1
|
Castillo-Juárez I, Blancas-Luciano BE, García-Contreras R, Fernández-Presas AM. Antimicrobial peptides properties beyond growth inhibition and bacterial killing. PeerJ 2022; 10:e12667. [PMID: 35116194 PMCID: PMC8785659 DOI: 10.7717/peerj.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) are versatile molecules with broad antimicrobial activity produced by representatives of the three domains of life. Also, there are derivatives of AMPs and artificial short peptides that can inhibit microbial growth. Beyond killing microbes, AMPs at grow sub-inhibitory concentrations also exhibit anti-virulence activity against critical pathogenic bacteria, including ESKAPE pathogens. Anti-virulence therapies are an alternative to antibiotics since they do not directly affect viability and growth, and they are considered less likely to generate resistance. Bacterial biofilms significantly increase antibiotic resistance and are linked to establishing chronic infections. Various AMPs can kill biofilm cells and eradicate infections in animal models. However, some can inhibit biofilm formation and promote dispersal at sub-growth inhibitory concentrations. These examples are discussed here, along with those of peptides that inhibit the expression of traits controlled by quorum sensing, such as the production of exoproteases, phenazines, surfactants, toxins, among others. In addition, specific targets that are determinants of virulence include secretion systems (type II, III, and VI) responsible for releasing effector proteins toxic to eukaryotic cells. This review summarizes the current knowledge on the anti-virulence properties of AMPs and the future directions of their research.
Collapse
Affiliation(s)
- Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Estado de México, Mexico
| | - Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| |
Collapse
|
2
|
Singh R, Perera SR, Katselis GS, Chumala P, Martin I, Kusalik A, Mitzel KM, Dillon JAR. A β-lactamase-producing plasmid from Neisseria gonorrhoeae carrying a unique 6 bp deletion in blaTEM-1 encoding a truncated 24 kDa TEM-1 penicillinase that hydrolyses ampicillin slowly. J Antimicrob Chemother 2020; 74:2904-2912. [PMID: 31335939 DOI: 10.1093/jac/dkz306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Seven structurally related β-lactamase-producing plasmids have been characterized in penicillinase-producing Neisseria gonorrhoeae (PPNG) isolates. We characterized a variant (i.e. pJRD20, Canada type) of the Africa-type (pJD5) plasmid isolated from N. gonorrhoeae strain 8903. OBJECTIVES To compare the DNA sequence of pJRD20 with that of pJD5 and pJD4 (Asia-type) and their TEM-1 β-lactamases. METHODS N. gonorrhoeae 8903 was identified as part of the Gonococcal Antimicrobial Surveillance Program in Canada. β-Lactamase production was assessed using nitrocefin. MICs were determined by agar dilution and Etest methods (CLSI). The DNA sequences of pJRD20, pJD5 and pJD4 were assembled and annotated. The structure of TEM-1 and its penicillin-binding properties were determined by in silico molecular modelling and docking. TEM-1 proteins were characterized by western blot, mass spectrometry and ampicillin hydrolysis assays. RESULTS N. gonorrhoeae 8903 exhibited intermediate susceptibility to penicillin with slow β-lactamase activity (i.e. 35 min to hydrolyse nitrocefin). Except for a novel 6 bp deletion starting at the G of the ATG start codon of blaTEM-1, the DNA sequence of pJRD20 was identical to that of pJD5. The TEM-1 β-lactamase produced by pJRD20 is 24 kDa and hydrolyses ampicillin only after several hours. CONCLUSIONS This unusual PPNG isolate might have been characterized as a non-PPNG owing to its low MIC of penicillin and its very slow hydrolysis of nitrocefin. Given the unusual nature of its TEM-1 β-lactamase, laboratories might consider extending the duration of nitrocefin hydrolysis assays.
Collapse
Affiliation(s)
- Reema Singh
- Department of Biochemistry, Microbiology and Immunology, 2D01 Health Science Building, 107 Wiggins Road, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada
| | - Sumudu R Perera
- Department of Biochemistry, Microbiology and Immunology, 2D01 Health Science Building, 107 Wiggins Road, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada
| | - George S Katselis
- Department of Medicine, Division of the Canadian Centre for Health and Safety in Agriculture, 1246 Health Sciences E-Wing, 104 Clinic Place, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paulos Chumala
- Department of Medicine, Division of the Canadian Centre for Health and Safety in Agriculture, 1246 Health Sciences E-Wing, 104 Clinic Place, University of Saskatchewan, Saskatoon, SK, Canada
| | - Irene Martin
- National Microbiology Laboratory, Streptococcus and STI Unit, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, Canada
| | - Anthony Kusalik
- Department of Computer Science, 176 Thorvaldson Building, 110 Science Place, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kristen M Mitzel
- Department of Biochemistry, Microbiology and Immunology, 2D01 Health Science Building, 107 Wiggins Road, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jo-Anne R Dillon
- Department of Biochemistry, Microbiology and Immunology, 2D01 Health Science Building, 107 Wiggins Road, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Álamos-Musre AS, Escobar A, Tapia CV, Christodoulides M, Rodas PI. Use of Human Fallopian Tube Organ in Culture (FTOC) and Primary Fallopian Tube Epithelial Cells (FTEC) to Study the Biology of Neisseria gonorrhoeae Infection. Methods Mol Biol 2019; 1997:377-402. [PMID: 31119635 DOI: 10.1007/978-1-4939-9496-0_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epithelial cells represent one of the most important physical barriers to many bacterial pathogens. In the case of Neisseria gonorrhoeae, the epithelial cell response is critical because they are the main target of the tissue damage triggered by the pathogen, particularly when the organism reaches the Fallopian tube (FT). Although the irreversible damage triggered by N. gonorrhoeae in the FT has been previously reported (ectopic pregnancy, pelvic inflammatory disease and infertility), the mechanisms of gonococcal-induced tissue damage are not fully understood. In addition, the lack of animal models that efficiently mimic the human disease and the complexity of gonococcus-host interactions make studying gonococcal pathogenesis particularly difficult. The use of human immortalized cells is also limited, since a variety of commercial FT cell lines is not yet available. Finally, the phase and antigenic variation of many gonococcal surface molecules involved in attachment and invasion of epithelial tissues leads to a failure to reproduce results using different human cells lines used in previous studies. The FT organ in culture (FTOC) and primary human fallopian tube epithelial cell (FTEC) represent the closest ex vivo cell models to explore the biology of Neisseria gonorrhoeae during infection of the FT, since it is a natural host target of the gonococcus. In this chapter, we describe protocols to process human FT samples to obtain FTOC and FTEC and assess their response to infection with Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- A Said Álamos-Musre
- Laboratory of Medical Microbiology and Pathogenesis, Faculty of Medicine, Universidad Andres Bello, Concepción, Región del Bío-Bío, Chile
| | - Alejandro Escobar
- Laboratorio Biología celular y molecular, Instituto de Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Cecilia V Tapia
- Laboratorio de Especialidad, Clínica Dávila, Santiago, Región Metropolitana, Chile
| | - Myron Christodoulides
- Molecular Microbiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paula I Rodas
- Laboratory of Medical Microbiology and Pathogenesis, Faculty of Medicine, Universidad Andres Bello, Concepción, Región del Bío-Bío, Chile.
| |
Collapse
|
4
|
Kudryashova E, Seveau SM, Kudryashov DS. Targeting and inactivation of bacterial toxins by human defensins. Biol Chem 2017; 398:1069-1085. [PMID: 28593905 DOI: 10.1515/hsz-2017-0106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/18/2017] [Indexed: 11/15/2022]
Abstract
Defensins, as a prominent family of antimicrobial peptides (AMP), are major effectors of the innate immunity with a broad range of immune modulatory and antimicrobial activities. In particular, defensins are the only recognized fast-response molecules that can neutralize a broad range of bacterial toxins, many of which are among the deadliest compounds on the planet. For a decade, the mystery of how a small and structurally conserved group of peptides can neutralize a heterogeneous group of toxins with little to no sequential and structural similarity remained unresolved. Recently, it was found that defensins recognize and target structural plasticity/thermodynamic instability, fundamental physicochemical properties that unite many bacterial toxins and distinguish them from the majority of host proteins. Binding of human defensins promotes local unfolding of the affected toxins, destabilizes their secondary and tertiary structures, increases susceptibility to proteolysis, and leads to their precipitation. While the details of toxin destabilization by defensins remain obscure, here we briefly review properties and activities of bacterial toxins known to be affected by or resilient to defensins, and discuss how recognized features of defensins correlate with the observed inactivation.
Collapse
|