1
|
Le Sage V, Souza CK, Rockey NC, Shephard M, Zanella GC, Arruda B, Wang S, Drapeau EM, Doyle JD, Xu L, Barbeau DJ, Paulson JC, McElroy AK, Hensley SE, Anderson TK, Vincent Baker AL, Lakdawala SS. Eurasian 1C swine influenza A virus exhibits high pandemic risk traits. Emerg Microbes Infect 2025; 14:2492210. [PMID: 40207467 PMCID: PMC12064114 DOI: 10.1080/22221751.2025.2492210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
ABSTRACTRecent surveillance has identified an expansion of swine H1 1C influenza viruses in Eurasian swine. Since 2010, at least 21 spillover events of 1C virus into humans have been detected and three of these occurred from July to December of 2023. Pandemic risk assessment of H1 1C influenza virus revealed that individuals born after 1950 had limited cross-reactive antibodies, confirming that they are antigenically novel viruses. The 1C virus exhibited phenotypic signatures similar to the 2009 pandemic H1N1 virus, including human receptor preference, productive replication in human airway cells, and robust environmental stability. Efficient inter- and intraspecies airborne transmission using the swine and ferret models was observed, including efficient airborne transmission to ferrets with pre-existing human seasonal H1N1 immunity. Together our data suggest H1 1C influenza virus poses a relatively high pandemic risk.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carine K. Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Nicole C. Rockey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Meredith Shephard
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Giovana C. Zanella
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Bailey Arruda
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Shengyang Wang
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Elizabeth M. Drapeau
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua D. Doyle
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lingqing Xu
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dominique J. Barbeau
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - James C. Paulson
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anita K. McElroy
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Seema S. Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Le Sage V, Werner BD, Merrbach GA, Petnuch SE, O'Connell AK, Simmons HC, McCarthy KR, Reed DS, Moncla LH, Bhavsar D, Krammer F, Crossland NA, McElroy AK, Duprex WP, Lakdawala SS. Influenza A(H5N1) Immune Response among Ferrets with Influenza A(H1N1)pdm09 Immunity. Emerg Infect Dis 2025; 31:477-487. [PMID: 40023796 PMCID: PMC11878318 DOI: 10.3201/eid3103.241485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
The emergence of highly pathogenic avian influenza A(H5N1) virus in dairy cattle herds across the United States in 2024 caused several human infections. Understanding the risk for spillover infections into humans is crucial for protecting public health. We investigated whether immunity from influenza A(H1N1)pdm09 (pH1N1) virus would provide protection from death and severe clinical disease among ferrets intranasally infected with H5N1 virus from dairy cows from the 2024 outbreak. We observed differential tissue tropism among pH1N1-immune ferrets. pH1N1-immune ferrets also had little H5N1 viral dissemination to organs outside the respiratory tract and much less H5N1 virus in nasal secretions and the respiratory tract than naive ferrets. In addition, ferrets with pH1N1 immunity produced antibodies that cross-reacted with H5N1 neuraminidase protein. Taken together, our results suggest that humans with immunity to human seasonal influenza viruses may experience milder disease from the 2024 influenza A(H5N1) virus strain.
Collapse
|
3
|
Le Sage V, Rockey NC, French AJ, McBride R, McCarthy KR, Rigatti LH, Shephard MJ, Jones JE, Walter SG, Doyle JD, Xu L, Barbeau DJ, Wang S, Frizzell SA, Myerburg MM, Paulson JC, McElroy AK, Anderson TK, Vincent Baker AL, Lakdawala SS. Potential pandemic risk of circulating swine H1N2 influenza viruses. Nat Commun 2024; 15:5025. [PMID: 38871701 PMCID: PMC11176300 DOI: 10.1038/s41467-024-49117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Influenza A viruses in swine have considerable genetic diversity and continue to pose a pandemic threat to humans due to a potential lack of population level immunity. Here we describe a pipeline to characterize and triage influenza viruses for their pandemic risk and examine the pandemic potential of two widespread swine origin viruses. Our analysis reveals that a panel of human sera collected from healthy adults in 2020 has no cross-reactive neutralizing antibodies against a α-H1 clade strain (α-swH1N2) but do against a γ-H1 clade strain. The α-swH1N2 virus replicates efficiently in human airway cultures and exhibits phenotypic signatures similar to the human H1N1 pandemic strain from 2009 (H1N1pdm09). Furthermore, α-swH1N2 is capable of efficient airborne transmission to both naïve ferrets and ferrets with prior seasonal influenza immunity. Ferrets with H1N1pdm09 pre-existing immunity show reduced α-swH1N2 viral shedding and less severe disease signs. Despite this, H1N1pdm09-immune ferrets that became infected via the air can still onward transmit α-swH1N2 with an efficiency of 50%. These results indicate that this α-swH1N2 strain has a higher pandemic potential, but a moderate level of impact since there is reduced replication fitness and pathology in animals with prior immunity.
Collapse
MESH Headings
- Animals
- Ferrets/virology
- Humans
- Swine
- Influenza, Human/virology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/blood
- Influenza, Human/transmission
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/epidemiology
- Orthomyxoviridae Infections/transmission
- Orthomyxoviridae Infections/blood
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/immunology
- Pandemics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Swine Diseases/virology
- Swine Diseases/epidemiology
- Swine Diseases/immunology
- Swine Diseases/transmission
- Swine Diseases/blood
- Female
- Virus Shedding
- Male
- Adult
- Virus Replication
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicole C Rockey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Andrea J French
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ryan McBride
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kevin R McCarthy
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lora H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meredith J Shephard
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer E Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sydney G Walter
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua D Doyle
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lingqing Xu
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dominique J Barbeau
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shengyang Wang
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sheila A Frizzell
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael M Myerburg
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James C Paulson
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anita K McElroy
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Zhang Y, Zhang H, Xu T, Zeng L, Liu F, Huang X, Liu Q. Interactions among microorganisms open up a new world for anti-infectious therapy. FEBS J 2024; 291:1615-1631. [PMID: 36527169 DOI: 10.1111/febs.16705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The human microbiome, containing bacteria, fungi, and viruses, is a community that coexists peacefully with humans most of the time, but with the potential to cause disease under certain conditions. When the environment changes or certain stimuli are received, microbes may interact with each other, causing or increasing the severity of disease in a host. With the appropriate methods, we can make these microbiota work for us, creating new applications for human health. This review discusses the wide range of interactions between microorganisms that result in an increase in susceptibility to, severity of, and mortality of diseases, and also briefly introduces how microorganisms interact with each other directly or indirectly. The study of microbial interactions and their mechanisms has revealed a new world of treatments for infectious disease. The regulation of the balance between intestinal flora, the correct application of probiotics, and the development of effective drugs by symbiosis all demonstrate the great contributions of the microbiota to human health and its powerful potential value. Consequently, the study of interactions between microorganisms plays an essential role in identifying the causes of diseases and the development of treatments.
Collapse
Affiliation(s)
- Yejia Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Hanchi Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
- The First Clinical Medical College, Nanchang University, China
| | - Tian Xu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Lingbing Zeng
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
- The First Clinical Medical College, Nanchang University, China
| | - Fadi Liu
- The Department of Clinical Laboratory, Children's Hospital of Jiangxi Province, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| |
Collapse
|
5
|
Sakudo A. Effect of combined infection with Salmonella and influenza virus on their respective proliferation in chicken embryonated eggs. Open Vet J 2024; 14:913-918. [PMID: 38682131 PMCID: PMC11052617 DOI: 10.5455/ovj.2024.v14.i3.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/15/2024] [Indexed: 05/01/2024] Open
Abstract
Background Salmonella is a major food-borne bacterial pathogen that causes food poisoning related to the consumption of eggs, milk, and meat. Food safety in relation to Salmonella is particularly important for eggs because their shells as well as their contents can be a source of contamination. Chicken can also be infected with influenza virus, but it remains unclear how co-infection of Salmonella and influenza virus affect each other. Aim The potential influence of co-infection of Salmonella and influenza virus was examined. Methods Salmonella Abony and influenza virus were injected into chicken embryonated eggs. After incubation, proliferation of Salmonella and influenza virus was measured using a direct culture assay for bacteria and an enzyme-linked immunosorbent assay for influenza virus, respectively. Results Our findings indicate that the number of colony-forming units (CFUs) of Salmonella did not vary between chicken embryonated eggs co-infected with influenza A virus and Salmonella-only infected eggs. Furthermore, we found the proliferation of influenza A or B virus was not significantly influenced by co-infection of the eggs with Salmonella. Conclusion These results suggest that combined infection of Salmonella with influenza virus does not affect each other, at least in terms of their proliferation.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| |
Collapse
|
6
|
Basu Thakur P, Mrotz VJ, Maines TR, Belser JA. Ferrets as a Mammalian Model to Study Influenza Virus-Bacteria Interactions. J Infect Dis 2024; 229:608-615. [PMID: 37739789 PMCID: PMC10922577 DOI: 10.1093/infdis/jiad408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
Ferrets represent an invaluable model for the study of influenza virus pathogenicity and transmissibility. Ferrets are also employed for the study of bacterial pathogens that naturally infect humans at different anatomical sites. While viral and bacterial infection studies in isolation using animal models are important for furthering our understanding of pathogen biology and developing improved therapeutics, it is also critical to extend our knowledge to pathogen coinfections in vivo, to more closely examine interkingdom dynamics that may contribute to overall disease outcomes. We discuss how ferrets have been employed to study a diverse range of both influenza viruses and bacterial species and summarize key studies that have utilized the ferret model for primary influenza virus challenge followed by secondary bacterial infection. These copathogenesis studies have provided critical insight into the dynamic interplay between these pathogens, underscoring the utility of ferrets as a model system for investigating influenza virus-bacteria interactions.
Collapse
Affiliation(s)
- Poulami Basu Thakur
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Victoria J Mrotz
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taronna R Maines
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica A Belser
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Le Sage V, Lowen AC, Lakdawala SS. Block the Spread: Barriers to Transmission of Influenza Viruses. Annu Rev Virol 2023; 10:347-370. [PMID: 37308086 DOI: 10.1146/annurev-virology-111821-115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Respiratory viruses, such as influenza viruses, cause significant morbidity and mortality worldwide through seasonal epidemics and sporadic pandemics. Influenza viruses transmit through multiple modes including contact (either direct or through a contaminated surface) and inhalation of expelled aerosols. Successful human to human transmission requires an infected donor who expels virus into the environment, a susceptible recipient, and persistence of the expelled virus within the environment. The relative efficiency of each mode can be altered by viral features, environmental parameters, donor and recipient host characteristics, and viral persistence. Interventions to mitigate transmission of influenza viruses can target any of these factors. In this review, we discuss many aspects of influenza virus transmission, including the systems to study it, as well as the impact of natural barriers and various nonpharmaceutical and pharmaceutical interventions.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
8
|
French AJ, Rockey NC, Le Sage V, Mueller Brown K, Shephard MJ, Frizzell S, Myerburg MM, Hiller NL, Lakdawala SS. Detection of influenza virus and Streptococcus pneumoniae in air sampled from co-infected ferrets and analysis of their influence on pathogen stability. mSphere 2023; 8:e0003923. [PMID: 37255295 PMCID: PMC10449498 DOI: 10.1128/msphere.00039-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
Secondary infection with Streptococcus pneumoniae has contributed significantly to morbidity and mortality during multiple influenza virus pandemics and remains a common threat today. During a concurrent infection, both pathogens can influence the transmission of each other, but the mechanisms behind this are unclear. In this study, condensation air sampling and cyclone bioaerosol sampling were performed using ferrets first infected with the 2009 H1N1 pandemic influenza virus (H1N1pdm09) and secondarily infected with S. pneumoniae strain D39 (Spn). We detected viable pathogens and microbial nucleic acid in expelled aerosols from co-infected ferrets, suggesting that these microbes could be present in the same respiratory expulsions. To assess whether microbial communities impact pathogen stability within an expelled droplet, we performed experiments measuring viral and bacterial persistence in 1 µL droplets. We observed that H1N1pdm09 stability was unchanged in the presence of Spn. Further, Spn stability was moderately increased in the presence of H1N1pdm09, although the degree of stabilization differed between airway surface liquid collected from individual patient cultures. These findings are the first to collect both pathogens from the air and in doing so, they provide insight into the interplay between these pathogens and their hosts.IMPORTANCEThe impact of microbial communities on transmission fitness and environmental persistence is under-studied. Environmental stability of microbes is crucial to identifying transmission risks and mitigation strategies, such as removal of contaminated aerosols and decontamination of surfaces. Co-infection with S. pneumoniae is very common during influenza virus infection, but little work has been done to understand whether S. pneumoniae alters stability of influenza virus, or vice versa, in a relevant system. Here, we demonstrate that influenza virus and S. pneumoniae are expelled by co-infected hosts. Our stability assays did not reveal any impact of S. pneumoniae on influenza virus stability, but did show a trend towards increased stability of S. pneumoniae in the presence of influenza viruses. Future work characterizing environmental persistence of viruses and bacteria should include microbially complex solutions to better mimic physiologically relevant conditions.
Collapse
Affiliation(s)
- Andrea J. French
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicole C. Rockey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Karina Mueller Brown
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Meredith J. Shephard
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sheila Frizzell
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mike M. Myerburg
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Seema S. Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
You J, Zhou L, San X, Li H, Li M, Wang B. NEDD4 Regulated Pyroptosis Occurred from Co-infection between Influenza A Virus and Streptococcus pneumoniae. J Microbiol 2023; 61:777-789. [PMID: 37792248 DOI: 10.1007/s12275-023-00076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023]
Abstract
Co-infection of respiratory tract viruses and bacteria often result in excess mortality, especially pneumonia caused by influenza viruses and Streptococcus pneumoniae. However, the synergistic mechanisms remain poorly understood. Therefore, it is necessary to develop a clearer understanding of the molecular basis of the interaction between influenza virus and Streptococcus pneumonia. Here, we developed the BALB/c mouse model and the A549 cell model to investigate inflammation and pyroptotic cell death during co-infection. Co-infection significantly activated the NLRP3 inflammasome and induced pyroptotic cell death, correlated with excess mortality. The E3 ubiquitin ligase NEDD4 interacted with both NLRP3 and GSDMD, the executor of pyroptosis. NEDD4 negatively regulated NLRP3 while positively regulating GSDMD, thereby modulating inflammation and pyroptotic cell death. Our findings suggest that NEDD4 may play a crucial role in regulating the GSDMD-mediated pyroptosis signaling pathway. Targeting NEDD4 represents a promising approach to mitigate excess mortality during influenza pandemics by suppressing synergistic inflammation during co-infection of influenza A virus and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Jiangzhou You
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Linlin Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Xudong San
- Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People's Republic of China
| | - Hailing Li
- Department of Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Mingyuan Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610000, People's Republic of China.
| | - Baoning Wang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
10
|
Manna S, Weinberger DM, Satzke C. Editorial: Thematic issue on bacterial-viral co-infections. FEMS MICROBES 2023; 4:xtac031. [PMID: 37333434 PMCID: PMC10117831 DOI: 10.1093/femsmc/xtac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/15/2023] [Indexed: 09/06/2024] Open
Affiliation(s)
- Sam Manna
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven 06510, United States
| | - Catherine Satzke
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
11
|
Arevalo CP, Bolton MJ, Le Sage V, Ye N, Furey C, Muramatsu H, Alameh MG, Pardi N, Drapeau EM, Parkhouse K, Garretson T, Morris JS, Moncla LH, Tam YK, Fan SHY, Lakdawala SS, Weissman D, Hensley SE. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 2022; 378:899-904. [PMID: 36423275 PMCID: PMC10790309 DOI: 10.1126/science.abm0271] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Seasonal influenza vaccines offer little protection against pandemic influenza virus strains. It is difficult to create effective prepandemic vaccines because it is uncertain which influenza virus subtype will cause the next pandemic. In this work, we developed a nucleoside-modified messenger RNA (mRNA)-lipid nanoparticle vaccine encoding hemagglutinin antigens from all 20 known influenza A virus subtypes and influenza B virus lineages. This multivalent vaccine elicited high levels of cross-reactive and subtype-specific antibodies in mice and ferrets that reacted to all 20 encoded antigens. Vaccination protected mice and ferrets challenged with matched and mismatched viral strains, and this protection was at least partially dependent on antibodies. Our studies indicate that mRNA vaccines can provide protection against antigenically variable viruses by simultaneously inducing antibodies against multiple antigens.
Collapse
Affiliation(s)
- Claudia P. Arevalo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Marcus J. Bolton
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Naiqing Ye
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Colleen Furey
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Elizabeth M. Drapeau
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Kaela Parkhouse
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Tyler Garretson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Jeffrey S. Morris
- Department of Biostatistics Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Louise H. Moncla
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Seattle, WA, USA
| | - Ying K. Tam
- Acuitas Therapeutics; Vancouver, BC, V6T 1Z3
| | | | - Seema S. Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|