1
|
Williams A, Sinanaj B, Hoysted GA. Plant-microbe interactions through a lens: tales from the mycorrhizosphere. ANNALS OF BOTANY 2024; 133:399-412. [PMID: 38085925 PMCID: PMC11006548 DOI: 10.1093/aob/mcad191] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 04/12/2024]
Abstract
BACKGROUND The soil microbiome plays a pivotal role in maintaining ecological balance, supporting food production, preserving water quality and safeguarding human health. Understanding the intricate dynamics within the soil microbiome necessitates unravelling complex bacterial-fungal interactions (BFIs). BFIs occur in diverse habitats, such as the phyllosphere, rhizosphere and bulk soil, where they exert substantial influence on plant-microbe associations, nutrient cycling and overall ecosystem functions. In various symbiotic associations, fungi form mycorrhizal connections with plant roots, enhancing nutrient uptake through the root and mycorrhizal pathways. Concurrently, specific soil bacteria, including mycorrhiza helper bacteria, play a pivotal role in nutrient acquisition and promoting plant growth. Chemical communication and biofilm formation further shape plant-microbial interactions, affecting plant growth, disease resistance and nutrient acquisition processes. SCOPE Promoting synergistic interactions between mycorrhizal fungi and soil microbes holds immense potential for advancing ecological knowledge and conservation. However, despite the significant progress, gaps remain in our understanding of the evolutionary significance, perception, functional traits and ecological relevance of BFIs. Here we review recent findings obtained with respect to complex microbial communities - particularly in the mycorrhizosphere - and include the latest advances in the field, outlining their profound impacts on our understanding of ecosystem dynamics and plant physiology and function. CONCLUSIONS Deepening our understanding of plant BFIs can help assess their capabilities with regard to ecological and agricultural safe-guarding, in particular buffering soil stresses, and ensuring sustainable land management practices. Preserving and enhancing soil biodiversity emerge as critical imperatives in sustaining life on Earth amidst pressures of anthropogenic climate change. A holistic approach integrates scientific knowledge on bacteria and fungi, which includes their potential to foster resilient soil ecosystems for present and future generations.
Collapse
Affiliation(s)
- Alex Williams
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, S10 2TN, UK
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, S10 2TN, UK
| | - Grace A Hoysted
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
2
|
Veličković D, Zemaitis KJ, Bhattacharjee A, Anderton CR. Mass spectrometry imaging of natural carbonyl products directly from agar-based microbial interactions using 4-APEBA derivatization. mSystems 2024; 9:e0080323. [PMID: 38064548 PMCID: PMC10804984 DOI: 10.1128/msystems.00803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 01/24/2024] Open
Abstract
Aliphatic carboxylic acids, aldehydes, and ketones play diverse roles in microbial adaptation to their microenvironment, from excretion as toxins to adaptive metabolites for membrane fluidity. However, the spatial distribution of these molecules throughout biofilms and how microbes in these environments exchange these molecules remain elusive for many of these bioactive species due to inefficient molecular imaging strategies. Herein, we apply on-tissue chemical derivatization (OTCD) using 4-(2-((4-bromophenethyl)dimethylammonio)ethoxy)benzenaminium dibromide (4-APEBA) on a co-culture of a soil bacterium (Bacillus subtilis NCIB 3610) and fungus (Fusarium sp. DS 682) grown on agar as our model system. Using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), we spatially resolved more than 300 different metabolites containing carbonyl groups within this model system. Various spatial patterns are observable in these species, which indicate possible extracellular or intercellular processes of the metabolites and their up- or downregulation during microbial interaction. The unique chemistry of our approach allowed us to bring additional confidence in accurate carbonyl identification, especially when multiple isomeric candidates were possible, and this provided the ability to generate hypotheses about the potential role of some aliphatic carbonyls in this B. subtilis/Fusarium sp. interaction. The results shown here demonstrate the utility of 4-ABEBA-based OTCD MALDI-MSI in probing interkingdom interactions directly from microbial co-cultures, and these methods will enable future microbial interaction studies with expanded metabolic coverage.IMPORTANCEThe metabolic profiles within microbial biofilms and interkingdom interactions are extremely complex and serve a variety of functions, which include promoting colonization, growth, and survival within competitive and symbiotic environments. However, measuring and differentiating many of these molecules, especially in an in situ fashion, remains a significant analytical challenge. We demonstrate a chemical derivatization strategy that enabled highly sensitive, multiplexed mass spectrometry imaging of over 300 metabolites from a model microbial co-culture. Notably, this approach afforded us to visualize over two dozen classes of ketone-, aldehyde-, and carboxyl-containing molecules, which were previously undetectable from colonies grown on agar. We also demonstrate that this chemical derivatization strategy can enable the discrimination of isobaric and isomeric metabolites without the need for orthogonal separation (e.g., online chromatography or ion mobility). We anticipate that this approach will further enhance our knowledge of metabolic regulation within microbiomes and microbial systems used in bioengineering applications.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kevin J. Zemaitis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Arunima Bhattacharjee
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher R. Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
3
|
Cowled MS, Kalaitzis JA, Crombie A, Chen R, Sbaraini N, Lacey E, Piggott AM. Fungal Duel between Penicillium brasilianum and Aspergillus nomius Results in Dual Induction of Miktospiromide A and Kitrinomycin A. JOURNAL OF NATURAL PRODUCTS 2023; 86:2398-2406. [PMID: 37737825 DOI: 10.1021/acs.jnatprod.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Cocultivation of the fungi Penicillium brasilianum MST-FP1927 and Aspergillus nomius MST-FP2004 resulted in the reciprocal induction of two new compounds, miktospiromide A (1) from A. nomius and kitrinomycin A (2) from P. brasilianum. A third new compound, kitrinomycin B (3), was also identified from an axenic culture of P. brasilianum, along with the previously reported compounds austalide K (4), 17S-dihydroaustalide K (5), verruculogen (6), and fumitremorgin B (7). The structures of 1-3 were elucidated by detailed spectroscopic analysis and DFT calculations, while 4-7 were identified by comparison to authentic standards. The genome of A. nomius MST-FP2004 was sequenced, and a putative biosynthetic gene cluster for 1 was identified. Compound 2 showed activity against murine melanoma NS-1 cells (LD99 7.8 μM) and the bovine parasite Tritrichomonas foetus (LD99 4.8 μM).
Collapse
Affiliation(s)
- Michael S Cowled
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - John A Kalaitzis
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Rachel Chen
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Nicolau Sbaraini
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Ernest Lacey
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
4
|
Selegato DM, Castro-Gamboa I. Enhancing chemical and biological diversity by co-cultivation. Front Microbiol 2023; 14:1117559. [PMID: 36819067 PMCID: PMC9928954 DOI: 10.3389/fmicb.2023.1117559] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
In natural product research, microbial metabolites have tremendous potential to provide new therapeutic agents since extremely diverse chemical structures can be found in the nearly infinite microbial population. Conventionally, these specialized metabolites are screened by single-strain cultures. However, owing to the lack of biotic and abiotic interactions in monocultures, the growth conditions are significantly different from those encountered in a natural environment and result in less diversity and the frequent re-isolation of known compounds. In the last decade, several methods have been developed to eventually understand the physiological conditions under which cryptic microbial genes are activated in an attempt to stimulate their biosynthesis and elicit the production of hitherto unexpressed chemical diversity. Among those, co-cultivation is one of the most efficient ways to induce silenced pathways, mimicking the competitive microbial environment for the production and holistic regulation of metabolites, and has become a golden methodology for metabolome expansion. It does not require previous knowledge of the signaling mechanism and genome nor any special equipment for cultivation and data interpretation. Several reviews have shown the potential of co-cultivation to produce new biologically active leads. However, only a few studies have detailed experimental, analytical, and microbiological strategies for efficiently inducing bioactive molecules by co-culture. Therefore, we reviewed studies applying co-culture to induce secondary metabolite pathways to provide insights into experimental variables compatible with high-throughput analytical procedures. Mixed-fermentation publications from 1978 to 2022 were assessed regarding types of co-culture set-ups, metabolic induction, and interaction effects.
Collapse
|
5
|
Li H, Li Z. The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging. Bioengineering (Basel) 2022; 9:707. [PMID: 36421108 PMCID: PMC9687252 DOI: 10.3390/bioengineering9110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 10/17/2023] Open
Abstract
As an impressive mass spectrometry technology, mass spectrometric imaging (MSI) can provide mass spectra data and spatial distribution of analytes simultaneously. MSI has been widely used in diverse fields such as clinical diagnosis, the pharmaceutical industry and environmental study due to its accuracy, high resolution and developing reproducibility. Natural products (NPs) have been a critical source of leading drugs; almost half of marketed drugs are derived from NPs or their derivatives. The continuous search for bioactive NPs from microorganisms or microbiomes has always been attractive. MSI allows us to analyze and characterize NPs directly in monocultured microorganisms or a microbial community. In this review, we briefly introduce current mainstream ionization technologies for microbial samples and the key issue of sample preparation, and then summarize some applications of MSI in the exploration of microbial NPs and metabolic interaction, especially NPs from marine microbes. Additionally, remaining challenges and future prospects are discussed.
Collapse
Affiliation(s)
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Jens JN, Breiner DJ, Phelan VV. Spray-Based Application of Matrix to Agar-Based Microbial Samples for Reproducible Sample Adherence in MALDI MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:731-734. [PMID: 35202541 PMCID: PMC9341124 DOI: 10.1021/jasms.1c00208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial mass spectrometry imaging (MSI) is a powerful tool used to generate biological hypotheses about the roles of metabolites in microbial competition based upon their two-dimensional spatial distribution. The most commonly used ionization method for microbial MSI is matrix-assisted laser desorption ionization (MALDI). However, medium components and microbial metabolites influence the adhesion of agar samples to the MALDI target, limiting the applicability of MALDI MSI to microbes grown on specific media. Here, we describe a three-step process using a robotic sprayer for a matrix application that improves the adherence of agar samples to the MALDI target, enabling the use of different media for microbial growth and an MSI analysis of larger sample surface areas.
Collapse
|
7
|
Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate. THE ISME JOURNAL 2022; 16:1036-1045. [PMID: 34789844 PMCID: PMC8940921 DOI: 10.1038/s41396-021-01147-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022]
Abstract
Photosynthetic microalgae are responsible for 50% of the global atmospheric CO2 fixation into organic matter and hold potential as a renewable bioenergy source. Their metabolic interactions with the surrounding microbial community (the algal microbiome) play critical roles in carbon cycling, but due to methodological limitations, it has been challenging to examine how community development is influenced by spatial proximity to their algal host. Here we introduce a copolymer-based porous microplate to co-culture algae and bacteria, where metabolites are constantly exchanged between the microorganisms while maintaining physical separation. In the microplate, we found that the diatom Phaeodactylum tricornutum accumulated to cell abundances ~20 fold higher than under normal batch conditions due to constant replenishment of nutrients through the porous structure. We also demonstrate that algal-associated bacteria, both single isolates and complex communities, responded to inorganic nutrients away from their host as well as organic nutrients originating from the algae in a spatially predictable manner. These experimental findings coupled with a mathematical model suggest that host proximity and algal culture growth phase impact bacterial community development in a taxon-specific manner through organic and inorganic nutrient availability. Our novel system presents a useful tool to investigate universal metabolic interactions between microbes in aquatic ecosystems.
Collapse
|
8
|
Nguyen DD, Sauer JS, Camarda LP, Sherman SL, Prather KA, Golden SS, Pomeroy R, Dorrestein PC, Simkovsky R. Grazer-induced changes in molecular signatures of cyanobacteria. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
9
|
Abstract
Bacillus subtilis is a soil bacterium that can form biofilms, which are communities of cells encased by an extracellular matrix. In these complex communities, cells perform numerous metabolic processes and undergo differentiation into functionally distinct phenotypes as a survival strategy. Because biofilms are often studied in bulk, it remains unclear how metabolite production spatially correlates with B. subtilis phenotypes within biofilm structures. In many cases, we still do not know where these biological processes are occurring in the biofilm. Here, we developed a method to analyze the localization of molecules within sagittal thin sections of B. subtilis biofilms using high-resolution mass spectrometry imaging. We correlated the organization of specific molecules to the localization of well-studied B. subtilis phenotypic reporters determined by confocal laser scanning fluorescence microscopy within analogous biofilm thin sections. The correlations between these two data sets suggest the role of surfactin as a signal for extracellular matrix gene expression in the biofilm periphery and the role of bacillibactin as an iron-scavenging molecule. Taken together, this method will help us generate hypotheses to discover relationships between metabolites and phenotypic cell states in B. subtilis and other biofilm-forming bacteria. IMPORTANCE Bacterial biofilms are complex and heterogeneous structures. Cells within biofilms carry out numerous metabolic processes in a nuanced and organized manner, details of which are still being discovered. Here, we used multimodal imaging to analyze B. subtilis biofilm processes at the metabolic and gene expression levels in biofilm sagittal thin sections. Often, imaging techniques analyze only the top of the surface of the biofilm and miss the multifaceted interactions that occur deep within the biofilm. Our analysis of the sagittal planes of B. subtilis biofilms revealed the distributions of metabolic processes throughout the depths of these structures and allowed us to draw correlations between metabolites and phenotypically important subpopulations of B. subtilis cells. This technique provides a platform to generate hypotheses about the role of specific molecules and their relationships to B. subtilis subpopulations of cells.
Collapse
|
10
|
Facilitating Imaging Mass Spectrometry of Microbial Specialized Metabolites with METASPACE. Metabolites 2021; 11:metabo11080477. [PMID: 34436418 PMCID: PMC8401310 DOI: 10.3390/metabo11080477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolite annotation from imaging mass spectrometry (imaging MS) data is a difficult undertaking that is extremely resource intensive. Here, we adapted METASPACE, cloud software for imaging MS metabolite annotation and data interpretation, to quickly annotate microbial specialized metabolites from high-resolution and high-mass accuracy imaging MS data. Compared with manual ion image and MS1 annotation, METASPACE is faster and, with the appropriate database, more accurate. We applied it to data from microbial colonies grown on agar containing 10 diverse bacterial species and showed that METASPACE was able to annotate 53 ions corresponding to 32 different microbial metabolites. This demonstrates METASPACE to be a useful tool to annotate the chemistry and metabolic exchange factors found in microbial interactions, thereby elucidating the functions of these molecules.
Collapse
|
11
|
Behavioral Interactions between Bacterivorous Nematodes and Predatory Bacteria in a Synthetic Community. Microorganisms 2021; 9:microorganisms9071362. [PMID: 34201688 PMCID: PMC8307948 DOI: 10.3390/microorganisms9071362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 11/17/2022] Open
Abstract
Theory and empirical studies in metazoans predict that apex predators should shape the behavior and ecology of mesopredators and prey at lower trophic levels. Despite the ecological importance of microbial communities, few studies of predatory microbes examine such behavioral res-ponses and the multiplicity of trophic interactions. Here, we sought to assemble a three-level microbial food chain and to test for behavioral interactions between the predatory nematode Caenorhabditis elegans and the predatory social bacterium Myxococcus xanthus when cultured together with two basal prey bacteria that both predators can eat—Escherichia coli and Flavobacterium johnsoniae. We found that >90% of C. elegans worms failed to interact with M. xanthus even when it was the only potential prey species available, whereas most worms were attracted to pure patches of E. coli and F. johnsoniae. In addition, M. xanthus altered nematode predatory behavior on basal prey, repelling C. elegans from two-species patches that would be attractive without M. xanthus, an effect similar to that of C. elegans pathogens. The nematode also influenced the behavior of the bacterial predator: M. xanthus increased its predatory swarming rate in response to C. elegans in a manner dependent both on basal-prey identity and on worm density. Our results suggest that M. xanthus is an unattractive prey for some soil nematodes and is actively avoided when other prey are available. Most broadly, we found that nematode and bacterial predators mutually influence one another’s predatory behavior, with likely consequences for coevolution within complex microbial food webs.
Collapse
|
12
|
Brockmann EU, Potthoff A, Tortorella S, Soltwisch J, Dreisewerd K. Infrared MALDI Mass Spectrometry with Laser-Induced Postionization for Imaging of Bacterial Colonies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1053-1064. [PMID: 33780619 DOI: 10.1021/jasms.1c00020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultraviolet matrix-assisted laser desorption ionization mass spectrometry imaging (UV-MALDI-MSI) is a powerful tool to visualize bacterial metabolites in microbial colonies and in biofilms. However, a challenge for the method is the efficient extraction of analytes from deeper within the bacterial colonies and from the cytoplasm of individual cells during the matrix coating step. Here, we used a pulsed infrared (IR) laser of 2.94 μm wavelength to disrupt and ablate bacterial cells without a prior coating with a MALDI matrix. Instead, tissue water or, in some experiments, in addition a small amount of glycerol was exploited for the deposition of the IR laser energy and for supporting the ionization of the analytes. Compared to water, glycerol exhibits a lower vapor pressure, which prolonged the available measurement time window within an MSI experiment. Mass spectra were acquired with a hybrid Synapt G2-S HDMS instrument at a pixel size of 120 μm. A frequency-quadrupled q-switched Nd:YAG laser with 266 nm wavelength served for laser-induced postionization (MALDI-2). In this way, the ion abundances of numerous small molecules such as nucleobases, 2-alkyl-quinolones, a prominent class of Pseudomonas aeruginosa signaling molecules involved in one of the three quorum-sensing pathways, and also the signals of various bacterial phospholipids were boosted, partially by orders of magnitude. We analyzed single and cocultured colonies of Gram-negative P. aeruginosa and of Gram-positive Bacillus subtilis and Staphylococcus aureus as exemplary bacterial systems. To enable a rapid (within 5 s) MSI-compatible steam inactivation in a custom-made autoclave filled with hot water steam, bacterial cultures were grown on porous polyamide membranes. Compared to a UV-MALDI-2-MS measurement of the same systems, mass spectra with a reduced low mass background were generally generated. This resulted in the unequivocal detection of numerous metabolites only with the IR laser. In a fundamental part of our study, and to optimize the IR-MALDI-2 approach for the highest analytical sensitivity, we characterized the expansion dynamics of the particle plume as generated by the IR laser. Here, we recorded the total ion count and the intensities of selected signals registered from P. aeruginosa samples as a function of the interlaser delay and buffer gas pressure in the ion source. The data revealed that the IR-MALDI-2 ion signals are primarily generated from slow particles having mean velocities of ∼10 m/s. Interestingly, two different pressure/delay time regimes of the optimized ionization efficiency for phospholipids and smaller metabolites, respectively, were revealed, a result pointing to yet-unknown convoluted reaction cascades. The described IR-MALDI-2 method could be a helpful new tool for a microbial mass spectrometry imaging of small molecules requiring little sample preparation.
Collapse
Affiliation(s)
- Eike U Brockmann
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Alexander Potthoff
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Sara Tortorella
- Molecular Horizon, Via Montelino 30, 06084 Bettona, Perugia, Italy
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
13
|
Goodrich-Blair H. Interactions of host-associated multispecies bacterial communities. Periodontol 2000 2021; 86:14-31. [PMID: 33690897 DOI: 10.1111/prd.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oral microbiome comprises microbial communities colonizing biotic (epithelia, mucosa) and abiotic (enamel) surfaces. Different communities are associated with health (eg, immune development, pathogen resistance) and disease (eg, tooth loss and periodontal disease). Like any other host-associated microbiome, colonization and persistence of both beneficial and dysbiotic oral microbiomes are dictated by successful utilization of available nutrients and defense against host and competitor assaults. This chapter will explore these general features of microbe-host interactions through the lens of symbiotic (mutualistic and antagonistic/pathogenic) associations with nonmammalian animals. Investigations in such systems across a broad taxonomic range have revealed conserved mechanisms and processes that underlie the complex associations among microbes and between microbes and hosts.
Collapse
Affiliation(s)
- Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
14
|
Zhou Q, Fülöp A, Hopf C. Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Anal Bioanal Chem 2020; 413:2599-2617. [PMID: 33215311 PMCID: PMC8007514 DOI: 10.1007/s00216-020-03023-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a fast-growing technique for visualization of the spatial distribution of the small molecular and macromolecular biomolecules in tissue sections. Challenges in MALDI-MSI, such as poor sensitivity for some classes of molecules or limited specificity, for instance resulting from the presence of isobaric molecules or limited resolving power of the instrument, have encouraged the MSI scientific community to improve MALDI-MSI sample preparation workflows with innovations in chemistry. Recent developments of novel small organic MALDI matrices play a part in the improvement of image quality and the expansion of the application areas of MALDI-MSI. This includes rationally designed/synthesized as well as commercially available small organic molecules whose superior matrix properties in comparison with common matrices have only recently been discovered. Furthermore, on-tissue chemical derivatization (OTCD) processes get more focused attention, because of their advantages for localization of poorly ionizable metabolites and their‚ in several cases‚ more specific imaging of metabolites in tissue sections. This review will provide an overview about the latest developments of novel small organic matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Graphical abstract ![]()
Collapse
Affiliation(s)
- Qiuqin Zhou
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Annabelle Fülöp
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany.
| |
Collapse
|
15
|
Abstract
Microbial communities are key components of the soil ecosystem. Recent advances in metagenomics and other omics capabilities have expanded our ability to characterize the composition and function of the soil microbiome. However, characterizing the spatial metabolic and morphological diversity of microbial communities remains a challenge due to the dynamic and complex nature of soil microenvironments. The SoilBox system, demonstrated in this work, simulates an ∼12-cm soil depth, similar to a typical soil core, and provides a platform that facilitates imaging the molecular and topographical landscape of soil microbial communities as a function of environmental gradients. Moreover, the nondestructive harvesting of soil microbial communities for the imaging experiments can enable simultaneous multiomics analysis throughout the depth of the SoilBox. Our results show that by correlating molecular and optical imaging data obtained using the SoilBox platform, deeper insights into the nature of specific soil microbial interactions can be achieved. Understanding the basic biology that underpins soil microbiome interactions is required to predict the metaphenomic response to environmental shifts. A significant knowledge gap remains in how such changes affect microbial community dynamics and their metabolic landscape at microbially relevant spatial scales. Using a custom-built SoilBox system, here we demonstrated changes in microbial community growth and composition in different soil environments (14%, 24%, and 34% soil moisture), contingent upon access to reservoirs of nutrient sources. The SoilBox emulates the probing depth of a common soil core and enables determination of both the spatial organization of the microbial communities and their metabolites, as shown by confocal microscopy in combination with mass spectrometry imaging (MSI). Using chitin as a nutrient source, we used the SoilBox system to observe increased adhesion of microbial biomass on chitin islands resulting in degradation of chitin into N-acetylglucosamine (NAG) and chitobiose. With matrix-assisted laser desorption/ionization (MALDI)-MSI, we also observed several phospholipid families that are functional biomarkers for microbial growth on the chitin islands. Fungal hyphal networks bridging different chitin islands over distances of 27 mm were observed only in the 14% soil moisture regime, indicating that such bridges may act as nutrient highways under drought conditions. In total, these results illustrate a system that can provide unprecedented spatial information about interactions within soil microbial communities as a function of changing environments. We anticipate that this platform will be invaluable in spatially probing specific intra- and interkingdom functional relationships of microbiomes within soil. IMPORTANCE Microbial communities are key components of the soil ecosystem. Recent advances in metagenomics and other omics capabilities have expanded our ability to characterize the composition and function of the soil microbiome. However, characterizing the spatial metabolic and morphological diversity of microbial communities remains a challenge due to the dynamic and complex nature of soil microenvironments. The SoilBox system, demonstrated in this work, simulates an ∼12-cm soil depth, similar to a typical soil core, and provides a platform that facilitates imaging the molecular and topographical landscape of soil microbial communities as a function of environmental gradients. Moreover, the nondestructive harvesting of soil microbial communities for the imaging experiments can enable simultaneous multiomics analysis throughout the depth of the SoilBox. Our results show that by correlating molecular and optical imaging data obtained using the SoilBox platform, deeper insights into the nature of specific soil microbial interactions can be achieved.
Collapse
|
16
|
Josenhans C, Müthing J, Elling L, Bartfeld S, Schmidt H. How bacterial pathogens of the gastrointestinal tract use the mucosal glyco-code to harness mucus and microbiota: New ways to study an ancient bag of tricks. Int J Med Microbiol 2020; 310:151392. [DOI: 10.1016/j.ijmm.2020.151392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
|
17
|
Liu C, Kakeya H. Cryptic Chemical Communication: Secondary Metabolic Responses Revealed by Microbial Co‐culture. Chem Asian J 2020; 15:327-337. [DOI: 10.1002/asia.201901505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Chao Liu
- Department of System Chemotherapy and Molecular SciencesDivision of Bioinformatics and Chemical GenomicsGraduate School of Pharmaceutical SciencesKyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular SciencesDivision of Bioinformatics and Chemical GenomicsGraduate School of Pharmaceutical SciencesKyoto University Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
18
|
Røder HL, Olsen NMC, Whiteley M, Burmølle M. Unravelling interspecies interactions across heterogeneities in complex biofilm communities. Environ Microbiol 2019; 22:5-16. [DOI: 10.1111/1462-2920.14834] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Henriette L. Røder
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| | - Nanna M. C. Olsen
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| | - Marvin Whiteley
- School of Biological SciencesGeorgia Institute of Technology, Atlanta Georgia USA
- Emory‐Children's Cystic Fibrosis Center, Atlanta Georgia USA
- Center for Microbial Dynamics and InfectionGeorgia Institute of Technology, Atlanta Georgia USA
| | - Mette Burmølle
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
19
|
Brockmann EU, Steil D, Bauwens A, Soltwisch J, Dreisewerd K. Advanced Methods for MALDI-MS Imaging of the Chemical Communication in Microbial Communities. Anal Chem 2019; 91:15081-15089. [DOI: 10.1021/acs.analchem.9b03772] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Eike Ulrich Brockmann
- Institute of Hygiene, University of Münster, Münster 48149, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster 48149, Germany
| | - Daniel Steil
- Institute of Hygiene, University of Münster, Münster 48149, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster 48149, Germany
| | - Andreas Bauwens
- Institute of Hygiene, University of Münster, Münster 48149, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster 48149, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster 48149, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Münster 48149, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster 48149, Germany
| |
Collapse
|
20
|
Schmidt R, Ulanova D, Wick LY, Bode HB, Garbeva P. Microbe-driven chemical ecology: past, present and future. ISME JOURNAL 2019; 13:2656-2663. [PMID: 31289346 DOI: 10.1038/s41396-019-0469-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/09/2022]
Abstract
In recent years, research in the field of Microbial Ecology has revealed the tremendous diversity and complexity of microbial communities across different ecosystems. Microbes play a major role in ecosystem functioning and contribute to the health and fitness of higher organisms. Scientists are now facing many technological and methodological challenges in analyzing these complex natural microbial communities. The advances in analytical and omics techniques have shown that microbial communities are largely shaped by chemical interaction networks mediated by specialized (water-soluble and volatile) metabolites. However, studies concerning microbial chemical interactions need to consider biotic and abiotic factors on multidimensional levels, which require the development of new tools and approaches mimicking natural microbial habitats. In this review, we describe environmental factors affecting the production and transport of specialized metabolites. We evaluate their ecological functions and discuss approaches to address future challenges in microbial chemical ecology (MCE). We aim to emphasize that future developments in the field of MCE will need to include holistic studies involving organisms at all levels and to consider mechanisms underlying the interactions between viruses, micro-, and macro-organisms in their natural environments.
Collapse
Affiliation(s)
- Ruth Schmidt
- INRS-Institut Armand-Frappier, Laval, H7V 1B7, Canada.,Quebec Center for Biodiversity Sciences (QCBS), H3A 1B1, Montréal, Canada
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, 783-8502, Japan.,Center for Advanced Marine Core Research, Kochi University, Kochi, 783-8502, Japan
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, D-04318, Leipzig, Germany
| | - Helge B Bode
- Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Paolina Garbeva
- Netherlands Institute of Ecology, Wageningen, 6708 PB, The Netherlands.
| |
Collapse
|
21
|
Zhang P, Chen YP, Qiu JH, Dai YZ, Feng B. Imaging the Microprocesses in Biofilm Matrices. Trends Biotechnol 2018; 37:214-226. [PMID: 30075862 DOI: 10.1016/j.tibtech.2018.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022]
Abstract
Biofilms, which are aggregates of microorganisms and extracellular matrices, widely colonize natural water bodies, wastewater treatment systems, and body tissues, and have vital roles in water purification, biofouling, and infectious diseases. Recently, multiple imaging modalities have been developed to visualize the morphological structure and material distribution within biofilms and to probe the microprocesses in biofilm matrices, including biofilm formation, transfer and metabolism of substrates, and cell-cell communication. These technologies have improved our understanding of biofilm control and the fates of substrates in biofilms. In this review, we describe the principles of various imaging techniques and discuss the advantages and limitations of each approach to characterizing microprocesses in biofilm matrices.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| | - Ju-Hui Qiu
- College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - You-Zhi Dai
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
22
|
Santos T, Théron L, Chambon C, Viala D, Centeno D, Esbelin J, Hébraud M. MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms. J Proteomics 2018; 187:152-160. [PMID: 30071319 DOI: 10.1016/j.jprot.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
MALDI-TOF Mass spectrometry Imaging (MSI) is a surface-sampling technology that can determine spatial information and relative abundance of analytes directly from biological samples. Human listeriosis cases are due to the ingestion of contaminated foods with the pathogenic bacteria Listeria monocytogenes. The reduction of water availability in food workshops by decreasing the air relative humidity (RH) is one strategy to improve the control of bacterial contamination. This study aims to develop and implement an MSI approach on L. monocytogenes biofilms and proof of concept using a dehumidified stress condition. MSI allowed examining the distribution of low molecular weight proteins within the biofilms subjected to a dehumidification environment, mimicking the one present in a food workshop (10 °C, 75% RH). Furthermore, a LC-MS/MS approach was made to link the dots between MSI and protein identification. Five identified proteins were assigned to registered MSI m/z, including two cold-shock proteins and a ligase involved in cell wall biogenesis. These data demonstrate how imaging can be used to dissect the proteome of an intact bacterial biofilm giving new insights into protein expression relating to a dehumidification stress adaptation. Data are available via ProteomeXchange with identifier PXD010444. BIOLOGICAL SIGNIFICANCE The ready-to-eat food processing industry has the daily challenge of controlling the contamination of surfaces and machines with spoilage and pathogenic microorganisms. In some cases, it is a lost cause due to these microorganisms' capacity to withstand the cleaning treatments, like desiccation procedures. Such a case is the ubiquitous Gram-positive Bacterium Listeria monocytogenes. Its surface proteins have particular importance for the interaction with its environment, being important factors contributing to adaptation to stress conditions. There are few reproducibly techniques to obtain the surface proteins of Gram-positive cells. Here, we developed a workflow that enables the use of MALDI imaging on Gram-positive bacterium biofilms to study the impact of dehumidification on sessile cells. It will be of the most interest to test this workflow with different environmental conditions and potentially apply it to other biofilm-forming bacteria.
Collapse
Affiliation(s)
- Tiago Santos
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Laëtitia Théron
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Didier Viala
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Delphine Centeno
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Julia Esbelin
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France; INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France.
| |
Collapse
|
23
|
Chen PY, Hsieh CY, Shih CJ, Lin YJ, Tsao CW, Yang YL. Exploration of Fungal Metabolic Interactions Using Imaging Mass Spectrometry on Nanostructured Silicon. JOURNAL OF NATURAL PRODUCTS 2018; 81:1527-1533. [PMID: 29916245 DOI: 10.1021/acs.jnatprod.7b00866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Application of matrix-assisted laser desorption/ionization imaging mass spectrometry to microbiology and natural product research has opened the door to the exploration of microbial interactions and the consequent discovery of new natural products and their functions in the interactions. However, several drawbacks of matrix-assisted laser desorption/ionization imaging mass spectrometry have limited its application especially to complicated and uneven microbial samples. Here, we applied nanostructured silicon as a substrate for surface-assisted laser desorption/ionization mass spectrometry for microbial imaging mass spectrometry to explore fungal metabolic interactions. We chose Phellinus noxius and Aspergillus strains to evaluate the potential of microbial imaging mass spectrometry on nanostructured silicon because both fungi produce a dense mass of aerial mycelia, which is known to complicate the collection of high-quality imaging mass spectrometry data. Our simple and straightforward sample imprinting method and low background interference resulted in an efficient analysis of small metabolites from the complex microbial interaction samples.
Collapse
Affiliation(s)
- Pi-Yu Chen
- Agricultural Biotechnology Research Center , Academia Sinica , 11529 Taipei , Taiwan
| | - Chi-Ying Hsieh
- Agricultural Biotechnology Research Center , Academia Sinica , 11529 Taipei , Taiwan
| | - Chao-Jen Shih
- Agricultural Biotechnology Research Center , Academia Sinica , 11529 Taipei , Taiwan
- Bioresource Collection and Research Center , Food Industry Research and Development Institute , 30062 Hsinchu , Taiwan
| | - Yuan-Jing Lin
- Department of Mechanical Engineering , National Central University , 32001 Taoyuan , Taiwan
| | - Chia-Wen Tsao
- Department of Mechanical Engineering , National Central University , 32001 Taoyuan , Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center , Academia Sinica , 11529 Taipei , Taiwan
| |
Collapse
|
24
|
Brown SP, Blackwell HE, Hammer BK. The State of the Union Is Strong: a Review of ASM's 6th Conference on Cell-Cell Communication in Bacteria. J Bacteriol 2018; 200:e00291-18. [PMID: 29760210 PMCID: PMC6018360 DOI: 10.1128/jb.00291-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 6th American Society for Microbiology Conference on Cell-Cell Communication in Bacteria convened from 16 to 19 October 2017 in Athens, GA. In this minireview, we highlight some of the research presented at that meeting that addresses central questions emerging in the field, including the following questions. How are cell-cell communication circuits designed to generate responses? Where are bacteria communicating? Finally, why are bacteria engaging in such behaviors?
Collapse
Affiliation(s)
- Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Sandrin TR, Demirev PA. Characterization of microbial mixtures by mass spectrometry. MASS SPECTROMETRY REVIEWS 2018; 37:321-349. [PMID: 28509357 DOI: 10.1002/mas.21534] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 05/27/2023]
Abstract
MS applications in microbiology have increased significantly in the past 10 years, due in part to the proliferation of regulator-approved commercial MALDI MS platforms for rapid identification of clinical infections. In parallel, with the expansion of MS technologies in the "omics" fields, novel MS-based research efforts to characterize organismal as well as environmental microbiomes have emerged. Successful characterization of microorganisms found in complex mixtures of other organisms remains a major challenge for researchers and clinicians alike. Here, we review recent MS advances toward addressing that challenge. These include sample preparation methods and protocols, and established, for example, MALDI, as well as newer, for example, atmospheric pressure ionization (API) techniques. MALDI mass spectra of intact cells contain predominantly information on the highly expressed house-keeping proteins used as biomarkers. The API methods are applicable for small biomolecule analysis, for example, phospholipids and lipopeptides, and facilitate species differentiation. MS hardware and techniques, for example, tandem MS, including diverse ion source/mass analyzer combinations are discussed. Relevant examples for microbial mixture characterization utilizing these combinations are provided. Chemometrics and bioinformatics methods and algorithms, including those applied to large scale MS data acquisition in microbial metaproteomics and MS imaging of biofilms, are highlighted. Select MS applications for polymicrobial culture analysis in environmental and clinical microbiology are reviewed as well.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona
| | - Plamen A Demirev
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland
| |
Collapse
|
26
|
Complementary Methodologies To Investigate Human Gut Microbiota in Host Health, Working towards Integrative Systems Biology. J Bacteriol 2018; 200:JB.00376-17. [PMID: 28874411 DOI: 10.1128/jb.00376-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In 1680, Antonie van Leeuwenhoek noted compositional differences in his oral and fecal microbiota, pioneering the study of the diversity of the human microbiome. From Leeuwenhoek's time to successful modern attempts at changing the gut microbial landscape to cure disease, there has been an exponential increase in the recognition of our resident microbes as part of ourselves. Thus, the human host and microbiome have evolved in parallel to configure a balanced system in which microbes survive in homeostasis with our innate and acquired immune systems, unless disease occurs. A growing number of studies have demonstrated a correlation between the presence/absence of microbial taxa and some of their functional molecules (i.e., genes, proteins, and metabolites) with health and disease states. Nevertheless, misleading experimental design on human subjects and the cost and lack of standardized animal models pose challenges to answering the question of whether changes in microbiome composition are cause or consequence of a certain biological state. In this review, we evaluate the state of the art of methodologies that enable the study of the gut microbiome, encouraging a change in broadly used analytic strategies by choosing effector molecules (proteins and metabolites) in combination with coding nucleic acids. We further explore microbial and effector microbial product imbalances that relate to disease and health.
Collapse
|
27
|
Rae Buchberger A, DeLaney K, Johnson J, Li L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal Chem 2018; 90:240-265. [PMID: 29155564 PMCID: PMC5959842 DOI: 10.1021/acs.analchem.7b04733] [Citation(s) in RCA: 640] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amanda Rae Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
28
|
Aiyar P, Schaeme D, García-Altares M, Carrasco Flores D, Dathe H, Hertweck C, Sasso S, Mittag M. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells. Nat Commun 2017; 8:1756. [PMID: 29170415 PMCID: PMC5701020 DOI: 10.1038/s41467-017-01547-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 09/27/2017] [Indexed: 11/09/2022] Open
Abstract
Photosynthetic unicellular organisms, known as microalgae, are key contributors to carbon fixation on Earth. Their biotic interactions with other microbes shape aquatic microbial communities and influence the global photosynthetic capacity. So far, limited information is available on molecular factors that govern these interactions. We show that the bacterium Pseudomonas protegens strongly inhibits the growth and alters the morphology of the biflagellated green alga Chlamydomonas reinhardtii. This antagonistic effect is decreased in a bacterial mutant lacking orfamides, demonstrating that these secreted cyclic lipopeptides play an important role in the algal-bacterial interaction. Using an aequorin Ca2+-reporter assay, we show that orfamide A triggers an increase in cytosolic Ca2+ in C. reinhardtii and causes deflagellation of algal cells. These effects of orfamide A, which are specific to the algal class of Chlorophyceae and appear to target a Ca2+ channel in the plasma membrane, represent a novel biological activity for cyclic lipopeptides.
Collapse
Affiliation(s)
- Prasad Aiyar
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany
| | - Daniel Schaeme
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany
| | - María García-Altares
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11 a, 07745, Jena, Germany
| | - David Carrasco Flores
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany
| | - Hannes Dathe
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11 a, 07745, Jena, Germany
| | - Severin Sasso
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany.
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany.
| |
Collapse
|
29
|
Bhattacharjee A, Datta R, Gratton E, Hochbaum AI. Metabolic fingerprinting of bacteria by fluorescence lifetime imaging microscopy. Sci Rep 2017; 7:3743. [PMID: 28623341 PMCID: PMC5473825 DOI: 10.1038/s41598-017-04032-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial populations exhibit a range of metabolic states influenced by their environment, intra- and interspecies interactions. The identification of bacterial metabolic states and transitions between them in their native environment promises to elucidate community behavior and stochastic processes, such as antibiotic resistance acquisition. In this work, we employ two-photon fluorescence lifetime imaging microscopy (FLIM) to create a metabolic fingerprint of individual bacteria and populations. FLIM of autofluorescent reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H, has been previously exploited for label-free metabolic imaging of mammalian cells. However, NAD(P)H FLIM has not been established as a metabolic proxy in bacteria. Applying the phasor approach, we create FLIM-phasor maps of Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus epidermidis at the single cell and population levels. The bacterial phasor is sensitive to environmental conditions such as antibiotic exposure and growth phase, suggesting that observed shifts in the phasor are representative of metabolic changes within the cells. The FLIM-phasor approach represents a powerful, non-invasive imaging technique to study bacterial metabolism in situ and could provide unique insights into bacterial community behavior, pathology and antibiotic resistance with sub-cellular resolution.
Collapse
Affiliation(s)
- Arunima Bhattacharjee
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Rupsa Datta
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Allon I Hochbaum
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
30
|
Harrison JP, Berry D. Vibrational Spectroscopy for Imaging Single Microbial Cells in Complex Biological Samples. Front Microbiol 2017; 8:675. [PMID: 28450860 PMCID: PMC5390015 DOI: 10.3389/fmicb.2017.00675] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging of environmental and medical samples. Both Raman and Fourier-transform infrared (FT-IR) imaging have been applied to obtain detailed information on the chemical composition of biological materials, ranging from single microbial cells to tissues. Due to its compatibility with methods such as stable isotope labeling for the monitoring of cellular activities, vibrational spectroscopy also holds considerable power as a tool in microbial ecology. Chemical imaging of undisturbed biological systems (such as live cells in their native habitats) presents unique challenges due to the physical and chemical complexity of the samples, potential for spectral interference, and frequent need for real-time measurements. This Mini Review provides a critical synthesis of recent applications of Raman and FT-IR spectroscopy for characterizing complex biological samples, with a focus on developments in single-cell imaging. We also discuss how new spectroscopic methods could be used to overcome current limitations of single-cell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic methods, we discuss how combining these approaches could enable us to obtain new insights into biological activities either in situ or under conditions that simulate selected properties of the natural environment.
Collapse
Affiliation(s)
- Jesse P Harrison
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry Meets Microbiology", University of ViennaVienna, Austria
| | - David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry Meets Microbiology", University of ViennaVienna, Austria
| |
Collapse
|