1
|
Diver P, Ward BA, Cunliffe M. Physiological and morphological plasticity in response to nitrogen availability of a yeast widely distributed in the open ocean. FEMS Microbiol Ecol 2024; 100:fiae053. [PMID: 38599628 PMCID: PMC11062419 DOI: 10.1093/femsec/fiae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024] Open
Abstract
Yeasts are prevalent in the open ocean, yet we have limited understanding of their ecophysiological adaptations, including their response to nitrogen availability, which can have a major role in determining the ecological potential of other planktonic microbes. In this study, we characterized the nitrogen uptake capabilities and growth responses of marine-occurring yeasts. Yeast isolates from the North Atlantic Ocean were screened for growth on diverse nitrogen substrates, and across a concentration gradient of three environmentally relevant nitrogen substrates: nitrate, ammonium, and urea. Three strains grew with enriched nitrate while two did not, demonstrating that nitrate utilization is present but not universal in marine yeasts, consistent with existing knowledge of nonmarine yeast strains. Naganishia diffluens MBA_F0213 modified the key functional trait of cell size in response to nitrogen concentration, suggesting yeast cell morphology changes along chemical gradients in the marine environment. Meta-analysis of the reference DNA barcode in public databases revealed that the genus Naganishia has a global ocean distribution, strengthening the environmental applicability of the culture-based observations. This study provides novel quantitative understanding of the ecophysiological and morphological responses of marine-derived yeasts to variable nitrogen availability in vitro, providing insight into the functional ecology of yeasts within pelagic open ocean environments.
Collapse
Affiliation(s)
- Poppy Diver
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, United Kingdom
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Ben A Ward
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, United Kingdom
| |
Collapse
|
2
|
Abraúl M, Alves A, Hilário S, Melo T, Conde T, Domingues MR, Rey F. Evaluation of Lipid Extracts from the Marine Fungi Emericellopsis cladophorae and Zalerion maritima as a Source of Anti-Inflammatory, Antioxidant and Antibacterial Compounds. Mar Drugs 2023; 21:199. [PMID: 37103339 PMCID: PMC10142463 DOI: 10.3390/md21040199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
Marine environments occupy more than 70% of the earth's surface, integrating very diverse habitats with specific characteristics. This heterogeneity of environments is reflected in the biochemical composition of the organisms that inhabit them. Marine organisms are a source of bioactive compounds, being increasingly studied due to their health-beneficial properties, such as antioxidant, anti-inflammatory, antibacterial, antiviral, or anticancer. In the last decades, marine fungi have stood out for their potential to produce compounds with therapeutic properties. The objective of this study was to determine the fatty acid profile of isolates from the fungi Emericellopsis cladophorae and Zalerion maritima and assess the anti-inflammatory, antioxidant, and antibacterial potential of their lipid extracts. The analysis of the fatty acid profile, using GC-MS, showed that E. cladophorae and Z. maritima possess high contents of polyunsaturated fatty acids, 50% and 34%, respectively, including the omega-3 fatty acid 18:3 n-3. Emericellopsis cladophorae and Z. maritima lipid extracts showed anti-inflammatory activity expressed by the capacity of their COX-2 inhibition which was 92% and 88% of inhibition at 200 µg lipid mL-1, respectively. Emericellopsis cladophorae lipid extracts showed a high percentage of inhibition of COX -2 activity even at low concentrations of lipids (54% of inhibition using 20 µg lipid mL-1), while a dose-dependent behaviour was observed in Z. maritima. The antioxidant activity assays of total lipid extracts demonstrated that the lipid extract from E. cladophorae did not show antioxidant activity, while Z. maritima gave an IC20 value of 116.6 ± 6.2 µg mL-1 equivalent to 92.1 ± 4.8 µmol Trolox g-1 of lipid extract in the DPPH• assay, and 101.3 ± 14.4 µg mL-1 equivalent to 106.6 ± 14.8 µmol Trolox g-1 of lipid extract in the ABTS•+ assay. The lipid extract of both fungal species did not show antibacterial properties at the concentrations tested. This study is the first step in the biochemical characterization of these marine organisms and demonstrates the bioactive potential of lipid extracts from marine fungi for biotechnological applications.
Collapse
Affiliation(s)
- Mariana Abraúl
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Artur Alves
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sandra Hilário
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tiago Conde
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Rosário Domingues
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Felisa Rey
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|