1
|
Poveda-Urkixo I, Mena-Bueno S, Ramírez GA, Zabalza-Baranguá A, Tsolis RM, Grilló MJ. Brucella melitensis Rev1Δwzm: Placental pathogenesis studies and safety in pregnant ewes. Vaccine 2024; 42:3710-3720. [PMID: 38755066 DOI: 10.1016/j.vaccine.2024.04.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
One of the main causes of human brucellosis is Brucella melitensis infecting small ruminants. To date, Rev1 is the only vaccine successfully used to control ovine and caprine brucellosis. However, it is pathogenic for pregnant animals, resulting in abortions and vaginal and milk shedding, as well as being infectious for humans. Therefore, there is an urgent need to develop an effective vaccine that is safer than Rev1. In efforts to further attenuate Rev1, we recently used wzm inactivation to generate a rough mutant (Rev1Δwzm) that retains a complete antigenic O-polysaccharide in the bacterial cytoplasm. The aim of the present study was to evaluate the placental pathogenicity of Rev1Δwzm in trophoblastic cells, throughout pregnancy in mice, and in ewes inoculated in different trimesters of pregnancy. This mutant was evaluated in comparison with the homologous 16MΔwzm derived from a virulent strain of B. melitensis and the naturally rough sheep pathogen B. ovis. Our results show that both wzm mutants triggered reduced cytotoxic, pro-apoptotic, and pro-inflammatory signaling in Bewo trophoblasts, as well as reduced relative expression of apoptosis genes. In mice, both wzm mutants produced infection but were rapidly cleared from the placenta, in which only Rev1Δwzm induced a low relative expression of pro-apoptotic and pro-inflammatory genes. In the 66 inoculated ewes, Rev1Δwzm was safe and immunogenic, displaying a transient serological interference in standard RBT but not CFT S-LPS tests; this serological response was minimized by conjunctival administration. In conclusion, these results support that B. melitensis Rev1Δwzm is a promising vaccine candidate for use in pregnant ewes and its efficacy against B. melitensis and B. ovis infections in sheep warrants further study.
Collapse
Affiliation(s)
- Irati Poveda-Urkixo
- Animal Health Department, Institute of Agrobiotechnology (IdAB; CSIC-Navarra Government), Avda. Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Sara Mena-Bueno
- Animal Health Department, Institute of Agrobiotechnology (IdAB; CSIC-Navarra Government), Avda. Pamplona 123, 31192 Mutilva, Navarra, Spain; Public University of Navarra (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain
| | | | - Ana Zabalza-Baranguá
- Animal Health Department, Institute of Agrobiotechnology (IdAB; CSIC-Navarra Government), Avda. Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Renee M Tsolis
- Medical Microbiology and Immunology, University of California, Davis, 95616 USA
| | - María-Jesús Grilló
- Animal Health Department, Institute of Agrobiotechnology (IdAB; CSIC-Navarra Government), Avda. Pamplona 123, 31192 Mutilva, Navarra, Spain.
| |
Collapse
|
2
|
de Carvalho TP, da Silva LA, Castanheira TLL, de Souza TD, da Paixão TA, Lazaro-Anton L, Tsolis RM, Santos RL. Cell and Tissue Tropism of Brucella spp. Infect Immun 2023; 91:e0006223. [PMID: 37129522 PMCID: PMC10187126 DOI: 10.1128/iai.00062-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Brucella spp. are facultatively intracellular bacteria that can infect, survive, and multiply in various host cell types in vivo and/or in vitro. The genus Brucella has markedly expanded in recent years with the identification of novel species and hosts, which has revealed additional information about the cell and tissue tropism of these pathogens. Classically, Brucella spp. are considered to have tropism for organs that contain large populations of phagocytes such as lymph nodes, spleen, and liver, as well as for organs of the genital system, including the uterus, epididymis, testis, and placenta. However, experimental infections of several different cultured cell types indicate that Brucella may actually have a broader cell tropism than previously thought. Indeed, recent studies indicate that certain Brucella species in particular hosts may display a pantropic distribution in vivo. This review discusses the available knowledge on cell and tissue tropism of Brucella spp. in natural infections of various host species, as well as in experimental animal models and cultured cells.
Collapse
Affiliation(s)
- Thaynara Parente de Carvalho
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Laice Alves da Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Larissa Lourenço Castanheira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal de Educação Ciência e Tecnologia do Norte de Minas Gerais, Salinas, Brazil
| | - Tayse Domingues de Souza
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Lazaro-Anton
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| |
Collapse
|
3
|
Rossetti CA, Maurizio E, Rossi UA. Comparative Review of Brucellosis in Small Domestic Ruminants. Front Vet Sci 2022; 9:887671. [PMID: 35647101 PMCID: PMC9133814 DOI: 10.3389/fvets.2022.887671] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Brucella melitensis and Brucella ovis are the primary etiological agents of brucellosis in small domestic ruminants. B. melitensis was first isolated in 1887 by David Bruce in Malta Island from spleens of four soldiers, while B. ovis was originally isolated in Australia and New Zealand in early 1950's from ovine abortion and rams epididymitis. Today, both agents are distributed worldwide: B. melitensis remains endemic and associated with an extensive negative impact on the productivity of flocks in -some regions, and B. ovis is still present in most sheep-raising regions in the world. Despite being species of the same bacterial genus, B. melitensis and B. ovis have extensive differences in their cultural and biochemical characteristics (smooth vs. rough colonial phases, serum and CO2 dependence for in vitro growth, carbohydrate metabolism), host preference (female goat and sheep vs. rams), the outcome of infection (abortion vs. epididymitis), and their zoonotic potential. Some of these differences can be explained at the bacterial genomic level, but the role of the host genome in promoting or preventing interaction with pathogens is largely unknown. Diagnostic techniques and measures to prevent and control brucellosis in small ruminants vary, with B. melitensis having more available tools for detection and prevention than B. ovis. This review summarizes and analyzes current available information on: (1) the similarities and differences between these two etiological agents of brucellosis in small ruminants, (2) the outcomes after their interaction with different preferred hosts and current diagnostic methodologies, (3) the prevention and control measures, and (4) alerting animal producers about the disease and raise awareness in the research community for future innovative activities.
Collapse
Affiliation(s)
- Carlos Alberto Rossetti
- Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), N. Repetto y de Los Reseros, Buenos Aires, Argentina
| | - Estefanía Maurizio
- Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), N. Repetto y de Los Reseros, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Buenos Aires, Argentina
| | - Ursula Amaranta Rossi
- Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), N. Repetto y de Los Reseros, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Buenos Aires, Argentina
| |
Collapse
|
4
|
Brucella ovis Cysteine Biosynthesis Contributes to Peroxide Stress Survival and Fitness in the Intracellular Niche. Infect Immun 2021; 89:IAI.00808-20. [PMID: 33753413 DOI: 10.1128/iai.00808-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Brucella ovis is an ovine intracellular pathogen with tropism for the male genital tract. To establish and maintain infection, B. ovis must survive stressful conditions inside host cells, including low pH, nutrient limitation, and reactive oxygen species. The same conditions are often encountered in axenic cultures during stationary phase. Studies of stationary phase may thus inform our understanding of Brucella infection biology, yet the genes and pathways that are important in Brucella stationary-phase physiology remain poorly defined. We measured fitness of a barcoded pool of B. ovis Tn-himar mutants as a function of growth phase and identified cysE as a determinant of fitness in stationary phase. CysE catalyzes the first step in cysteine biosynthesis from serine, and we provide genetic evidence that two related enzymes, CysK1 and CysK2, function redundantly to catalyze cysteine synthesis at steps downstream of CysE. Deleting cysE (ΔcysE) or both cysK1 and cysK2 (ΔcysK1 ΔcysK2) results in premature entry into stationary phase, reduced culture yield, and sensitivity to exogenous hydrogen peroxide. These phenotypes can be chemically complemented by cysteine or glutathione. ΔcysE and ΔcysK1 ΔcysK2 strains have no defect in host cell entry in vitro but have significantly diminished intracellular fitness between 2 and 24 h postinfection. Our study has uncovered unexpected redundancy at the CysK step of cysteine biosynthesis in B. ovis and demonstrates that cysteine anabolism is a determinant of peroxide stress survival and fitness in the intracellular niche.
Collapse
|
5
|
Bialer MG, Sycz G, Muñoz González F, Ferrero MC, Baldi PC, Zorreguieta A. Adhesins of Brucella: Their Roles in the Interaction with the Host. Pathogens 2020; 9:E942. [PMID: 33198223 PMCID: PMC7697752 DOI: 10.3390/pathogens9110942] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
A central aspect of Brucella pathogenicity is its ability to invade, survive, and replicate in diverse phagocytic and non-phagocytic cell types, leading to chronic infections and chronic inflammatory phenomena. Adhesion to the target cell is a critical first step in the invasion process. Several Brucella adhesins have been shown to mediate adhesion to cells, extracellular matrix components (ECM), or both. These include the sialic acid-binding proteins SP29 and SP41 (binding to erythrocytes and epithelial cells, respectively), the BigA and BigB proteins that contain an Ig-like domain (binding to cell adhesion molecules in epithelial cells), the monomeric autotransporters BmaA, BmaB, and BmaC (binding to ECM components, epithelial cells, osteoblasts, synoviocytes, and trophoblasts), the trimeric autotransporters BtaE and BtaF (binding to ECM components and epithelial cells) and Bp26 (binding to ECM components). An in vivo role has also been shown for the trimeric autotransporters, as deletion mutants display decreased colonization after oral and/or respiratory infection in mice, and it has also been suggested for BigA and BigB. Several adhesins have shown unipolar localization, suggesting that Brucella would express an adhesive pole. Adhesin-based vaccines may be useful to prevent brucellosis, as intranasal immunization in mice with BtaF conferred high levels of protection against oral challenge with B. suis.
Collapse
Affiliation(s)
- Magalí G. Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Gabriela Sycz
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mariana C. Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pablo C. Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
6
|
Vizcaíno N, Pérez-Etayo L, Conde-Álvarez R, Iriarte M, Moriyón I, Zúñiga-Ripa A. Disruption of pyruvate phosphate dikinase in Brucella ovis PA CO 2-dependent and independent strains generates attenuation in the mouse model. Vet Res 2020; 51:101. [PMID: 32795361 PMCID: PMC7427901 DOI: 10.1186/s13567-020-00824-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
Brucella ovis is a non-zoonotic rough Brucella that causes genital lesions, abortions and increased perinatal mortality in sheep and is responsible for important economic losses worldwide. Research on virulence factors of B. ovis is necessary for deciphering the mechanisms that enable this facultative intracellular pathogen to establish persistent infections and for developing a species-specific vaccine, a need in areas where the cross-protecting ovine smooth B. melitensis Rev1 vaccine is banned. Although several B. ovis virulence factors have been identified, there is little information on its metabolic abilities and their role in virulence. Here, we report that deletion of pyruvate phosphate dikinase (PpdK, catalyzing the bidirectional conversion pyruvate ⇌ phosphoenolpyruvate) in B. ovis PA (virulent and CO2-dependent) impaired growth in vitro. In cell infection experiments, although showing an initial survival higher than that of the parental strain, this ppdK mutant was unable to multiply. Moreover, when inoculated at high doses in mice, it displayed an initial spleen colonization higher than that of the parental strain followed by a marked comparative decrease, an unusual pattern of attenuation in mice. A homologous mutant was also obtained in a B. ovis PA CO2-independent construct previously proposed for developing B. ovis vaccines to solve the problem that CO2-dependence represents for large scale production. This CO2-independent ppdK mutant reproduced the growth defect in vitro and the multiplication/clearance pattern in mouse spleens, and is thus an interesting vaccine candidate for the immunoprophylaxis of B. ovis ovine brucellosis.
Collapse
Affiliation(s)
- Nieves Vizcaíno
- Departamento de Microbiología Y Genética, Edificio Departamental, Universidad de Salamanca, Edificio Departamental, Plaza Doctores de la Reina s/n, Salamanca, 37007, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 52-182, 37007, Salamanca, Spain
| | - Lara Pérez-Etayo
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Departamento de Microbiología y Parasitología, Universidad de Navarra, Calle Irunlarrea 1, 31008, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Departamento de Microbiología y Parasitología, Universidad de Navarra, Calle Irunlarrea 1, 31008, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Departamento de Microbiología y Parasitología, Universidad de Navarra, Calle Irunlarrea 1, 31008, Pamplona, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Departamento de Microbiología y Parasitología, Universidad de Navarra, Calle Irunlarrea 1, 31008, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Departamento de Microbiología y Parasitología, Universidad de Navarra, Calle Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
7
|
Sidhu-Muñoz RS, Tejedor C, Vizcaíno N. The Three Flagellar Loci of Brucella ovis PA Are Dispensable for Virulence in Cellular Models and Mice. Front Vet Sci 2020; 7:441. [PMID: 32851024 PMCID: PMC7410920 DOI: 10.3389/fvets.2020.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Brucella ovis is a facultative intracellular bacterium that causes a non-zoonotic ovine brucellosis mainly characterized by male genital lesions and is responsible for important economic losses in sheep farming areas. Studies about the virulence mechanisms of Brucella have been mostly performed with smooth (bearing O-polysaccharide in lipopolysaccharide) zoonotic species, and those performed with B. ovis have revealed similarities but also relevant differences. Except for few strains recently isolated from unconventional hosts, Brucella species are non-motile but contain the genes required to assemble a flagellum, which are organized in three main loci of about 18.5, 6.4, and 7.8 kb. Although these loci contain different pseudogenes depending on the non-motile Brucella species, smooth B. melitensis 16M builds a sheathed flagellum under particular culture conditions and requires flagellar genes for virulence. However, nothing is known in this respect regarding other Brucella strains. In this work, we have constructed a panel of B. ovis PA mutants defective in one, two or the three flagellar loci in order to assess their role in virulence of this rough (lacking O-polysaccharide) Brucella species. No relevant differences in growth, outer membrane-related properties or intracellular behavior in cellular models were observed between flagellar mutants and the parental strain, which is in accordance with previous results with B. melitensis 16M single-gene mutants. However, contrary to these B. melitensis mutants, unable to establish a chronic infection in mice, removal of the three flagellar loci in B. ovis did not affect virulence in the mouse model. These results evidence new relevant differences between B. ovis and B. melitensis, two species highly homologous at the DNA level and that cause ovine brucellosis, but that exhibit differences in the zoonotic potential, pathogenicity and tissue tropism.
Collapse
Affiliation(s)
- Rebeca S Sidhu-Muñoz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carmen Tejedor
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|