1
|
Sun T, Jin Y, Rao Z, Liyan W, Tang R, Zaryab KM, Li M, Li Z, Wang Y, Xu J, Han R, Cao L. Knockdown of Thitarodes host genes influences dimorphic transition of Ophiocordyceps sinensis in the host hemolymph. Front Cell Infect Microbiol 2024; 14:1451628. [PMID: 39397862 PMCID: PMC11466941 DOI: 10.3389/fcimb.2024.1451628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
The Chinese cordyceps, a unique parasitic complex of Thitarodes/Hepialus ghost moths and Ophiocordyceps sinensis fungus in the Tibetan Plateau, is a highly valuable biological resource for medicine and health foods in Asian countries. Efficient system for artificial cultivation of Chinese cordyceps relies on understanding the gene functions involved in the induction of growing blastospores into hyphae in the larval hemolymph of insect host, during O. sinensis infection. Transcriptome analysis and ribonucleic acid interference (RNA interference) method were employed to identify the key differentially expressed genes and to demonstrate their functions in Thitarodes xiaojinensis. Key larval genes critical for O. sinensis blastospore development or filamentation were identified. Nine of the 20 top upregulated genes encoded cuticles proteins, indicating that these proteins highly activated when the larval hemolymph was full of blastospores. Small interfering RNA (siRNA) knockdown of five larval genes such as Flightin, larval cuticle protein LCP-30, 26-hydroxylase (CYP18A1), cuticle protein 18.6, isoform B, and probable chitinase 3 significantly stimulated the dimorphic transition from blastospores to prehyphae in O. sinensis in the larval hemolymph after 120 h after injection. The expressions of these genes determined by quantitative real-time PCR were suppressed in various levels from 38.64% to 91.54%, compared to the controls. These results demonstrated that injection of the siRNAs of key upregulated genes into the larval hemolymph containing high load of blastospores caused the gene silence in T. xiaojinensis larvae and induced the fungal transition from blastospores to prehyphae, providing novel knowledge on the regulation of O. sinensis fungal dimorphism by Thitarodes host and cues for further study of Thitarodes biology and commercial cultivation of Chinese cordyceps.
Collapse
Affiliation(s)
- Tanqi Sun
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yongling Jin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wang Liyan
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Khalid Muhammad Zaryab
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mingyan Li
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Zhenhao Li
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Ying Wang
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Jing Xu
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Richou Han
- Research Centre, Zhejiang Yuewangshengcao Biotechnological Company Limited, Zhejiang, Jinhua, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Marcos CM, de Oliveira HC, Assato PA, de Oliveira LT, Fregonezi N, dos Santos KS, Costa-Orlandi CB, Fusco-Almeida AM, Mendes-Giannini MJS. Polypeptides Targeting Paracoccidioides brasiliensis Drk1. J Fungi (Basel) 2023; 9:980. [PMID: 37888236 PMCID: PMC10607314 DOI: 10.3390/jof9100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Considering the toxicity of conventional therapeutic approaches and the importance of precise mechanistic targets, it is important to explore signaling pathways implicated in fungal pathobiology. Moreover, treatment of paracoccidioidomycosis, a systemic mycosis caused by a dimorphic fungus, requires prolonged therapeutic regimens. Among the numerous factors underpinning the establishment of Paracoccidioides spp. infection, the capacity to transition from the mycelial to the yeast form is of pivotal importance. The Drk1 protein of Paracoccidioides brasiliensis likely plays a decisive role in this morphological shift and subsequent virulence. We identified peptides with affinity for the PbDrk1 protein using the phage-display method and assessed the effects of these peptides on P. brasiliensis. The peptides were found to inhibit the phase transition of P. brasiliensis. Furthermore, a substantial proportion of these peptides prevented adhesion to pneumocytes. Although these peptides may not possess inherent antifungal properties, they can augment the effects of certain antifungal agents. Notably, the cell wall architecture of P. brasiliensis appears to be modulated by peptide intervention, resulting in a reduced abundance of glycosylated proteins and lipids. These peptides were also evaluated for their efficacy in a Galleria mellonella model and shown to contribute to enhanced larval survival rates. The role of PbDrk1, which is notably absent in mammals, should be further investigated to improve the understanding of its functional role in P. brasiliensis, which may be helpful for designing novel therapeutic modalities.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Haroldo Cesar de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81350-010, Brazil
| | - Patricia Akemi Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
- Laboratório Central de Multiusuários, Faculdade de Ciências Agronômicas, Campus Botucatu, UNESP—Universidade Estadual Paulista, São Paulo 18610-034, Brazil
| | - Lariane Teodoro de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Nathália Fregonezi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Kelvin Sousa dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Caroline Barcelos Costa-Orlandi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Maria José Soares Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| |
Collapse
|
3
|
Navarro MV, de Barros YN, Segura WD, Chaves AFA, Jannuzzi GP, Ferreira KS, Xander P, Batista WL. The Role of Dimorphism Regulating Histidine Kinase (Drk1) in the Pathogenic Fungus Paracoccidioides brasiliensis Cell Wall. J Fungi (Basel) 2021; 7:jof7121014. [PMID: 34946996 PMCID: PMC8707131 DOI: 10.3390/jof7121014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM), an endemic disease in Latin America with a high incidence in Brazil. This pathogen presents as infective mycelium at 25 °C in the soil, reverting to its pathogenic form when inhaled by the mammalian host (37 °C). Among these dimorphic fungal species, dimorphism regulating histidine kinase (Drk1) plays an essential role in the morphological transition. These kinases are present in bacteria and fungi but absent in mammalian cells and are important virulence and cellular survival regulators. Hence, the purpose of this study was to investigate the role of PbDrk1 in the cell wall modulation of P. brasiliensis. We observed that PbDrk1 participates in fungal resistance to different cell wall-disturbing agents by reducing viability after treatment with iDrk1. To verify the role of PbDRK1 in cell wall morphogenesis, qPCR results showed that samples previously exposed to iDrk1 presented higher expression levels of several genes related to cell wall modulation. One of them was FKS1, a β-glucan synthase that showed a 3.6-fold increase. Furthermore, confocal microscopy analysis and flow cytometry showed higher β-glucan exposure on the cell surface of P. brasiliensis after incubation with iDrk1. Accordingly, through phagocytosis assays, a significantly higher phagocytic index was observed in yeasts treated with iDrk1 than the control group, demonstrating the role of PbDrk1 in cell wall modulation, which then becomes a relevant target to be investigated. In parallel, the immune response profile showed increased levels of proinflammatory cytokines. Finally, our data strongly suggest that PbDrk1 modulates cell wall component expression, among which we can identify β-glucan. Understanding this signalling pathway may be of great value for identifying targets of antifungal molecular activity since HKs are not present in mammals.
Collapse
Affiliation(s)
- Marina Valente Navarro
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
| | - Yasmin Nascimento de Barros
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wilson Dias Segura
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | | | - Grasielle Pereira Jannuzzi
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Karen Spadari Ferreira
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Patrícia Xander
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wagner Luiz Batista
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
- Correspondence: ; Tel.: +55-11-3319-3594; Fax: +55-11-3319-3300
| |
Collapse
|
4
|
Marcos CM, de Oliveira HC, Assato PA, Castelli RF, Fusco-Almeida AM, Mendes-Giannini MJS. Drk1, a Dimorphism Histidine Kinase, Contributes to Morphology, Virulence, and Stress Adaptation in Paracoccidioides brasiliensis. J Fungi (Basel) 2021; 7:jof7100852. [PMID: 34682273 PMCID: PMC8539220 DOI: 10.3390/jof7100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 10/25/2022] Open
Abstract
P. brasiliensis is a thermally dimorphic fungus belonging to Paracoccidioides complex, causative of a systemic, endemic mycosis limited to Latin American countries. Signal transduction pathways related to important aspects as surviving, proliferation according to the biological niches are linked to the fungal pathogenicity in many species, but its elucidation in P. brasiliensis remains poorly explored. As Drk1, a hybrid histidine kinase, plays regulators functions in other dimorphic fungi species, mainly in dimorphism and virulence, here we investigated its importance in P. brasilensis. We, therefore generated the respective recombinant protein, anti-PbDrk1 polyclonal antibody and a silenced strain. The Drk1 protein shows a random distribution including cell wall location that change its pattern during osmotic stress condition; moreover the P. brasiliensis treatment with anti-PbDrk1 antibody, which does not modify the fungus's viability, resulted in decreased virulence in G. mellonella model and reduced interaction with pneumocytes. Down-regulating PbDRK1 yielded phenotypic alterations such as yeast cells with more elongated morphology, virulence attenuation in G. mellonella infection model, lower amount of chitin content, increased resistance to osmotic and cell wall stresses, and also caspofungin, and finally increased sensitivity to itraconazole. These observations highlight the importance of PbDrk1 to P. brasiliensis virulence, stress adaptation, morphology, and cell wall organization, and therefore it an interesting target that could help develop new antifungals.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
| | - Haroldo Cesar de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81350-010, Brazil;
| | - Patrícia Akemi Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
- Laboratório Central de Multiusuários, Faculdade de Ciências Agronômicas, Campus Botucatu, UNESP—Universidade Estadual Paulista, São Paulo 18610-034, Brazil
| | - Rafael Fernando Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81350-010, Brazil;
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
| | - Maria José Soares Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
- Correspondence:
| |
Collapse
|
5
|
Updates in Paracoccidioides Biology and Genetic Advances in Fungus Manipulation. J Fungi (Basel) 2021; 7:jof7020116. [PMID: 33557381 PMCID: PMC7915485 DOI: 10.3390/jof7020116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM). This disease is endemic in Latin America and primarily affects workers in rural areas. PCM is considered a neglected disease, despite being a disabling disease that has a notable impact on the public health system. Paracoccidioides spp. are thermally dimorphic fungi that present infective mycelia at 25 °C and differentiate into pathogenic yeast forms at 37 °C. This transition involves a series of morphological, structural, and metabolic changes which are essential for their survival inside hosts. As a pathogen, the fungus is subjected to several varieties of stress conditions, including the host immune response, which involves the production of reactive nitrogen and oxygen species, thermal stress due to temperature changes during the transition, pH alterations within phagolysosomes, and hypoxia inside granulomas. Over the years, studies focusing on understanding the establishment and development of PCM have been conducted with several limitations due to the low effectiveness of strategies for the genetic manipulation of Paracoccidioides spp. This review describes the most relevant biological features of Paracoccidioides spp., including aspects of the phylogeny, ecology, stress response, infection, and evasion mechanisms of the fungus. We also discuss the genetic aspects and difficulties of fungal manipulation, and, finally, describe the advances in molecular biology that may be employed in molecular research on this fungus in the future.
Collapse
|
6
|
de Curcio JS, Paccez JD, Novaes E, Brock M, Soares CMDA. Cell Wall Synthesis, Development of Hyphae and Metabolic Pathways Are Processes Potentially Regulated by MicroRNAs Produced Between the Morphological Stages of Paracoccidioides brasiliensis. Front Microbiol 2018; 9:3057. [PMID: 30619144 PMCID: PMC6297277 DOI: 10.3389/fmicb.2018.03057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/27/2018] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs are molecules involved in post-transcriptional gene regulation. In pathogenic fungi, microRNAs have been described at different morphological stages by regulating targets involved in processes such as morphogenesis and energy production. Members of the Paracoccidioides complex are the main etiological agents of a systemic mycosis in Latin America. Fungi of the Paracoccidioides complex present a wide range of plasticity to colonize different niches. In response to environmental changes these fungi undergo a morphological switch, remodel their cellular metabolism and modulate structural cell wall components. However, the underlying mechanisms regulating the gene expression is not well understood. By using high performance sequencing and bioinformatics analyses, this work characterizes microRNAs produced by Paracoccidioides brasiliensis. Here, we demonstrated that the transcript encoding proteins involved in microRNA biogenesis were differentially expressed in each morphological stage. In addition, 49 microRNAs were identified in cDNA libraries with 44 differentially regulated among the libraries. Sixteen microRNAs were differentially regulated in comparison to the mycelium in the mycelium-to-yeast transition phase. The yeast parasitic phase revealed a complete remodeling of the expression of these small RNAs. Analyses of targets of the induced microRNAs, from the different libraries, revealed that these molecules may potentially regulate in the cell wall, by repressing genes involved in the synthesis and degradation of glucans and chitin. Furthermore, mRNAs involved in cellular metabolism and development were predicted to be regulated by microRNAs. Therefore, this work describes a putative post transcriptional regulation, mediated by microRNAs in P. brasiliensis and its influence on the adaptive processes of thermal dimorphic fungus.
Collapse
Affiliation(s)
- Juliana S. de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano D. Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, Brazil
| | - Mathias Brock
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
7
|
McBride JA, Gauthier GM, Klein BS. Turning on virulence: Mechanisms that underpin the morphologic transition and pathogenicity of Blastomyces. Virulence 2018. [PMID: 29532714 PMCID: PMC6779398 DOI: 10.1080/21505594.2018.1449506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review article focuses on the mechanisms underlying temperature adaptation and virulence of the etiologic agents of blastomycosis, Blastomyces dermatitidis, Blastomyces gilchristii, and Blastomyces percursus. In response to temperature, Blastomyces undergoes a reversible morphologic switch between hyphae and yeast known as the phase transition. The conversion to yeast for Blastomyces and related thermally dimorphic fungi is essential for virulence. In the yeast phase, Blastomyces upregulates the essential virulence factor, BAD1, which promotes attachment to host cells, impairs activation of immune cells, and blunts cytokine release. Blastomyces yeast also secrete dipeptidyl-peptidase IVA (DPPIVA), a serine protease that blunts the action of cytokines released from host immune cells. In vivo transcriptional profiling of Blastomyces yeast has uncovered genes such as PRA1 and ZRT1 involved in zinc scavenging that contribute to virulence during murine pulmonary infection. The discovery and characterization of genes important for virulence has led to advances at the bedside regarding novel diagnostics, vaccine development, and new targets for drug discovery.
Collapse
Affiliation(s)
- Joseph A McBride
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health , 600 Highland Avenue, Madison , WI , USA.,Division of Infectious Disease, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health , 1675 Highland Avenue, Madison , WI , USA
| | - Gregory M Gauthier
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health , 600 Highland Avenue, Madison , WI , USA
| | - Bruce S Klein
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health , 600 Highland Avenue, Madison , WI , USA.,Division of Infectious Disease, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health , 1675 Highland Avenue, Madison , WI , USA.,Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health , 1550 Linden Drive, Madison , WI , USA
| |
Collapse
|
8
|
Fungal Dimorphism and Virulence: Molecular Mechanisms for Temperature Adaptation, Immune Evasion, and In Vivo Survival. Mediators Inflamm 2017. [PMID: 28626345 PMCID: PMC5463121 DOI: 10.1155/2017/8491383] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The thermally dimorphic fungi are a unique group of fungi within the Ascomycota phylum that respond to shifts in temperature by converting between hyphae (22–25°C) and yeast (37°C). This morphologic switch, known as the phase transition, defines the biology and lifestyle of these fungi. The conversion to yeast within healthy and immunocompromised mammalian hosts is essential for virulence. In the yeast phase, the thermally dimorphic fungi upregulate genes involved with subverting host immune defenses. This review highlights the molecular mechanisms governing the phase transition and recent advances in how the phase transition promotes infection.
Collapse
|
9
|
Camacho E, Niño-Vega GA. Paracoccidioides Spp.: Virulence Factors and Immune-Evasion Strategies. Mediators Inflamm 2017; 2017:5313691. [PMID: 28553014 PMCID: PMC5434249 DOI: 10.1155/2017/5313691] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Paracoccidioides spp. are dimorphic fungal pathogens responsible for one of the most relevant systemic mycoses in Latin America, paracoccidioidomycosis (PCM). Their exact ecological niche remains unknown; however, they have been isolated from soil samples and armadillos (Dasypus novemcinctus), which have been proposed as animal reservoir for these fungi. Human infection occurs by inhalation of conidia or mycelia fragments and is mostly associated with immunocompetent hosts inhabiting and/or working in endemic rural areas. In this review focusing on the pathogen perspective, we will discuss some of the microbial attributes and molecular mechanisms that enable Paracoccidioides spp. to tolerate, adapt, and ultimately avoid the host immune response, establishing infection.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunobiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, GTO, Mexico
| |
Collapse
|
10
|
Chaves AF, Castilho DG, Navarro MV, Oliveira AK, Serrano SM, Tashima AK, Batista WL. Phosphosite-specific regulation of the oxidative-stress response of Paracoccidioides brasiliensis: a shotgun phosphoproteomic analysis. Microbes Infect 2017; 19:34-46. [DOI: 10.1016/j.micinf.2016.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 01/23/2023]
|