1
|
Dubbert T, Meester M, Smith RP, Tobias TJ, Di Bartolo I, Johne R, Pavoni E, Krumova-Valcheva G, Sassu EL, Prigge C, Aprea G, May H, Althof N, Ianiro G, Żmudzki J, Dimitrova A, Alborali GL, D'Angelantonio D, Scattolini S, Battistelli N, Burow E. Biosecurity measures to control hepatitis E virus on European pig farms. Front Vet Sci 2024; 11:1328284. [PMID: 38983773 PMCID: PMC11231669 DOI: 10.3389/fvets.2024.1328284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 07/11/2024] Open
Abstract
Hepatitis E virus (HEV) genotype 3 is a prevalent zoonotic pathogen in European pig farms, posing a significant public health risk primarily through the foodborne route. The study aimed to identify effective biosecurity measures for controlling HEV transmission on pig farms, addressing a critical gap in current knowledge. Utilizing a cross-sectional design, fecal samples from gilts, dry sows, and fatteners were collected on 231 pig farms of all farm types across nine European countries. Real-time RT-PCR was employed to test these samples for HEV. Simultaneously, a comprehensive biosecurity questionnaire captured data on various potential measures to control HEV. The dependent variable was HEV risk, categorized as lower or higher based on the percentage of positive pooled fecal samples on each farm (25% cut-off). The data were analyzed using generalized linear models (one for finisher samples and one for all samples) with a logit link function with country and farm type as a priori fixed factors. The results of the final multivariable models identified key biosecurity measures associated with lower HEV risk, which were the use of a hygienogram in the breeding (OR: 0.06, p = 0.001) and/or fattening area after cleaning (OR: 0.21, p = 0.019), the presence of a quarantine area (OR: 0.29, p = 0.025), testing and/or treating purchased feed against Salmonella (OR: 0.35, p = 0.021), the presence of other livestock species on the farm, and having five or fewer persons in charge of the pigs. Contrary to expectations, some biosecurity measures were associated with higher HEV risk, e.g., downtime of 3 days or longer after cleaning in the fattening area (OR: 3.49, p = 0.005) or mandatory handwashing for farm personnel when changing barn sections (OR: 3.4, p = 0.026). This novel study unveils critical insights into biosecurity measures effective in controlling HEV on European pig farms. The identification of both protective and risk-associated measures contributes to improving strategies for managing HEV and underscores the complexity of biosecurity in pig farming.
Collapse
Affiliation(s)
- Tamino Dubbert
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Marina Meester
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University (UU), Utrecht, Netherlands
| | - Richard Piers Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA) - Weybridge, Surrey, United Kingdom
| | - Tijs J Tobias
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University (UU), Utrecht, Netherlands
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Reimar Johne
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Enrico Pavoni
- Food Safety Department, Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER), Brescia, Italy
| | - Gergana Krumova-Valcheva
- National Food Safety Center, National Diagnostic and Research Veterinary Medical Institute (NDRVMI), Sofia, Bulgaria
| | - Elena Lucia Sassu
- Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), Mödling, Austria
| | - Christopher Prigge
- Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), Mödling, Austria
| | - Giuseppe Aprea
- Department of Food Safety, Experimental Zooprophylactic Institute of Abruzzo and Molise 'G. Caporale' (IZS), Teramo, Italy
| | - Hannah May
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA) - Weybridge, Surrey, United Kingdom
| | - Nadine Althof
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Jacek Żmudzki
- Department of Swine Diseases, National Veterinary Research Institute (PIWet), Puławy, Poland
| | - Albena Dimitrova
- National Food Safety Center, National Diagnostic and Research Veterinary Medical Institute (NDRVMI), Sofia, Bulgaria
| | - Giovanni Loris Alborali
- Food Safety Department, Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER), Brescia, Italy
| | - Daniela D'Angelantonio
- Department of Food Safety, Experimental Zooprophylactic Institute of Abruzzo and Molise 'G. Caporale' (IZS), Teramo, Italy
| | - Silvia Scattolini
- Department of Food Safety, Experimental Zooprophylactic Institute of Abruzzo and Molise 'G. Caporale' (IZS), Teramo, Italy
| | - Noemi Battistelli
- Department of Food Safety, Experimental Zooprophylactic Institute of Abruzzo and Molise 'G. Caporale' (IZS), Teramo, Italy
| | - Elke Burow
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department for Rural Development and Agriculture, Ministry of Agriculture, Environment and Climate Protection of the State of Brandenburg (MLUK), Potsdam, Germany
| |
Collapse
|
2
|
Qi L, Zhang Z, Wang M, Ke Z, Mao H, Deng G, Wang J. One-plasmid double-expression system for preparation of MS2 virus-like particles packaging SARS-CoV-2 RNA. Front Cell Infect Microbiol 2023; 13:1238543. [PMID: 38094745 PMCID: PMC10716189 DOI: 10.3389/fcimb.2023.1238543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
COVID-19 is a disease caused by a virus named SARS-CoV-2. SARS-CoV-2 is a single-stranded positive-sense RNA virus. Reverse transcription quantitative PCR (RT-qPCR) assays are the gold standard molecular test for detection of RNA viruses. The aim of this study was to construct an RNA-positive control based on MS2 phage-like particles (MS2 VLPs) to detect SARS-CoV-2 RNA. pCDFDuet-1 was used as a one-plasmid double-expression system to construct MS2 VLPs containing ssRNA of SARS-CoV-2. The sequence encoding one copy of maturase, His-tag and coat protein dimer was cloned and inserted into MCS1 of the plasmid; the fragment encoding protein N and ORF1ab from SARS-CoV-2 was cloned and inserted into MCS2. The prepared plasmid was transformed into Escherichia coli strain BL2 (DE3), and expression of the construct was induced by 1 mM isopropyl-L-thio-D-galactopyranoside (IPTG) at 30°C for 12 hours. MS2 VLPs were purified and collected with Ni-NTA affinity chromatography columns. The size and shape of the MS2 VLPs were verified by transmission electron microscopy, and the stability of MS2 VLP packaged RNA was evaluated by treatment with RNase A. Effects of storage temperature and buffer on MS2 VLP stability were also investigated. The results showed that SARS-CoV-2 MS2 VLPs could be successfully produced by this one-plasmid double-expression system. MS2 VLPs showed high stability and may be used as a positive control in molecular diagnosis of COVID-19.
Collapse
Affiliation(s)
- Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, China
| | - Zheng Zhang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, China
| | - Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, China
| | - Gang Deng
- Blood Transfusion Research Institute, Ningbo Central Blood Station, Ningbo, Zhejiang, China
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Fan G, Jin Y, Wang Q, Yue Y. Assessing the comparability of cycle threshold values derived from five external quality assessment rounds for omicron nucleic acid testing. Virol J 2023; 20:119. [PMID: 37291570 PMCID: PMC10249569 DOI: 10.1186/s12985-023-02032-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/07/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND A variety of open-system real-time reverse transcriptase polymerase chain reaction (RT-PCR) assays for several acute respiratory syndrome coronavirus 2 are currently in use. This study aimed to ensure the quality of omicron nucleic acid testing and to assess the comparability of cycle threshold (Ct) values derived from RT-PCR. METHODS Five external quality assessment (EQA) rounds using the omicron virus-like particles were organized between February 2022 and June 2022. RESULTS A total of 1401 qualitative EQA reports have been collected. The overall positive percentage agreement was 99.72%, the negative percentage agreement was 99.75%, and the percent agreement was 99.73%. This study observed a significant variance in Ct values derived from different test systems. There was a wide heterogeneity in PCR efficiency among different RT-PCR kits and inter-laboratories. CONCLUSION There was strong concordance among laboratories performing qualitative omicron nucleic acid testing. Ct values from qualitative RT-PCR tests should not be used for clinical or epidemiological decision-making to avoid the potential for misinterpretation of the results.
Collapse
Affiliation(s)
- Gaowei Fan
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, China
- Beijing Medical Laboratory Quality Control and Improvement Center, Beijing, China
| | - Yali Jin
- Beijing Center for Clinical Laboratory, Beijing, China
| | - Qingtao Wang
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, China.
- Beijing Center for Clinical Laboratory, Beijing, China.
- Beijing Medical Laboratory Quality Control and Improvement Center, Beijing, China.
| | - Yuhong Yue
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, China.
- Beijing Center for Clinical Laboratory, Beijing, China.
- Beijing Medical Laboratory Quality Control and Improvement Center, Beijing, China.
| |
Collapse
|
4
|
Zhong Z, Wang J, He S, Su X, Huang W, Chen M, Zhuo Z, Zhu X, Fang M, Li T, Zhang S, Ge S, Zhang J, Xia N. An encodable multiplex microsphere-phase amplification sensing platform detects SARS-CoV-2 mutations. Biosens Bioelectron 2022; 203:114032. [PMID: 35131697 PMCID: PMC8802492 DOI: 10.1016/j.bios.2022.114032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 variants of concern (VOCs) contain several single-nucleotide variants (SNVs) at key sites in the receptor-binding region (RBD) that enhance infectivity and transmission, as well as cause immune escape, resulting in an aggravation of the coronavirus disease 2019 (COVID-19) pandemic. Emerging VOCs have sparked the need for a diagnostic method capable of simultaneously monitoring these SNVs. To date, no highly sensitive, efficient clinical tool exists to monitor SNVs simultaneously. Here, an encodable multiplex microsphere-phase amplification (MMPA) sensing platform that combines primer-coded microsphere technology with dual fluorescence decoding strategy to detect SARS-CoV-2 RNA and simultaneously identify 10 key SNVs in the RBD. MMPA limits the amplification refractory mutation system PCR (ARMS-PCR) reaction for specific target sequence to the surface of a microsphere with specific fluorescence coding. This effectively solves the problem of non-specific amplification among primers and probes in multiplex PCR. For signal detection, specific fluorescence codes inside microspheres are used to determine the corresponding relationship between the microspheres and the SNV sites, while the report probes hybridized with PCR products are used to detect the microsphere amplification intensity. The MMPA platform offers a lower SARS-CoV-2 RNA detection limit of 28 copies/reaction, the ability to detect a respiratory pathogen panel without cross-reactivity, and a SNV analysis accuracy level comparable to that of sequencing. Moreover, this super-multiple parallel SNVs detection method enables a timely updating of the panel of detected SNVs that accompanies changing VOCs, and presents a clinical availability that traditional sequencing methods do not.
Collapse
|
5
|
Biela AP, Naskalska A, Fatehi F, Twarock R, Heddle JG. Programmable polymorphism of a virus-like particle. COMMUNICATIONS MATERIALS 2022; 3:7. [PMID: 35284827 PMCID: PMC7612486 DOI: 10.1038/s43246-022-00229-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Virus-like particles (VLPs) have significant potential as artificial vaccines and drug delivery systems. The ability to control their size has wide ranging utility but achieving such controlled polymorphism using a single protein subunit is challenging as it requires altering VLP geometry. Here we achieve size control of MS2 bacteriophage VLPs via insertion of amino acid sequences in an external loop to shift morphology to significantly larger forms. The resulting VLP size and geometry is controlled by altering the length and type of the insert. Cryo electron microscopy structures of the new VLPs, in combination with a kinetic model of their assembly, show that the abundance of wild type (T = 3), T = 4, D3 and D5 symmetrical VLPs can be biased in this way. We propose a mechanism whereby the insert leads to a change in the dynamic behavior of the capsid protein dimer, affecting the interconversion between the symmetric and asymmetric conformers and thus determining VLP size and morphology.
Collapse
Affiliation(s)
- Artur P. Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-392 Krakow, Poland
| | - Antonina Naskalska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-392 Krakow, Poland
| | - Farzad Fatehi
- Departments of Mathematics, University of York, York YO10 5DD, UK
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK
| | - Reidun Twarock
- Departments of Mathematics, University of York, York YO10 5DD, UK
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Jonathan G. Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-392 Krakow, Poland
| |
Collapse
|
6
|
Optimizing the synthesis and purification of MS2 virus like particles. Sci Rep 2021; 11:19851. [PMID: 34615923 PMCID: PMC8494748 DOI: 10.1038/s41598-021-98706-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Introducing bacteriophage MS2 virus-like particles (VLPs) as gene and drug delivery tools increases the demand for optimizing their production and purification procedure. PEG precipitation method is used efficiently to purify VLPs, while the effects of pH and different electrolytes on the stability, size, and homogeneity of purified MS2 VLPs, and the encapsulated RNA sequences remained to be elucidated. In this regard, a vector, capable of producing VLP with an shRNA packed inside was prepared. The resulting VLPs in different buffers/solutions were assessed for their size, polydispersity index, and ability to protect the enclosed shRNA. We report that among Tris, HEPES, and PBS, with or without NaNO3, and also NaNO3 alone in different pH and ionic concentrations, the 100 mM NaNO3-Tris buffer with pH:8 can be used as a new and optimal MS2 VLP production buffer, capable of inhibiting the VLPs aggregation. These VLPs show a size range of 27-30 nm and suitable homogeneity with minimum 12-month stability at 4 °C. Moreover, the resulting MS2 VLPs were highly efficient and stable for at least 48 h in conditions similar to in vivo. These features of MS2 VLPs produced in the newly introduced buffer make them an appropriate candidate for therapeutic agents' delivery.
Collapse
|
7
|
Mohsen MO, Augusto G, Bachmann MF. The 3Ds in virus-like particle based-vaccines: "Design, Delivery and Dynamics". Immunol Rev 2020; 296:155-168. [PMID: 32472710 PMCID: PMC7496916 DOI: 10.1111/imr.12863] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
Vaccines need to be rationally designed in order be delivered to the immune system for maximizing induction of dynamic immune responses. Virus‐like particles (VLPs) are ideal platforms for such 3D vaccines, as they allow the display of complex and native antigens in a highly repetitive form on their surface and can easily reach lymphoid organs in intact form for optimal activation of B and T cells. Adjusting size and zeta potential may allow investigators to further fine‐tune delivery to lymphoid organs. An additional way to alter vaccine transfer to lymph nodes and spleen may be the formulation with micron‐sized adjuvants that creates a local depot and results in a slow release of antigen and adjuvant. Ideally, the adjuvant in addition stimulates the innate immune system. The dynamics of the immune response may be further enhanced by inclusion of Toll‐like receptor ligands, which many VLPs naturally package. Hence, considering the 3Ds in vaccine development may allow for enhancement of their attributes to tackle complex diseases, not usually amenable to conventional vaccine strategies.
Collapse
Affiliation(s)
- Mona O Mohsen
- Interim Translational Research Institute "iTRI", National Center for Cancer Care & Research (NCCCR), Doha, Qatar.,Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland
| | - Gilles Augusto
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland.,Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin F Bachmann
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland.,Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Gao S, Wang J, Li D, Li Y, Lou C, Zha E, Yue X, Tiezhong Z. Development and evaluation of a time-saving RT-qRPA method for the detection of genotype 4 HEV presence in raw pork liver. Int J Food Microbiol 2020; 322:108587. [PMID: 32203767 DOI: 10.1016/j.ijfoodmicro.2020.108587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen spreading worldwide. Pig was known as its first and main animal reservoir. In China, pork consumption is very large and the risk of potential HEV contamination should not be underestimated. The present study aims to develop a quantitative real-time reverse transcription combining recombinase polymerase amplification assay (RT-qRPA) for the rapid detection of HEV RNA presence in raw pork liver on the Jinzhou markets in China. Methods: the specific primers and probes for RT-qRPA assay were designed targeting the ORF2/3 conserved region in genotype 4 swine HEV isolate (accession no. DQ279091.2) according to the TwistDx manual instructions. The specificity, sensitivity and reproducibility evaluations of the RT-qRPA method were subsequently conducted in assessing agreement with the standard RT-qPCR method. Results: the qRPA method step exhibited the obvious time-saving advantage which worked under the isothermal condition at 39 °C within about 30 min to complete the run while the compared standard qPCR method in the same cycle took almost 60 min to do. Both methods could exclusively detect the HEV genome equivalents from the quantified HEV-VLPs spiked samples. And both methods shared the same limit of detection (LOD) that was estimated at 1.25 × 103 genome equivalents copies/g spiked sample by the probit analysis. The recovery rate of HEV-VLPs reached a range of 9.56-14.65% by the RT-qRPA method which was higher than that of 1.34-2.34% by the standard RT-qPCR method. The detected HEV RNA positive rate in the field was 1.8% (1 out of 55) by both methods under Cohen's kappa statistic accessing with perfect agreement (κ = 1.00, p < 0.0005). The viral load in positive sample detected by the RT-qRPA method was estimated at 2.2125 × 105 genome copies/g pork liver sample. Conclusions, the present reported RT-qRPA method mainly targeting genotype 4 HEV is a rapid and reliable method. Its time-saving quality offers a promising for the development of a portable tool used in the routine monitoring of HEV contamination in the field.
Collapse
Affiliation(s)
- Shenyang Gao
- College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China.
| | - Jiaying Wang
- College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China
| | - Dandan Li
- Animal Quarantine Lab, Inspection & Quarantine Technology Center of Hainan Entry-Exit Inspection & Quarantine Bureau, Haikou 570000, China
| | - Yang Li
- College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China
| | - Cheng Lou
- College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China
| | - Enhui Zha
- College of Food Science, Jinzhou Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, No.120 Dongling Road, Shenyang 110866, China
| | - Zhou Tiezhong
- College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China
| |
Collapse
|
9
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. RNA Phage Biology in a Metagenomic Era. Viruses 2018; 10:E386. [PMID: 30037084 PMCID: PMC6071253 DOI: 10.3390/v10070386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
The number of novel bacteriophage sequences has expanded significantly as a result of many metagenomic studies of phage populations in diverse environments. Most of these novel sequences bear little or no homology to existing databases (referred to as the "viral dark matter"). Also, these sequences are primarily derived from DNA-encoded bacteriophages (phages) with few RNA phages included. Despite the rapid advancements in high-throughput sequencing, few studies enrich for RNA viruses, i.e., target viral rather than cellular fraction and/or RNA rather than DNA via a reverse transcriptase step, in an attempt to capture the RNA viruses present in a microbial communities. It is timely to compile existing and relevant information about RNA phages to provide an insight into many of their important biological features, which should aid in sequence-based discovery and in their subsequent annotation. Without comprehensive studies, the biological significance of RNA phages has been largely ignored. Future bacteriophage studies should be adapted to ensure they are properly represented in phageomic studies.
Collapse
Affiliation(s)
- Julie Callanan
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
10
|
Gholami M, Ravanshad M, Baesi K, Samiee SM, Hosseini Rozbahani N, Mohraz M. Preparation and Evaluation of Ribonuclease-Resistant Viral HIV RNA Standards Based on Armored RNA Technology. IRANIAN BIOMEDICAL JOURNAL 2018. [PMID: 29776310 PMCID: PMC6305816 DOI: 10.29252/.22.6.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: The human immunodeficiency virus type 1 (HIV-1) is an infectious viral agent that gradually extinguishes the immune system, resulting in acquired immune deficiency syndrome (AIDS). The aim of this study was to construct an RNA-positive control based on armored (AR) RNA technology, using HIV-1 RNA as a model. Methods: The MS2 maturase, a coat protein gene (at positions 1765 to 1787) and HIV-1 pol gene were cloned into pET-32a plasmid. The prepared plasmid was transformed into Escherichia coli strain BL2 (DE3), and the expression of the construct was induced by 1 mM of isopropyl-L-thio-D-galactopyranoside (IPTG) at 37 °C for 16 h to obtain the fabricated AR RNA. The AR RNA was precipitated and purified using polyethylene glycol and Sephacryl S-200 chromatography. Results: The stability of AR RNA was evaluated by treatment with DNase I and RNase A and confirmed by transmission electron microscopy and gel agarose electrophoresis. Tenfold serial dilution of AR RNA from 101 to 105 was prepared. Real-time PCR assays had a range of detection between 101 and 105. In addition, R2 value was 0.998, and the slope of the standard curve was -3.33. Conclusion: Prepared AR RNA, as a positive control, could be used as a basis for launching an in-house HIV-1 virus assay and other infectious agents. It can be readily available to laboratories and HIV research centers. The AR RNA is non-infectious and highly resistant to ribonuclease enzyme and can reduce the risk of infection in the clinical laboratory.
Collapse
Affiliation(s)
- Mohammad Gholami
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Ravanshad
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| | - Siamak M. Samiee
- Food and Drug Laboratory Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Negin Hosseini Rozbahani
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Mohraz
- Iranian Research Center for HIV AIDS (IRCHA), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|