1
|
Eslami A, Alimoghadam S, Khodadadi S, Allahverdi H, Alimoghadam R, Kasaeian A, Mansouri D, Alimoghaddam K, Alavi Darazam I. Comprehensive insights into tuberculosis-associated hemophagocytic lymphohistiocytosis: a systematic review. BMC Infect Dis 2024; 24:1341. [PMID: 39581974 PMCID: PMC11587777 DOI: 10.1186/s12879-024-10220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Tuberculosis-associated hemophagocytic lymphohistiocytosis (TB-HLH) presents significant challenges in diagnosis and treatment due to its complex interplay between TB and HLH. This systematic review aims to provide comprehensive insights into the epidemiology, clinical characteristics, and treatment outcomes of TB-HLH patients. METHODS We performed a systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searching PubMed, Scopus, Web of Science, and Embase up to May 16, 2023, without language restrictions. We included case reports and cases series on patients with both TB and HLH with documented treatment outcomes. Data were analyzed using descriptive statistics, chi-square or Fisher's exact tests, t-tests, and mortality rates. Significant variables (p < 0.05) from univariate analysis and clinically relevant factors were used in binary logistic regression to determine odds ratios, 95% confidence intervals, and p-values. RESULTS A total of 185 articles involving 213 patients were included. The overall mortality rate was 39%. Age ≥ 44 years and comorbidities were identified as independent risk factors for increased mortality (p = 0.005). Anti-tuberculosis treatment (ATT) combined with HLH-specific therapies, was associated with reduced mortality compared to ATT alone (p < 0.05), especially IVIG (p = 0.04). CONCLUSION Integrating ATT with HLH-specific therapies significantly enhances survival in TB-HLH patients. Additionally, IVIG plays a key role in improving outcomes. Age ≥ 44 years and comorbidities are critical risk factors for increased mortality. Early and high suspicion of TB-HLH is essential, especially in high TB burden regions or recent travel contexts. Future research should focus on prospective multicenter studies to validate our findings and develop standardized treatment strategies on TB-HLH. PROSPERO CRD42022364180.
Collapse
Affiliation(s)
- Arvin Eslami
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shaya Alimoghadam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Allahverdi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rojina Alimoghadam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kasaeian
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
de Lima FCG, de Araújo AR, do Nascimento AV, Bezerra Cavalcanti CDL, Oliveira Júnior JB, Sandes JM, da Silva EM, de Freitas CF, Veras DL, Alves LC, Brayner FA. In vitro evaluation of human intravenous immunoglobulin in combination with antimicrobials and human serum against multidrug-resistant isolates of Acinetobacter baumannii. Braz J Microbiol 2023; 54:2845-2856. [PMID: 37904004 PMCID: PMC10689330 DOI: 10.1007/s42770-023-01153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023] Open
Abstract
The high incidence of multidrug-resistant (MDR) Acinetobacter baumannii has been a challenge for health worldwide, due to the reduction of therapeutic options, making the use of antimicrobial combinations necessary for the treatment, such as meropenem, amikacin, and colistin. Antibodies against bacterial species, mainly immunoglobulins G (IgG), are produced for acting as effector mechanisms (neutralization, opsonization, phagocytosis, and complement system activation). Some studies have demonstrated promising results of IgG in combination with antimicrobial preparations against bacterial infections, in which the direct action of IgG has restored the immune system balance. Serious problem caused by the increase of MDR A. baumannii isolates results in a constant search for therapeutic alternatives to defeat these infections. However, this study aims to verify in vitro the phagocytosis rate of the A. baumannii-infected human monocytes, as well as to analyze possible morphological changes induced by intravenous immunoglobulin G (IVIG) with human serum in association with antimicrobials. The phagocytosis rate and bacterial cell binding capacity of IVIG were determined for two A. baumannii isolates submitted to 4 mg/mL of human IVIG alone and in combination with different sub-minimum inhibitory concentrations (sub-MICs) of meropenem, amikacin, and colistin and processed for indirect immunofluorescence. Subsequently, these isolates were resubmitted and coupled with human serum and processed for scanning electron microscopy. There was no statistical difference for phagocytosis rates in the isolates tested. Bacterial isolates showed alterations in cell morphology when exposed to IVIG/human serum alone and in combination with antimicrobials such as alteration in shape, wrinkling, membrane depression, and especially cell rupture with extravasation of cytoplasmic material. The isolates visually differed in the IVIG binding to the bacterial cell, with higher fluorescence intensity, which corresponds to the highest IVIG binding, in the isolate more sensitive to meropenem, amikacin, and colistin. No differences between treatments were observed in the IVIG binding to the bacterial cell. The combined action of IVIG with meropenem, amikacin, and colistin against A. baumannii MDR isolates induced several bacterial cell damages. And when associated with human serum, a massive destruction of cells can be observed. These results may suggest the analysis of the use of IgG preparations for the treatment of A. baumannii MDR infections.
Collapse
Affiliation(s)
| | - Alberon Ribeiro de Araújo
- Laboratory of Molecular and Cellular Biology, and Laboratory of Leishmaniasis and Mutagenesis, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ/PE), Recife, Pernambuco, Brazil
| | | | | | - Jorge Belém Oliveira Júnior
- Laboratory of Molecular and Cellular Biology, and Laboratory of Leishmaniasis and Mutagenesis, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ/PE), Recife, Pernambuco, Brazil.
| | - Jana Messias Sandes
- Electronic Microscopy Laboratory, Keizo Asami Institute, Federal Universidad of Pernambuco, Recife, Pernambuco, Brazil
| | - Everton Morais da Silva
- Bachelor's Degree in Pharmacy From Federal Universidad of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Dyana Leal Veras
- Laboratory of Molecular and Cellular Biology, and Laboratory of Leishmaniasis and Mutagenesis, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ/PE), Recife, Pernambuco, Brazil
| | - Luis Carlos Alves
- Laboratory of Molecular and Cellular Biology, and Laboratory of Leishmaniasis and Mutagenesis, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ/PE), Recife, Pernambuco, Brazil
- Electronic Microscopy Laboratory, Keizo Asami Institute, Federal Universidad of Pernambuco, Recife, Pernambuco, Brazil
| | - Fábio André Brayner
- Laboratory of Molecular and Cellular Biology, and Laboratory of Leishmaniasis and Mutagenesis, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ/PE), Recife, Pernambuco, Brazil
- Electronic Microscopy Laboratory, Keizo Asami Institute, Federal Universidad of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
3
|
Lim J, Koh VHQ, Cho SSL, Periaswamy B, Choi DPS, Vacca M, De Sessions PF, Kudela P, Lubitz W, Pastorin G, Alonso S. Harnessing the Immunomodulatory Properties of Bacterial Ghosts to Boost the Anti-mycobacterial Protective Immunity. Front Immunol 2019; 10:2737. [PMID: 31824511 PMCID: PMC6883722 DOI: 10.3389/fimmu.2019.02737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) pathogenesis is characterized by inadequate immune cell activation and delayed T cell response in the host. Recent immunotherapeutic efforts have been directed at stimulating innate immunity and enhancing interactions between antigen presenting cells and T cells subsets to improve the protective immunity against TB. In this study, we investigated the immunostimulatory properties of bacterial ghosts (BG) as a novel approach to potentiate the host immunity against mycobacterial infection. BG are intact cytoplasm-free Escherichia coli envelopes and have been developed as bacterial vaccines and adjuvant/delivery system in cancer immunotherapy. However, BG have yet to be exploited as immunopotentiators in the context of infectious diseases. Here, we showed that BG are potent inducers of dendritic cells (DC), which led to enhanced T cell proliferation and differentiation into effector cells. BG also induced macrophage activation, which was associated with enhanced nitric oxide production, a key anti-mycobacterial weapon. We further demonstrated that the immunostimulatory capability of BG far exceeds that of LPS and involves both TLR4-dependent and independent pathways. Consistently, BG treatment, but not LPS treatment, reduced the bacterial burden in infected mice, which correlated with increased influx of innate and adaptive effector immune cells and increased production of key cytokines in the lungs. Finally and importantly, enhanced bacilli killing was seen in mice co-administered with BG and second-line TB drugs bedaquiline and delamanid. Overall, this work paves the way for BG as potent immunostimulators that may be harnessed to improve mycobacteria killing at the site of infection.
Collapse
Affiliation(s)
- Jieling Lim
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vanessa Hui Qi Koh
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sharol Su Lei Cho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Balamurugan Periaswamy
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Dawn Poh Sum Choi
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Maurizio Vacca
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Paola Florez De Sessions
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Pavol Kudela
- Biotech Innovation Research Development & Consulting (BIRD-C), Vienna, Austria
| | - Werner Lubitz
- Biotech Innovation Research Development & Consulting (BIRD-C), Vienna, Austria
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Ordonez AA, Pokkali S, Kim S, Carr B, Klunk MH, Tong L, Saini V, Chang YS, McKevitt M, Smith V, Gossage DL, Jain SK. Adjunct antibody administration with standard treatment reduces relapse rates in a murine tuberculosis model of necrotic granulomas. PLoS One 2018; 13:e0197474. [PMID: 29758082 PMCID: PMC5951562 DOI: 10.1371/journal.pone.0197474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 01/30/2023] Open
Abstract
Matrix metalloproteinase (MMP)-9 is a zinc-dependent protease associated with early immune responses to Mycobacterium tuberculosis infection, macrophage recruitment and granuloma formation. We evaluated whether adjunctive inhibition of MMP-9 could improve the response to standard TB treatment in a mouse model that develops necrotic lesions. Six weeks after an aerosol infection with M. tuberculosis, C3HeB/FeJ mice received standard TB treatment (12 weeks) comprising rifampin, isoniazid and pyrazinamide alone or in combination with either anti-MMP-9 antibody, etanercept (positive control) or isotype antibody (negative control) for 6 weeks. Anti-MMP-9 and the isotype control had comparable high serum exposures and expected terminal half-life. The relapse rate in mice receiving standard TB treatment was 46.6%. Compared to the standard TB treatment, relapse rates in animals that received adjunctive treatments with anti-MMP-9 antibody or etanercept were significantly decreased to 25.9% (P = 0.006) and 29.8% (P = 0.019) respectively, but were not different from the arm that received the isotype control antibody (25.9%). Immunostaining demonstrated localization of MMP-9 primarily in macrophages in both murine and human lung tissues infected with M. tuberculosis, suggesting the importance of MMP-9 in TB pathogenesis. These data suggest that the relapse rates in M. tuberculosis-infected mice may be non-specifically improved by administration of antibodies in conjunction with standard TB treatments. Future studies are needed to evaluate the mechanism(s) leading to improved outcomes with adjunctive antibody treatments.
Collapse
Affiliation(s)
- Alvaro A. Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Supriya Pokkali
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sunhwa Kim
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Brian Carr
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Mariah H. Klunk
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leah Tong
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Vikram Saini
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yong S. Chang
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew McKevitt
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Victoria Smith
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - David L. Gossage
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Sanjay K. Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Ramos-Espinosa O, Islas-Weinstein L, Peralta-Álvarez MP, López-Torres MO, Hernández-Pando R. The use of immunotherapy for the treatment of tuberculosis. Expert Rev Respir Med 2018; 12:427-440. [PMID: 29575946 DOI: 10.1080/17476348.2018.1457439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is the first cause of mortality by a single infectious agent in the world, causing more than one million deaths worldwide as reported by the World Health Organization (WHO). For the optimal control of TB infection, a protective immune response that limits bacterial spread without causing damage to the host is essential. Although most healthy individuals are capable of generating protective responses, patients who suffer pulmonary TB commonly present a defective immune function. Areas covered: We intend to highlight the potential of novel immunotherapeutic strategies that enhance and promote effective immune responses. The following methodology was undertaken for establishing a literature search: the authors used PubMed to search for 'Pulmonary Tuberculosis' and keywords that denoted the novel immunotherapeutic strategies discussed in length in the text including antibodies, antimicrobial peptides, cell therapy, cytokines and gene therapy. Expert commentary: The current therapeutic regimens for this disease are complex and involve the prolonged use of multiple antibiotics with diverse side effects that lead to therapeutic failure and bacterial resistance. The standard appliance of immunotherapy and its deployment to vulnerable populations will require coordinated work and may serve as a powerful tool to combat the ensuing threat of TB.
Collapse
Affiliation(s)
- Octavio Ramos-Espinosa
- a Section of Experimental Pathology, Department of Pathology , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City , México
| | - León Islas-Weinstein
- a Section of Experimental Pathology, Department of Pathology , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City , México
| | - Marco Polo Peralta-Álvarez
- a Section of Experimental Pathology, Department of Pathology , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City , México.,b Laboratory of Immunochemistry, Department of Immunology , Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional , México City , México
| | - Manuel Othoniel López-Torres
- a Section of Experimental Pathology, Department of Pathology , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City , México
| | - Rogelio Hernández-Pando
- a Section of Experimental Pathology, Department of Pathology , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City , México
| |
Collapse
|