vB_Kpn_ZCKp20p, with lytic and anti-biofilm potential against clinical multidrug-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2023; 13:1077995. [PMID: 36756618 PMCID: PMC9901506 DOI: 10.3389/fcimb.2023.1077995] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction The rise of infections by antibiotic-resistant bacterial pathogens is alarming. Among these, Klebsiella pneumoniae is a leading cause of death by hospital-acquired infections, and its multidrug-resistant strains are flagged as a global threat to human health, which necessitates finding novel antibiotics or alternative therapies. One promising therapeutic alternative is the use of virulent bacteriophages, which specifically target bacteria and coevolve with them to overcome potential resistance. Here, we aimed to discover specific bacteriophages with therapeutic potential against multiresistant K. pneumoniae clinical isolates. Methods and Results Out of six bacteriophages that we isolated from urban and medical sewage, phage vB_Kpn_ZCKp20p had the broadest host range and was thus characterized in detail. Transmission electron microscopy suggests vB_Kpn_ZCKp20p to be a tailed phage of the siphoviral morphotype. In vitro evaluation indicated a high lytic efficiency (30 min latent period and burst size of ∼100 PFU/cell), and extended stability at temperatures up to 70°C and a wide range of (2-12) pH. Additionally, phage vB_Kpn_ZCKp20p possesses antibiofilm activity that was evaluated by the crystal violet assay and was not cytotoxic to human skin fibroblasts. The whole genome was sequenced and annotated, uncovering one tRNA gene and 33 genes encoding proteins with assigned functions out of 85 predicted genes. Furthermore, comparative genomics and phylogenetic analysis suggest that vB_Kpn_ZCKp20p most likely represents a new species, but belongs to the same genus as Klebsiella phages ZCKP8 and 6691. Comprehensive genomic and bioinformatics analyses substantiate the safety of the phage and its strictly lytic lifestyle. Conclusion Phage vB_Kpn_ZCKp20p is a novel phage with potential to be used against biofilm-forming K. pneumoniae and could be a promising source for antibacterial and antibiofilm products, which will be individually studied experimentally in future studies.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza, Egypt
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Nada A. Fahmy
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ramy Karam Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| |
Collapse
|
5
|
Parsafar S, Beheshti Maal K, Akkafi HR, Rahimzadeh Torabi L. Isolation and identification of specific lytic bacteriophages as a biocontrol agent against Serratia odorifera PBA-IAUF-1 and Kluyvera intermedia PBA-IAUF-6 causing bacterial canker in the grape and Siberian pear. FEMS Microbiol Lett 2023; 370:fnad115. [PMID: 37930829 DOI: 10.1093/femsle/fnad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Bacterial canker, a prevalent disease among fruit trees, is a significant concern. The use of phage therapy is presently seen as a dependable biological strategy to control bacterial diseases in fruits. The objective of this research was to use various biochemical and molecular techniques to determine the types of bacteria responsible for causing cankers in various fruits. Additionally, their ability to cause disease in the fruit tissues was assessed, the specific bacteriophages targeting these bacteria were isolated and identified. The bacteria were separated from different parts of the infected fruits like grapes and Siberian pears. The selection of fruit tissues showing signs of canker disease was performed, and the validation of the isolates' pathogenicity was confirmed following Koch's principles. Subsequently, in order to establish a conclusive identification of the bacterial species, molecular identification was conducted through the sequencing of a specific fragment within the 16S rRNA following amplification by PCR by using universal primers, RW01 and DG74. Isolation and titration of phages specific to fruit spoilage bacteria was done by spot and double-layer agar method, and the growth curve of the isolated bacteriophage was drawn. The phages were detected by transmission electron microscopy (TEM). The results of the study proved the presence of canker causing agents, Kluyvera intermedia PBA-IAUF-6 with the code Sh6 in the Siberian pears, and Serratia odorifera PBA-IAUF-1 with the code Rz3 in the grape fruits, which were deposited in GenBank with the accession numbers of KU878579 and KU168605, respectively. Isolation of the specific bacteriophages to the S. odorifera PBA-IAUF-1 and K. intermedia PBA-IAUF-6 bacterial strains were done from the effluent of South Isfahan wastewater treatment plant and Caspian Sea water, respectively. The titer of the specific phage to S. odorifera PBA-IAUF-1 and K. intermedia PBA-IAUF-6 was detected in the samples as 2.2 × 10-5 and 5 × 10-11 PFU/ml, respectively. An electron micrograph of a bacteriophage that targets two different bacterial strains revealed phages with a geometrically shaped head and a flexible tail, which resembled viruses from the Siphoviridae family.
Collapse
Affiliation(s)
- Somayeh Parsafar
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran
| | - Keivan Beheshti Maal
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran
| | - Hamid Reza Akkafi
- Department of Biology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran
| | - Ladan Rahimzadeh Torabi
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran
| |
Collapse
|