1
|
Latta O, Weinert EE, Bechthold A. Heme dependent activity of the Streptomyces c-di-GMP-metabolizing enzyme CdgA. J Inorg Biochem 2025; 269:112874. [PMID: 40056506 DOI: 10.1016/j.jinorgbio.2025.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Streptomyces species are vital for producing natural products like antibiotics, with c-di-GMP playing a key role in regulating processes such as differentiation. C-di-GMP metabolism is controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), which synthesize and hydrolyze c-di-GMP, respectively, to modulate cellular levels. To improve our understanding of c-di-GMP-regulated processes in Streptomyces, we have characterized a c-di-GMP-metabolizing enzyme CdgA from Streptomyces ghanaensis that contains both a diguanylate cyclase and a phosphodiesterase domain. Our studies demonstrate that the enzyme is purified in a form without heme and is only able to degrade c-di-GMP. When reconstituted with heme, it enables c-di-GMP synthesis, and depending on the redox state the synthesis rate is changed. To our knowledge, this is the first heme-dependent activity reported for a c-di-GMP-metabolizing enzyme in Streptomyces and has major implications for understanding the way c-di-GMP is metabolized in vivo in Streptomyces.
Collapse
Affiliation(s)
- Olaf Latta
- Institute for Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany
| | - Emily E Weinert
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andreas Bechthold
- Institute for Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany.
| |
Collapse
|
2
|
Hwang Y, Perez M, Holzel R, Harshey RM. c-di-GMP is required for swarming in E. coli, producing colanic acid that acts as surfactant. mBio 2025:e0091625. [PMID: 40326769 DOI: 10.1128/mbio.00916-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025] Open
Abstract
Many bacteria use flagella to swim individually through bulk liquid or swarm collectively over a semi-solid surface. In Escherichia coli, c-di-GMP inhibits swimming via the effector protein YcgR. We show in this study that, contrary to its effect on swimming, a certain threshold level of c-di-GMP is required for swarming. Gene expression profiles first indicated that several c-di-GMP synthases-dgcJ, dgcM, and dgcO-were upregulated during swarming. Of these, we found DgcO to play a critical role in promoting the production of colanic acid-one of the three major exopolysaccharides in E. coli. DgcO has been reported to increase poly-β-1,6-N-acetylglucosamine (PGA) synthesis in E. coli as well. We show that colanic acid has hitherto-unknown surfactant properties that are expected to aid swarming.IMPORTANCEIt is well established that, in bacteria, c-di-GMP inhibits flagella-driven motility at various points in the pathway. Concomitantly, elevated c-di-GMP levels induce the expression and synthesis of a variety of exopolysaccharides that enmesh the bacteria in a biofilm, thereby also interfering with the flagella function. This study reports the surprising finding that, in Escherichia coli, the exopolysaccharide colanic acid is required to enable surface navigation and that the diguanylate cyclase DgcO is employed for this purpose. For surface navigation, there appears to be a sweet spot where c-di-GMP levels are just right to produce polysaccharides that can serve as surfactants and wetting agents rather than promote the formation of biofilms.
Collapse
Affiliation(s)
- YuneSahng Hwang
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas, Austin, Texas, USA
| | - Marta Perez
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas, Austin, Texas, USA
| | - Rebecca Holzel
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas, Austin, Texas, USA
| | - Rasika M Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas, Austin, Texas, USA
| |
Collapse
|
3
|
Martino RA, Volke DC, Tenaglia AH, Tribelli PM, Nikel PI, Smania AM. Genetic Dissection of Cyclic di-GMP Signalling in Pseudomonas aeruginosa via Systematic Diguanylate Cyclase Disruption. Microb Biotechnol 2025; 18:e70137. [PMID: 40172309 PMCID: PMC11963287 DOI: 10.1111/1751-7915.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
The second messenger bis-(3' → 5')-cyclic dimeric guanosine monophosphate (c-di-GMP) governs adaptive responses in the opportunistic pathogen Pseudomonas aeruginosa, including biofilm formation and the transition from acute to chronic infections. Understanding the intricate c-di-GMP signalling network remains challenging due to the overlapping activities of numerous diguanylate cyclases (DGCs). In this study, we employed a CRISPR-based multiplex genome-editing tool to disrupt all 32 GGDEF domain-containing proteins (GCPs) implicated in c-di-GMP signalling in P. aeruginosa PA14. Phenotypic and physiological analyses revealed that the resulting mutant was unable to form biofilms and had attenuated virulence. Residual c-di-GMP levels were still detected despite the extensive GCP disruption, underscoring the robustness of this regulatory network. Taken together, these findings provide insights into the complex c-di-GMP metabolism and showcase the importance of functional overlapping in bacterial signalling. Moreover, our approach overcomes the native redundancy in c-di-GMP synthesis, providing a framework to dissect individual DGC functions and paving the way for targeted strategies to address bacterial adaptation and pathogenesis.
Collapse
Affiliation(s)
- Román A. Martino
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Albano H. Tenaglia
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| | - Paula M. Tribelli
- Universidad de Buenos AiresFacultad de Ciencias Exactas y Naturales, Departamento de Química BiológicaBuenos AiresArgentina
- CONICET, Universidad de Buenos AiresInstituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)Buenos AiresArgentina
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Andrea M. Smania
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| |
Collapse
|
4
|
Liu C, Shao J, Ma X, Tang Y, Li J, Li H, Chi X, Liu Z. A novel two-component system contributing the catabolism of c-di-GMP influences virulence in Aeromonas veronii. Front Microbiol 2025; 16:1527317. [PMID: 39980697 PMCID: PMC11841396 DOI: 10.3389/fmicb.2025.1527317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Response regulators from diverse two-component systems often function as diguanylate cyclases or phosphodiesterases, thereby enabling precise regulation of intracellular c-di-GMP levels to control bacterial virulence and motility. However, the regulatory mechanisms of c-di-GMP require further elucidation. Methods This study confirmed that ArrS and ArrR form a two-component system via structural analysis, two-hybrid, and phosphodiesterase activity detection. To evaluate the impact of ArrS/ArrR on intracellular c-di-GMP levels, biofilm detection, motility detection, fluorescence reporter plasmids, and LC-MS/MS analysis were employed. One-hybrid, EMSA, and RT-qPCR were used to demonstrate the function of ArgR on arrSR promoter. The roles of ArrS/ArrR in Aeromonas veronii were investigated using RT-qPCR, murine model, and proteomics. Results ArrS and ArrR constituted a two-component system in Aeromonas veronii and were transcriptionally repressed by ArgR. ArrR exhibited phosphodiesterase activity, which is inhibited through phosphorylation mediated by ArrS. In Aeromonas veronii, ArrS/ArrR significantly altered the intracellular c-di-GMP levels. In a murine model, ΔarrS exhibited increased pathogenicity, leading to elevated TNF-α and IFN-γ levels in serum, and severer toxicity to spleen and kidney. These effects might be elucidated by the upregulated inflammation-associated proteins in ΔarrS. Moreover, the exonuclease RecB was also up-regulated in ΔarrS. Discussion We elucidated the regulatory mechanism of ArrS/ArrR on intracellular c-di-GMP levels and its impact on the virulence in Aeromonas veronii, and discussed the intricate relationship between c-di-GMP metabolism and arginine metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou, China
| |
Collapse
|
5
|
Li R, Yang P, Zhang H, Wang C, Zhao F, Liu J, Wang Y, Liang Y, Sun T, Xie X. Comparative Genomic and Functional Analysis of c-di-GMP Metabolism and Regulatory Proteins in Bacillus velezensis LQ-3. Microorganisms 2024; 12:1724. [PMID: 39203566 PMCID: PMC11357230 DOI: 10.3390/microorganisms12081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Bacillus velezensis is a promising candidate for biocontrol applications. A common second messenger molecule, bis-(3,5)-cyclic-dimeric-guanosine monophosphate (c-di-GMP), has the ability to regulate a range of physiological functions that impact the effectiveness of biocontrol. However, the status of the c-di-GMP signaling pathway in biocontrol strain LQ-3 remains unknown. Strain LQ-3, which was isolated from wheat rhizosphere soil, has shown effective control of wheat sharp eyespot and has been identified as B. velezensis through whole-genome sequencing analyses. In this study, we investigated the intracellular c-di-GMP signaling pathway of LQ-3 and further performed a comparative genomic analysis of LQ-3 and 29 other B. velezensis strains. The results revealed the presence of four proteins containing the GGDEF domain, which is the conserved domain for c-di-GMP synthesis enzymes. Additionally, two proteins were identified with the EAL domain, which represents the conserved domain for c-di-GMP degradation enzymes. Furthermore, one protein was found to possess a PilZ domain, indicative of the conserved domain for c-di-GMP receptors in LQ-3. These proteins are called DgcK, DgcP, YybT, YdaK, PdeH, YkuI, and DgrA, respectively; they are distributed in a similar manner across the strains and belong to the signal transduction family. We selected five genes from the aforementioned seven genes for further study, excluding YybT and DgrA. They all play a role in regulating the motility, biofilm formation, and colonization of LQ-3. This study reveals the c-di-GMP signaling pathway associated with biocontrol features in B. velezensis LQ-3, providing guidance for the prevention and control of wheat sharp eyespot by LQ-3.
Collapse
Affiliation(s)
- Rong Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Panlei Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Hongjuan Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Chunjing Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Fang Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Jiehui Liu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Yanbin Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Yan Liang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Ting Sun
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Xiansheng Xie
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| |
Collapse
|
6
|
Rico-Jiménez M, Udaondo Z, Krell T, Matilla MA. Auxin-mediated regulation of susceptibility to toxic metabolites, c-di-GMP levels, and phage infection in the rhizobacterium Serratia plymuthica. mSystems 2024; 9:e0016524. [PMID: 38837409 PMCID: PMC11264596 DOI: 10.1128/msystems.00165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
The communication between plants and their microbiota is highly dynamic and involves a complex network of signal molecules. Among them, the auxin indole-3-acetic acid (IAA) is a critical phytohormone that not only regulates plant growth and development, but is emerging as an important inter- and intra-kingdom signal that modulates many bacterial processes that are important during interaction with their plant hosts. However, the corresponding signaling cascades remain largely unknown. Here, we advance our understanding of the largely unknown mechanisms by which IAA carries out its regulatory functions in plant-associated bacteria. We showed that IAA caused important changes in the global transcriptome of the rhizobacterium Serratia plymuthica and multidisciplinary approaches revealed that IAA sensing interferes with the signaling mediated by other pivotal plant-derived signals such as amino acids and 4-hydroxybenzoic acid. Exposure to IAA caused large alterations in the transcript levels of genes involved in amino acid metabolism, resulting in significant metabolic alterations. IAA treatment also increased resistance to toxic aromatic compounds through the induction of the AaeXAB pump, which also confers resistance to IAA. Furthermore, IAA promoted motility and severely inhibited biofilm formation; phenotypes that were associated with decreased c-di-GMP levels and capsule production. IAA increased capsule gene expression and enhanced bacterial sensitivity to a capsule-dependent phage. Additionally, IAA induced the expression of several genes involved in antibiotic resistance and led to changes in the susceptibility and responses to antibiotics with different mechanisms of action. Collectively, our study illustrates the complexity of IAA-mediated signaling in plant-associated bacteria. IMPORTANCE Signal sensing plays an important role in bacterial adaptation to ecological niches and hosts. This communication appears to be particularly important in plant-associated bacteria since they possess a large number of signal transduction systems that respond to a wide diversity of chemical, physical, and biological stimuli. IAA is emerging as a key inter- and intra-kingdom signal molecule that regulates a variety of bacterial processes. However, despite the extensive knowledge of the IAA-mediated regulatory mechanisms in plants, IAA signaling in bacteria remains largely unknown. Here, we provide insight into the diversity of mechanisms by which IAA regulates primary and secondary metabolism, biofilm formation, motility, antibiotic susceptibility, and phage sensitivity in a biocontrol rhizobacterium. This work has important implications for our understanding of bacterial ecology in plant environments and for the biotechnological and clinical applications of IAA, as well as related molecules.
Collapse
Affiliation(s)
- Miriam Rico-Jiménez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Zulema Udaondo
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
7
|
Pérez-Burgos M, Herfurth M, Kaczmarczyk A, Harms A, Huber K, Jenal U, Glatter T, Søgaard-Andersen L. A deterministic, c-di-GMP-dependent program ensures the generation of phenotypically similar, symmetric daughter cells during cytokinesis. Nat Commun 2024; 15:6014. [PMID: 39019889 PMCID: PMC11255338 DOI: 10.1038/s41467-024-50444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Phenotypic heterogeneity in bacteria can result from stochastic processes or deterministic programs. The deterministic programs often involve the versatile second messenger c-di-GMP, and give rise to daughter cells with different c-di-GMP levels by deploying c-di-GMP metabolizing enzymes asymmetrically during cell division. By contrast, less is known about how phenotypic heterogeneity is kept to a minimum. Here, we identify a deterministic c-di-GMP-dependent program that is hardwired into the cell cycle of Myxococcus xanthus to minimize phenotypic heterogeneity and guarantee the formation of phenotypically similar daughter cells during division. Cells lacking the diguanylate cyclase DmxA have an aberrant motility behaviour. DmxA is recruited to the cell division site and its activity is switched on during cytokinesis, resulting in a transient increase in the c-di-GMP concentration. During cytokinesis, this c-di-GMP burst ensures the symmetric incorporation and allocation of structural motility proteins and motility regulators at the new cell poles of the two daughters, thereby generating phenotypically similar daughters with correct motility behaviours. Thus, our findings suggest a general c-di-GMP-dependent mechanism for minimizing phenotypic heterogeneity, and demonstrate that bacteria can ensure the formation of dissimilar or similar daughter cells by deploying c-di-GMP metabolizing enzymes to distinct subcellular locations.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Marco Herfurth
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katrin Huber
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland
| | - Timo Glatter
- Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
8
|
Santoriello FJ, Bassler BL. The LuxO-OpaR quorum-sensing cascade differentially controls Vibriophage VP882 lysis-lysogeny decision making in liquid and on surfaces. PLoS Genet 2024; 20:e1011243. [PMID: 39078816 PMCID: PMC11315295 DOI: 10.1371/journal.pgen.1011243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to synchronize collective behaviors. QS relies on the production, release, and group-wide detection of extracellular signaling molecules called autoinducers. Vibrios use two QS systems: the LuxO-OpaR circuit and the VqmA-VqmR circuit. Both QS circuits control group behaviors including biofilm formation and surface motility. The Vibrio parahaemolyticus temperate phage φVP882 encodes a VqmA homolog (called VqmAφ). When VqmAφ is produced by φVP882 lysogens, it binds to the host-produced autoinducer called DPO and launches the φVP882 lytic cascade. This activity times induction of lysis with high host cell density and presumably promotes maximal phage transmission to new cells. Here, we explore whether, in addition to induction from lysogeny, QS controls the initial establishment of lysogeny by φVP882 in naïve host cells. Using mutagenesis, phage infection assays, and phenotypic analyses, we show that φVP882 connects its initial lysis-lysogeny decision to both host cell density and whether the host resides in liquid or on a surface. Host cells in the low-cell-density QS state primarily undergo lysogenic conversion. The QS regulator LuxO~P promotes φVP882 lysogenic conversion of low-cell-density planktonic host cells. By contrast, the ScrABC surface-sensing system regulates lysogenic conversion of low-cell-density surface-associated host cells. ScrABC controls the abundance of the second messenger molecule cyclic diguanylate, which in turn, modulates motility. The scrABC operon is only expressed when its QS repressor, OpaR, is absent. Thus, at low cell density, QS-dependent derepression of scrABC drives lysogenic conversion in surface-associated host cells. These results demonstrate that φVP882 integrates cues from multiple sensory pathways into its lifestyle decision making upon infection of a new host cell.
Collapse
Affiliation(s)
- Francis J. Santoriello
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
9
|
Vasenina A, Fu Y, O'Toole GA, Mucha PJ. Local control: a hub-based model for the c-di-GMP network. mSphere 2024; 9:e0017824. [PMID: 38591888 PMCID: PMC11237430 DOI: 10.1128/msphere.00178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The genome of Pseudomonas fluorescens encodes >50 proteins predicted to play a role in bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP)-mediated biofilm formation. We built a network representation of protein-protein interactions and extracted key information via multidimensional scaling (i.e., principal component analysis) of node centrality measures, which measure features of proteins in a network. Proteins of different domain types (diguanylate cyclase, dual domain, phosphodiesterase, PilZ) exhibit unique network behavior and can be accurately classified by their network centrality values (i.e., roles in the network). The predictive power of protein-protein interactions in biofilm formation indicates the possibility of localized pools of c-di-GMP. A regression model showed a statistically significant impact of protein-protein interactions on the extent of biofilm formation in various environments. These results highlight the importance of a localized c-di-GMP signaling, extend our understanding of signaling by this second messenger beyond the current "Bow-tie Model," support a newly proposed "Hub Model," and suggest future avenues of investigation.
Collapse
Affiliation(s)
- Anna Vasenina
- Department of Mathematics, Dartmouth College, Hanover, New Hampshire, USA
| | - Yu Fu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Peter J. Mucha
- Department of Mathematics, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
10
|
Jusufovic N, Krusenstjerna AC, Savage CR, Saylor TC, Brissette CA, Zückert WR, Schlax PJ, Motaleb MA, Stevenson B. Borrelia burgdorferi PlzA is a cyclic-di-GMP dependent DNA and RNA binding protein. Mol Microbiol 2024; 121:1039-1062. [PMID: 38527857 DOI: 10.1111/mmi.15254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
The PilZ domain-containing protein, PlzA, is the only known cyclic di-GMP binding protein encoded by all Lyme disease spirochetes. PlzA has been implicated in the regulation of many borrelial processes, but the effector mechanism of PlzA was not previously known. Here, we report that PlzA can bind DNA and RNA and that nucleic acid binding requires c-di-GMP, with the affinity of PlzA for nucleic acids increasing as concentrations of c-di-GMP were increased. A mutant PlzA that is incapable of binding c-di-GMP did not bind to any tested nucleic acids. We also determined that PlzA interacts predominantly with the major groove of DNA and that sequence length and G-C content play a role in DNA binding affinity. PlzA is a dual-domain protein with a PilZ-like N-terminal domain linked to a canonical C-terminal PilZ domain. Dissection of the domains demonstrated that the separated N-terminal domain bound nucleic acids independently of c-di-GMP. The C-terminal domain, which includes the c-di-GMP binding motifs, did not bind nucleic acids under any tested conditions. Our data are supported by computational docking, which predicts that c-di-GMP binding at the C-terminal domain stabilizes the overall protein structure and facilitates PlzA-DNA interactions via residues in the N-terminal domain. Based on our data, we propose that levels of c-di-GMP during the various stages of the enzootic life cycle direct PlzA binding to regulatory targets.
Collapse
Affiliation(s)
- Nerina Jusufovic
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew C Krusenstjerna
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Christina R Savage
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Timothy C Saylor
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Wolfram R Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Paula J Schlax
- Department of Chemistry and Biochemistry, Bates College, Lewiston, Maine, USA
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Brian Stevenson
- Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Liu C, Shi R, Jensen MS, Zhu J, Liu J, Liu X, Sun D, Liu W. The global regulation of c-di-GMP and cAMP in bacteria. MLIFE 2024; 3:42-56. [PMID: 38827514 PMCID: PMC11139211 DOI: 10.1002/mlf2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/09/2023] [Indexed: 06/04/2024]
Abstract
Nucleotide second messengers are highly versatile signaling molecules that regulate a variety of key biological processes in bacteria. The best-studied examples are cyclic AMP (cAMP) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), which both act as global regulators. Global regulatory frameworks of c-di-GMP and cAMP in bacteria show several parallels but also significant variances. In this review, we illustrate the global regulatory models of the two nucleotide second messengers, compare the different regulatory frameworks between c-di-GMP and cAMP, and discuss the mechanisms and physiological significance of cross-regulation between c-di-GMP and cAMP. c-di-GMP responds to numerous signals dependent on a great number of metabolic enzymes, and it regulates various signal transduction pathways through its huge number of effectors with varying activities. In contrast, due to the limited quantity, the cAMP metabolic enzymes and its major effector are regulated at different levels by diverse signals. cAMP performs its global regulatory function primarily by controlling the transcription of a large number of genes via cAMP receptor protein (CRP) in most bacteria. This review can help us understand how bacteria use the two typical nucleotide second messengers to effectively coordinate and integrate various physiological processes, providing theoretical guidelines for future research.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Rui Shi
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Marcus S. Jensen
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Xiaobo Liu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information TechnologyNanjing University of Science and TechnologyNanjingChina
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| |
Collapse
|
12
|
Zhan X, Zhang K, Wang C, Fan Q, Tang X, Zhang X, Wang K, Fu Y, Liang H. A c-di-GMP signaling module controls responses to iron in Pseudomonas aeruginosa. Nat Commun 2024; 15:1860. [PMID: 38424057 PMCID: PMC10904736 DOI: 10.1038/s41467-024-46149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Cyclic dimeric guanosine monophosphate (c-di-GMP) serves as a bacterial second messenger that modulates various processes including biofilm formation, motility, and host-microbe symbiosis. Numerous studies have conducted comprehensive analysis of c-di-GMP. However, the mechanisms by which certain environmental signals such as iron control intracellular c-di-GMP levels are unclear. Here, we show that iron regulates c-di-GMP levels in Pseudomonas aeruginosa by modulating the interaction between an iron-sensing protein, IsmP, and a diguanylate cyclase, ImcA. Binding of iron to the CHASE4 domain of IsmP inhibits the IsmP-ImcA interaction, which leads to increased c-di-GMP synthesis by ImcA, thus promoting biofilm formation and reducing bacterial motility. Structural characterization of the apo-CHASE4 domain and its binding to iron allows us to pinpoint residues defining its specificity. In addition, the cryo-electron microscopy structure of ImcA in complex with a c-di-GMP analog (GMPCPP) suggests a unique conformation in which the compound binds to the catalytic pockets and to the membrane-proximal side located at the cytoplasm. Thus, our results indicate that a CHASE4 domain directly senses iron and modulates the crosstalk between c-di-GMP metabolic enzymes.
Collapse
Affiliation(s)
- Xueliang Zhan
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Kuo Zhang
- College of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chenchen Wang
- College of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qiao Fan
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Xiujia Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xi Zhang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Ke Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yang Fu
- College of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haihua Liang
- College of Medicine, Southern University of Science and Technology, Shenzhen, China.
- University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|