1
|
Rodriguez-Carlos A, Raúl A, Jacobo-Delgado YM, Serrano CJ, Santos-Mena A, De Jesus-Gonzalez LA, Boix E, Rivas-Santiago B. Drug repositioning identifies histone deacetylase inhibitors that promote innate immunity in non-tuberculous mycobacterial infection. Can J Microbiol 2024; 70:252-261. [PMID: 38855942 DOI: 10.1139/cjm-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Non-tuberculosis infections in immunocompromised patients represent a cause for concern, given the increased risks of infection, and limited treatments available. Herein, we report that molecules for binding to the catalytic site of histone deacetylase (HDAC) inhibit its activity, thus increasing the innate immune response against environmental mycobacteria. The action of HDAC inhibitors (iHDACs) was explored in a model of type II pneumocytes and macrophages infection by Mycobacterium aurum. The results show that the use of 1,3-diphenylurea increases the expression of the TLR-4 in M. aurum infected MDMs, as well as the production of defb4, IL-1β, IL-12, and IL-6. Moreover, we observed that aminoacetanilide upregulates the expression of TLR-4 together with TLR-9, defb4, CAMP, RNase 6, RNase 7, IL-1β, IL-12, and IL-6 in T2P. Results conclude that the tested iHDACs selectively modulate the expression of cytokines and antimicrobial peptides that are associated with reduction of non-tuberculous mycobacteria infection.
Collapse
Affiliation(s)
- Adrián Rodriguez-Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Anguita Raúl
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | - Carmen Judith Serrano
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Alan Santos-Mena
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | | | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| |
Collapse
|
2
|
Bahlool AZ, Cavanagh B, Sullivan AO, MacLoughlin R, Keane J, Sullivan MPO, Cryan SA. Microfluidics produced ATRA-loaded PLGA NPs reduced tuberculosis burden in alveolar epithelial cells and enabled high delivered dose under simulated human breathing pattern in 3D printed head models. Eur J Pharm Sci 2024; 196:106734. [PMID: 38417586 DOI: 10.1016/j.ejps.2024.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is second only to COVID-19 as the top infectious disease killer worldwide. Multi-drug resistant TB (MDR-TB) may arise because of poor patient adherence to medications due to lengthy treatment duration and side effects. Delivering novel host directed therapies (HDT), like all trans retinoic acid (ATRA) may help to improve drug regimens and reduce the incidence of MDR-TB. Local delivery of ATRA to the site of infection leads to higher bioavailability and reduced systemic side effects. ATRA is poorly soluble in water and has a short half-life in plasma. Therefore, it requires a formulation step before it can be administered in vivo. ATRA loaded PLGA nanoparticles suitable for nebulization were manufactured and optimized using a scalable nanomanufacturing microfluidics (MF) mixing approach (MF-ATRA-PLGA NPs). MF-ATRA-PLGA NPs demonstrated a dose dependent inhibition of Mtb growth in TB-infected A549 alveolar epithelial cell model while preserving cell viability. The MF-ATRA-PLGA NPs were nebulized with the Aerogen Solo vibrating mesh nebulizer, with aerosol droplet size characterized using laser diffraction and the estimated delivered dose was determined. The volume median diameter (VMD) of the MF-ATRA-PLGA NPs was 3.00 ± 0.18 μm. The inhaled dose delivered in adult and paediatric 3D printed head models under a simulated normal adult and paediatric breathing pattern was found to be 47.05 ± 3 % and 20.15 ± 3.46 % respectively. These aerosol characteristics of MF-ATRA-PLGA NPs supports its suitability for delivery to the lungs via inhalation. The data generated on the efficacy of an inhalable, scalable and regulatory friendly ATRA-PLGA NPs formulation provides a foundation on which further pre-clinical testing can be built. Overall, the results of this project are promising for future research into ATRA loaded NPs formulations as inhaled host directed therapies for TB.
Collapse
Affiliation(s)
- Ahmad Z Bahlool
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, D02 YN77, Dublin, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin, Ireland; Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland RCSI, Dublin 2, Ireland
| | - Andrew O' Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Galway Business Park, Dangan, Galway, Ireland
| | - Ronan MacLoughlin
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, D02 YN77, Dublin, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd, Galway Business Park, Dangan, Galway, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Mary P O' Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, D02 YN77, Dublin, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin, Ireland; SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland; SFI Centre for Research in Medical Devices (CÚRAM), NUIG & RCSI, Dublin, Ireland.
| |
Collapse
|
3
|
Jacobo-Delgado YM, Rodríguez-Carlos A, Serrano CJ, Rivas-Santiago B. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible? Front Immunol 2023; 14:1194923. [PMID: 37266428 PMCID: PMC10230078 DOI: 10.3389/fimmu.2023.1194923] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most important infectious agents worldwide and causes more than 1.5 million deaths annually. To make matters worse, the drug resistance among Mtb strains has risen substantially in the last few decades. Nowadays, it is not uncommon to find patients infected with Mtb strains that are virtually resistant to all antibiotics, which has led to the urgent search for new molecules and therapies. Over previous decades, several studies have demonstrated the efficiency of antimicrobial peptides to eliminate even multidrug-resistant bacteria, making them outstanding candidates to counterattack this growing health problem. Nevertheless, the complexity of the Mtb cell wall makes us wonder whether antimicrobial peptides can effectively kill this persistent Mycobacterium. In the present review, we explore the complexity of the Mtb cell wall and analyze the effectiveness of antimicrobial peptides to eliminate the bacilli.
Collapse
|
4
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Iakobachvili N, Leon‐Icaza SA, Knoops K, Sachs N, Mazères S, Simeone R, Peixoto A, Bernard C, Murris‐Espin M, Mazières J, Cam K, Chalut C, Guilhot C, López‐Iglesias C, Ravelli RBG, Neyrolles O, Meunier E, Lugo‐Villarino G, Clevers H, Cougoule C, Peters P. Mycobacteria-host interactions in human bronchiolar airway organoids. Mol Microbiol 2022; 117:682-692. [PMID: 34605588 PMCID: PMC9298242 DOI: 10.1111/mmi.14824] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023]
Abstract
Respiratory infections remain a major global health concern. Tuberculosis is one of the top 10 causes of death worldwide, while infections with Non-Tuberculous Mycobacteria are rising globally. Recent advances in human tissue modeling offer a unique opportunity to grow different human "organs" in vitro, including the human airway, that faithfully recapitulates lung architecture and function. Here, we have explored the potential of human airway organoids (AOs) as a novel system in which to assess the very early steps of mycobacterial infection. We reveal that Mycobacterium tuberculosis (Mtb) and Mycobacterium abscessus (Mabs) mainly reside as extracellular bacteria and infect epithelial cells with very low efficiency. While the AO microenvironment was able to control, but not eliminate Mtb, Mabs thrives. We demonstrate that AOs responded to infection by modulating cytokine, antimicrobial peptide, and mucin gene expression. Given the importance of myeloid cells in mycobacterial infection, we co-cultured infected AOs with human monocyte-derived macrophages and found that these cells interact with the organoid epithelium. We conclude that adult stem cell (ASC)-derived AOs can be used to decipher very early events of mycobacteria infection in human settings thus offering new avenues for fundamental and therapeutic research.
Collapse
Affiliation(s)
- Nino Iakobachvili
- M4i Nanoscopy DivisionMaastricht UniversityMaastrichtThe Netherlands
| | - Stephen Adonai Leon‐Icaza
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Kèvin Knoops
- M4i Nanoscopy DivisionMaastricht UniversityMaastrichtThe Netherlands
| | - Norman Sachs
- Oncode Institute, Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences and University Medical CenterUtrechtThe Netherlands
| | - Serge Mazères
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Roxane Simeone
- Institut Pasteur, Unit for Integrated Mycobacterial PathogenomicsCNRS UMR3525ParisFrance
| | - Antonio Peixoto
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Célia Bernard
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | | | - Julien Mazières
- Service de PneumologieHôpital Larrey, CHU de ToulouseToulouseFrance
| | - Kaymeuang Cam
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Christian Chalut
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Christophe Guilhot
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | | | | | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)ToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)Buenos AiresArgentina
| | - Etienne Meunier
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
| | - Geanncarlo Lugo‐Villarino
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)ToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)Buenos AiresArgentina
| | - Hans Clevers
- Oncode Institute, Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences and University Medical CenterUtrechtThe Netherlands
| | - Céline Cougoule
- Institut de Pharmacologie et Biologie Structurale (IPBS)Université de Toulouse, CNRS, UPSToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)ToulouseFrance
- International Associated Laboratory (LIA) CNRS “IM‐TB/HIV” (1167)Buenos AiresArgentina
| | - Peter J. Peters
- M4i Nanoscopy DivisionMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
6
|
de Haro-Acosta J, Jacobo-Delgado YM, Rodríguez-Carlos A, Torres-Juárez F, Araujo Z, Serrano CJ, Gonzalez-Curiel I, Hernández-Pando R, Salinas E, Rivas-Santiago B. Nicotine associates to intracellular Mycobacterium tuberculosis inducing genes related with resistance to antimicrobial peptides. Exp Lung Res 2021; 47:487-493. [PMID: 34809501 DOI: 10.1080/01902148.2021.2006829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tobacco consumption is related to an increased risk to develop tuberculosis. Antimicrobial peptides are essential molecules in the response to Mycobacterium tuberculosis (Mtb) because of their direct antimicrobial activity. The aim of this study was to demonstrate that nicotine enters into Mtb infected epithelial cells and associates with the mycobacteria inducing genes related to antimicrobial peptides resistance. Epithelial cells were infected with virulent Mtb, afterwards cells were stimulated with nicotine. The internalization of nicotine was followed using electron and confocal microscopy. The lysX expression was evaluated isolating mycobacterial RNA and submitted to RT-PCR analysis. Our results indicated that nicotine promotes Mtb growth in a dose-dependent manner in infected cells. We also reported that nicotine induces lysX expression. In conclusion, nicotine associates to intracellular mycobacteria promoting intracellular survival.
Collapse
Affiliation(s)
- Jeny de Haro-Acosta
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Laboratory of Immunology, Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | | | - Adrian Rodríguez-Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Flor Torres-Juárez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Zaida Araujo
- Laboratory of Immunology of Infectious Diseases, Instituto de Biomedicina "Dr. Jacinto Convit", Central University of Venezuela, Caracas, Venezuela
| | - Carmen J Serrano
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Irma Gonzalez-Curiel
- Laboratory of Immunotoxicology and Experimental Therapeutics, Post-graduate program in Sciences and Chemical Technology, Chemistry Sciences School, University Autonomous of Zacatecas, Zacatecas, Mexico
| | - Rogelio Hernández-Pando
- Laboratory of Experimental Pathology, Nacional Institute of Medical Sciences and Nutrition "Salvador-Zubiran", Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| |
Collapse
|
7
|
Henao Arias DC, Toro LJ, Téllez Ramirez GA, Osorio-Méndez JF, Rodríguez-Carlos A, Valle J, Marín-Luevano SP, Rivas-Santiago B, Andreu D, Castaño Osorio JC. Novel antimicrobial cecropins derived from O. curvicornis and D. satanas dung beetles. Peptides 2021; 145:170626. [PMID: 34391826 DOI: 10.1016/j.peptides.2021.170626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Antibiotic resistance is an increasing global problem and therapeutic alternatives to traditional antibiotics are needed. Antimicrobial and host defense peptides represent an attractive source for new therapeutic strategies, given their wide range of activities including antimicrobial, antitumoral and immunomodulatory. Insects produce several families of these peptides, including cecropins. Herein, we characterized the sequence, structure, and biological activity of three cecropins called satanin 1, 2, and curvicin, found in the transcriptome of two dung beetle species Dichotomius satanas and Onthophagus curvicornis. Sequence and circular dichroism analyses show that they have typical features of the cecropin family: short length (38-39 amino acids), positive charge, and amphipathic α-helical structure. They are active mainly against Gram-negative bacteria (3.12-12.5 μg/mL), with low toxicity on eukaryotic cells resulting in high therapeutic indexes (TI > 30). Peptides also showed effects on TNFα production in LPS-stimulated PBMCs. The biological activity of Satanin 1, 2 and Curvicin makes them interesting leads for antimicrobial strategies.
Collapse
Affiliation(s)
- Diana Carolina Henao Arias
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Cra, 15 calle 12 norte, Armenia, Quindío, Colombia
| | - Lily Johana Toro
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Cra, 15 calle 12 norte, Armenia, Quindío, Colombia
| | - Germán Alberto Téllez Ramirez
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Cra, 15 calle 12 norte, Armenia, Quindío, Colombia.
| | - Juan Felipe Osorio-Méndez
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Cra, 15 calle 12 norte, Armenia, Quindío, Colombia
| | - Adrián Rodríguez-Carlos
- Medical Research Unit Zacatecas, IMSS, Interior de la Alameda #45, col. Centro, Zacatecas, Cp. 98000, Mexico
| | - Javier Valle
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park Dr Aiguader 88, 08003 Barcelona, Spain
| | - Sara Paulina Marín-Luevano
- Medical Research Unit Zacatecas, IMSS, Interior de la Alameda #45, col. Centro, Zacatecas, Cp. 98000, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit Zacatecas, IMSS, Interior de la Alameda #45, col. Centro, Zacatecas, Cp. 98000, Mexico.
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park Dr Aiguader 88, 08003 Barcelona, Spain.
| | - Jhon Carlos Castaño Osorio
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Cra, 15 calle 12 norte, Armenia, Quindío, Colombia
| |
Collapse
|
8
|
Rodríguez-Carlos A, Trujillo V, Gonzalez-Curiel I, Marin-Luevano S, Torres-Juarez F, Santos-Mena A, Rivas-Santiago C, Enciso-Moreno JA, Zaga-Clavellina V, Rivas-Santiago B. Host Defense Peptide RNase 7 Is Down-regulated in the Skin of Diabetic Patients with or without Chronic Ulcers, and its Expression is Altered with Metformin. Arch Med Res 2020; 51:327-335. [DOI: 10.1016/j.arcmed.2020.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 02/18/2020] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
|
9
|
Rademacher F, Dreyer S, Kopfnagel V, Gläser R, Werfel T, Harder J. The Antimicrobial and Immunomodulatory Function of RNase 7 in Skin. Front Immunol 2019; 10:2553. [PMID: 31749808 PMCID: PMC6848066 DOI: 10.3389/fimmu.2019.02553] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
The human ribonuclease RNase 7 has been originally isolated from human skin and is a member of the human RNase A superfamily. RNase 7 is constantly released by keratinocytes and accumulates on the skin surface. The expression of RNase 7 in keratinocytes can be induced by diverse stimuli such as cytokines, growth factors, and microbial factors. RNase 7 exhibits a potent broad spectrum of antimicrobial activity against various microorganisms and contributes to control bacterial growth on the skin surface. The ribonuclease and antimicrobial activity of RNase 7 can be blocked by the endogenous ribonuclease inhibitor. There is also increasing evidence that RNase 7 exerts immunomodulatory activities and may participate in antiviral defense. In this review, we discuss how these characteristics of RNase 7 contribute to innate cutaneous defense and highlight its role in skin infection and inflammation. We also speculate how a potential dysregulation of RNase 7 promotes inflammatory skin diseases and if RNase 7 may have therapeutic potential.
Collapse
Affiliation(s)
| | - Sylvia Dreyer
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
| | - Verena Kopfnagel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
- Hannover Unified Biobank, Hannover Medical School, Hanover, Germany
| | - Regine Gläser
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Jürgen Harder
- Department of Dermatology, University of Kiel, Kiel, Germany
| |
Collapse
|
10
|
Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, Rodríguez Carlos A, Marin-Luévano SP, de Haro-Acosta JP, Enciso-Moreno JA, Rivas-Santiago B. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin Exp Immunol 2019; 199:230-243. [PMID: 31631328 DOI: 10.1111/cei.13388] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 01/12/2023] Open
Abstract
Smoking increases susceptibility to becoming infected with and developing tuberculosis. Among the components of cigarette smoke, nicotine has been identified as the main immunomodulatory molecule; however, its effect on the innate immune system is unknown. In the present study, the effect of nicotine on molecules of the innate immune system was evaluated. Lung epithelial cells and macrophages were infected with Mycobacterium tuberculosis (Mtb) and/or treated with nicotine. The results show that nicotine alone decreases the expression of the Toll-like receptors (TLR)-2, TLR-4 and NOD-2 in all three cell types, as well as the production of the SP-D surfactant protein in type II pneumocytes. Moreover, it was observed that nicotine decreases the production of interleukin (IL)-6 and C-C chemokine ligand (CCL)5 during Mtb infection in epithelial cells (EpCs), whereas in macrophages derived from human monocytes (MDMs) there is a decrease in IL-8, IL-6, tumor necrosis factor (TNF)-α, IL-10, CCL2, C-X-C chemokine ligand (CXCL)9 and CXCL10 only during infection with Mtb. Although modulation of the expression of cytokines and chemokines appears to be partially mediated by the nicotinic acetylcholine receptor α7, blocking this receptor found no effect on the expression of receptors and SP-D. In summary, it was found that nicotine modulates the expression of innate immunity molecules necessary for the defense against tuberculosis.
Collapse
Affiliation(s)
- C E Valdez-Miramontes
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - L A Trejo Martínez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - F Torres-Juárez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - A Rodríguez Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - S P Marin-Luévano
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - J P de Haro-Acosta
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - J A Enciso-Moreno
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - B Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| |
Collapse
|
11
|
Lu L, Arranz-Trullén J, Prats-Ejarque G, Pulido D, Bhakta S, Boix E. Human Antimicrobial RNases Inhibit Intracellular Bacterial Growth and Induce Autophagy in Mycobacteria-Infected Macrophages. Front Immunol 2019; 10:1500. [PMID: 31312205 PMCID: PMC6614385 DOI: 10.3389/fimmu.2019.01500] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
The development of novel treatment against tuberculosis is a priority global health challenge. Antimicrobial proteins and peptides offer a multifaceted mechanism suitable to fight bacterial resistance. Within the RNaseA superfamily there is a group of highly cationic proteins secreted by innate immune cells with anti-infective and immune-regulatory properties. In this work, we have tested the human canonical members of the RNase family using a spot-culture growth inhibition assay based mycobacteria-infected macrophage model for evaluating their anti-tubercular properties. Out of the seven tested recombinant human RNases, we have identified two members, RNase3 and RNase6, which were highly effective against Mycobacterium aurum extra- and intracellularly and induced an autophagy process. We observed the proteins internalization within macrophages and their capacity to eradicate the intracellular mycobacterial infection at a low micro-molar range. Contribution of the enzymatic activity was discarded by site-directed mutagenesis at the RNase catalytic site. The protein induction of autophagy was analyzed by RT-qPCR, western blot, immunofluorescence, and electron microscopy. Specific blockage of auto-phagosome formation and maturation reduced the protein's ability to eradicate the infection. In addition, we found that the M. aurum infection of human THP1 macrophages modulates the expression of endogenous RNase3 and RNase6, suggesting a function in vivo. Overall, our data anticipate a biological role for human antimicrobial RNases in host response to mycobacterial infections and set the basis for the design of novel anti-tubercular drugs.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Javier Arranz-Trullén
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Pulido
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
12
|
Lu L, Li J, Moussaoui M, Boix E. Immune Modulation by Human Secreted RNases at the Extracellular Space. Front Immunol 2018; 9:1012. [PMID: 29867984 PMCID: PMC5964141 DOI: 10.3389/fimmu.2018.01012] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
The ribonuclease A superfamily is a vertebrate-specific family of proteins that encompasses eight functional members in humans. The proteins are secreted by diverse innate immune cells, from blood cells to epithelial cells and their levels in our body fluids correlate with infection and inflammation processes. Recent studies ascribe a prominent role to secretory RNases in the extracellular space. Extracellular RNases endowed with immuno-modulatory and antimicrobial properties can participate in a wide variety of host defense tasks, from performing cellular housekeeping to maintaining body fluid sterility. Their expression and secretion are induced in response to a variety of injury stimuli. The secreted proteins can target damaged cells and facilitate their removal from the focus of infection or inflammation. Following tissue damage, RNases can participate in clearing RNA from cellular debris or work as signaling molecules to regulate the host response and contribute to tissue remodeling and repair. We provide here an overall perspective on the current knowledge of human RNases’ biological properties and their role in health and disease. The review also includes a brief description of other vertebrate family members and unrelated extracellular RNases that share common mechanisms of action. A better knowledge of RNase mechanism of actions and an understanding of their physiological roles should facilitate the development of novel therapeutics.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|