1
|
Salvador-Mira M, Gimenez-Moya P, Manso-Aznar A, Sánchez-Córdoba E, Sevilla-Diez MA, Chico V, Nombela I, Puente-Marin S, Roher N, Perez L, Dučić T, Benseny-Cases N, Perez-Berna AJ, Ortega-Villaizan MDM. Viral vaccines promote endoplasmic reticulum stress-induced unfolding protein response in teleost erythrocytes. Eur J Cell Biol 2025; 104:151490. [PMID: 40252498 DOI: 10.1016/j.ejcb.2025.151490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025] Open
Abstract
Most available evidence points to a proviral role for endoplasmic reticulum (ER) stress, as many viruses exploit it to promote viral replication. In contrast, few studies have linked ER stress to the antiviral immune response, and even fewer to the vaccine-induced immune response. In this work, we demonstrated that ER stress is a key molecular link in the immune response of teleost erythrocytes or red blood cells (RBCs) under vaccine stimulation. Moreover, the unfolded protein response (UPRER) triggered by ER stress may work together with autophagy and related cellular mechanisms as part of a coordinated immune response in RBCs. We unveiled biochemical changes in the lipid-protein profile of vaccine-treated RBCs by synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-µFTIR) associated with the modulation of ER expansion, increased mitochondrial number, and vesicular structures detected by soft X-ray cryotomography (cryo-SXT). We found a positive correlation between both morphological and biochemical changes and the expression of genes related to UPRER, autophagy, mitochondrial stress, vesicle trafficking, and extracellular vesicle release. These processes in RBCs are ideal cellular targets for the development of more specific prophylactic tools with greater immunogenic capacity than currently available options.
Collapse
Affiliation(s)
- Maria Salvador-Mira
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Paula Gimenez-Moya
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Alba Manso-Aznar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ester Sánchez-Córdoba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Manuel A Sevilla-Diez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Veronica Chico
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ivan Nombela
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Sara Puente-Marin
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB) & Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Tanja Dučić
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain
| | - Núria Benseny-Cases
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Maria Del Mar Ortega-Villaizan
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain.
| |
Collapse
|
2
|
Chadwick SR, Stack-Couture S, Berg MD, Di Gregorio S, Lung B, Genereaux J, Moir RD, Brandl CJ, Willis IM, Snapp EL, Lajoie P. TUDCA modulates drug bioavailability to regulate resistance to acute ER stress in Saccharomyces cerevisiae. Mol Biol Cell 2025; 36:ar13. [PMID: 39661468 PMCID: PMC11809307 DOI: 10.1091/mbc.e24-04-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cells counter accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER) through activation of the Unfolded Protein Response (UPR). Small molecules termed chemical chaperones can promote protein folding to alleviate ER stress. The bile acid tauroursodeoxycholic acid (TUDCA) has been described as a chemical chaperone. While promising in models of protein folding diseases, TUDCA's mechanism of action remains unclear. Here, we found TUDCA can rescue growth of yeast treated with the ER stressor tunicamycin (Tm), even in the absence of a functional UPR. In contrast, TUDCA failed to rescue growth on other ER stressors. Nor could TUDCA attenuate chronic UPR associated with specific gene deletions or overexpression of a misfolded mutant secretory protein. Neither pretreatment with nor delayed addition of TUDCA conferred protection against Tm. Importantly, attenuation of Tm-induced toxicity required TUDCA's critical micelle forming concentration, suggesting a mechanism where TUDCA directly sequesters drugs. Indeed, in several assays, TUDCA-treated cells closely resembled cells treated with lower doses of Tm. In addition, we found TUDCA can inhibit dyes from labeling intracellular compartments. Thus, our study challenges the model of TUDCA as a chemical chaperone and suggests that TUDCA decreases drug bioavailability, allowing cells to adapt to ER stress.
Collapse
Affiliation(s)
- Sarah R. Chadwick
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Samuel Stack-Couture
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sonja Di Gregorio
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Bryan Lung
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Erik L. Snapp
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Children's Health Research Institute, Lawson Health Research Institute, London, Ontario N6C 2V5, Canada
| |
Collapse
|
3
|
Siejka A, Lawnicka H, Fakir S, Barabutis N. Growth hormone - releasing hormone in the immune system. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09913-w. [PMID: 39370499 PMCID: PMC11973240 DOI: 10.1007/s11154-024-09913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
GHRH is a neuropeptide associated with a diverse variety of activities in human physiology and immune responses. The present study reviews the latest information on the involvement of GHRH in the immune system and inflammation, suggesting that GHRH antagonists may deliver a new therapeutic possibility in disorders related to immune system dysfunction and inflammation.
Collapse
Affiliation(s)
- Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland.
| | - Hanna Lawnicka
- Department of Immunoendocrinology, Medical University of Lodz, Lodz, Poland
| | - Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| |
Collapse
|
4
|
Sugiyama T, Nishitoh H. Neurodegenerative diseases associated with the disruption of proteostasis and their therapeutic strategies using chemical chaperones. J Biochem 2024; 176:179-186. [PMID: 38955196 DOI: 10.1093/jb/mvae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024] Open
Abstract
Aberrant proteostasis is thought to be involved in the pathogenesis of neurodegenerative diseases. Some proteostasis abnormalities are ameliorated by chaperones. Chaperones are divided into three groups: molecular, pharmacological and chemical. Chemical chaperones intended to alleviate stress in organelles, such as the endoplasmic reticulum (ER), are now being administered clinically. Of the chemical chaperones, 4-phenylbutyrate (4-PBA) has been used as a research reagent, and its mechanism of action includes chaperone effects and the inhibition of histone deacetylase. Moreover, it also binds to the B-site of SEC24 and regulates COPII-mediated transport from the ER. Although its therapeutic effect may not be strong, elucidating the mechanism of action of 4-PBA may contribute to the identification of novel therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Takashi Sugiyama
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
- Department of Neurology, Faculty of Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
5
|
Faccioli LA, Sun Y, Animasahun O, Motomura T, Liu Z, Kurihara T, Hu Z, Yang B, Cetin Z, Baratta AM, Shankaran A, Nenwani M, Altay LN, Huang L, Meurs N, Franks J, Stolz D, Gavlock DC, Miedel MT, Ostrowska A, Florentino RM, Fox IJ, Nagrath D, Soto-Gutierrez A. Human-induced pluripotent stem cell-based hepatic modeling of lipid metabolism-associated TM6SF2-E167K variant. Hepatology 2024:01515467-990000000-01008. [PMID: 39190693 PMCID: PMC11865362 DOI: 10.1097/hep.0000000000001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND AND AIMS TM6SF2 rs58542926 (E167K) is related to an increased prevalence of metabolic dysfunction-associated steatotic liver disease. Conflicting mouse study results highlight the need for a human model to understand this mutation's impact. This study aims to create and characterize a reliable human in vitro model to mimic the effects of the TM6SF2-E167K mutation for future studies. APPROACH AND RESULTS We used gene editing on human-induced pluripotent stem cells from a healthy individual to create cells with the TM6SF2-E167K mutation. After hepatocyte-directed differentiation, we observed decreased TM6SF2 protein expression, increased intracellular lipid droplets, and total cholesterol, in addition to reduced VLDL secretion. Transcriptomics revealed the upregulation of genes involved in lipid, fatty acid, and cholesterol transport, flux, and oxidation. Global lipidomics showed increased lipid classes associated with endoplasmic reticulum (ER) stress, mitochondrial dysfunction, apoptosis, and lipid metabolism. In addition, the TM6SF2-E167K mutation conferred a proinflammatory phenotype with signs of mitochondria and ER stress. Importantly, by facilitating protein folding within the ER of hepatocytes carrying TM6SF2-E167K mutation, VLDL secretion and ER stress markers improved. CONCLUSIONS Our findings indicate that induced hepatocytes generated from human-induced pluripotent stem cells carrying the TM6SF2-E167K recapitulate the effects observed in human hepatocytes from individuals with the TM6SF2 mutation. This study characterizes an in vitro model that can be used as a platform to identify potential clinical targets and highlights the therapeutic potential of targeting protein misfolding to alleviate ER stress and mitigate the detrimental effects of the TM6SF2-E167K mutation on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Lanuza A.P. Faccioli
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yiyue Sun
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- School of Medicine, Tsinghua University, Beijing, PRC
| | - Olamide Animasahun
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Takashi Motomura
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhenghao Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Takeshi Kurihara
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhiping Hu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bo Yang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annalisa M. Baratta
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ajay Shankaran
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Minal Nenwani
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Leyla Nurcihan Altay
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Linqi Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah Meurs
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Franks
- Department of Cell Biology and Physiology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donna Stolz
- Department of Cell Biology and Physiology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dillon C. Gavlock
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark T. Miedel
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rodrigo M. Florentino
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ira J. Fox
- Department of Surgery, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deepak Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Kovacevic I, Schmidt PH, Kowalski A, Helms BJ, Lest CHAVD, Kluttig A, Posern G. ER stress inhibition enhances formation of triacylglcerols and protects endothelial cells from lipotoxicity. Cell Commun Signal 2024; 22:304. [PMID: 38831326 PMCID: PMC11145897 DOI: 10.1186/s12964-024-01682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Elevated concentrations of palmitate in serum of obese individuals can impair endothelial function, contributing to development of cardiovascular disease. Although several molecular mechanisms of palmitate-induced endothelial dysfunction have been proposed, there is no consensus on what signaling event is the initial trigger of detrimental palmitate effects. Here we report that inhibitors of ER stress or ceramid synthesis can rescue palmitate-induced autophagy impairment in macro- and microvascular endothelial cells. Furthermore, palmitate-induced cholesterol synthesis was reverted using these inhibitors. Similar to cell culture data, autophagy markers were increased in serum of obese individuals. Subsequent lipidomic analysis revealed that palmitate changed the composition of membrane phospholipids in endothelial cells and that these effects were not reverted upon application of above-mentioned inhibitors. However, ER stress inhibition in palmitate-treated cells enhanced the synthesis of trilglycerides and restored ceramide levels to control condition. Our results suggest that palmitate induces ER-stress presumably by shift in membrane architecture, leading to impaired synthesis of triglycerides and enhanced production of ceramides and cholesterol, which altogether enhances lipotoxicity of palmitate in endothelial cells.
Collapse
Affiliation(s)
- Igor Kovacevic
- Institute of Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany.
| | - Paula Henriette Schmidt
- Institute of Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Annkatrin Kowalski
- Institute of Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Bernd J Helms
- Department Biomolecular Health Sciences, Veterinary Medicine, Utrecht University, Utrecht, 3584CM, The Netherlands
| | - Chris H A van de Lest
- Department Biomolecular Health Sciences, Veterinary Medicine, Utrecht University, Utrecht, 3584CM, The Netherlands
| | - Alexander Kluttig
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Guido Posern
- Institute of Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| |
Collapse
|
7
|
Yeap JW, Ali IAH, Ibrahim B, Tan ML. Chronic obstructive pulmonary disease and emerging ER stress-related therapeutic targets. Pulm Pharmacol Ther 2023; 81:102218. [PMID: 37201652 DOI: 10.1016/j.pupt.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
COPD pathogenesis is frequently associated with endoplasmic reticulum stress (ER stress) progression. Targeting the major unfolded protein response (UPR) branches in the ER stress pathway may provide pharmacotherapeutic selection strategies for treating COPD and enable relief from its symptoms. In this study, we aimed to systematically review the potential role of the ER stress inhibitors of major UPR branches (IRE1, PERK, and ATF6) in COPD-related studies and determine the current stage of knowledge in this field. The systematic review was carried out adhering to the PRISMA checklist based on published studies obtained from specific keyword searches of three databases, namely PubMed, ScienceDirect and Springer Database. The search was limited to the year 2000-2022 which includes all in vitro studies, in vivo studies and clinical trials related to the application of ER stress inhibitors toward COPD-induced models and disease. The risk of bias was evaluated using the QUIN, SYRCLE, revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and NIH tool respectively. A total of 7828 articles were screened from three databases and a final total of 37 studies were included in the review. The ER stress and UPR pathways are potentially useful to prevent COPD progression and attenuate the exacerbation of COPD and related symptoms. Interestingly, the off-target effects from inhibition of the UPR pathway may be desirable or undesirable depending on context and therapeutic applications. Targeting the UPR pathway could have complex consequences as the production of ER molecules involved in folding may be impaired which could continuously provoke misfolding of proteins. Although several emerging compounds were noted to be potentially useful for targeted therapy against COPD, clinical studies have yet to be thoroughly explored.
Collapse
Affiliation(s)
- Jia Wen Yeap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Irfhan Ali Hyder Ali
- Respiratory Department, Penang General Hospital, Jalan Residensi, 10990, Pulau Pinang, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Centre For Global Sustainability Studies (CGSS), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
8
|
Duan J, Matute JD, Unger LW, Hanley T, Schnell A, Lin X, Krupka N, Griebel P, Lambden C, Sit B, Grootjans J, Pyzik M, Sommer F, Kaiser S, Falk-Paulsen M, Grasberger H, Kao JY, Fuhrer T, Li H, Paik D, Lee Y, Refetoff S, Glickman JN, Paton AW, Bry L, Paton JC, Sauer U, Macpherson AJ, Rosenstiel P, Kuchroo VK, Waldor MK, Huh JR, Kaser A, Blumberg RS. Endoplasmic reticulum stress in the intestinal epithelium initiates purine metabolite synthesis and promotes Th17 cell differentiation in the gut. Immunity 2023; 56:1115-1131.e9. [PMID: 36917985 PMCID: PMC10175221 DOI: 10.1016/j.immuni.2023.02.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/12/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.
Collapse
Affiliation(s)
- Jinzhi Duan
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juan D Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lukas W Unger
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK; Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, 10090, Austria
| | - Thomas Hanley
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Xi Lin
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Niklas Krupka
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul Griebel
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Conner Lambden
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Brandon Sit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joep Grootjans
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Michal Pyzik
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Felix Sommer
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Sina Kaiser
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Helmut Grasberger
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Y Kao
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Hai Li
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Donggi Paik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yunjin Lee
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel Refetoff
- Department of Medicine, Pediatrics and Committee on Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Mendrina T, Poetsch I, Schueffl H, Baier D, Pirker C, Ries A, Keppler BK, Kowol CR, Gibson D, Grusch M, Berger W, Heffeter P. Influence of the Fatty Acid Metabolism on the Mode of Action of a Cisplatin(IV) Complex with Phenylbutyrate as Axial Ligands. Pharmaceutics 2023; 15:677. [PMID: 36839999 PMCID: PMC9967619 DOI: 10.3390/pharmaceutics15020677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
For a variety of cancer types, platinum compounds are still among the best treatment options. However, their application is limited by side effects and drug resistance. Consequently, multi-targeted platinum(IV) prodrugs that target specific traits of the malignant tissue are interesting new candidates. Recently, cisPt(PhB)2 was synthesized which, upon reduction in the malignant tissue, releases phenylbutyrate (PhB), a metabolically active fatty acid analog, in addition to cisplatin. In this study, we in-depth investigated the anticancer properties of this new complex in cell culture and in mouse allograft experiments. CisPt(PhB)2 showed a distinctly improved anticancer activity compared to cisplatin as well as to PhB alone and was able to overcome various frequently occurring drug resistance mechanisms. Furthermore, we observed that differences in the cellular fatty acid metabolism and mitochondrial activity distinctly impacted the drug's mode of action. Subsequent analyses revealed that "Warburg-like" cells, which are characterized by deficient mitochondrial function and fatty acid catabolism, are less capable of coping with cisPt(PhB)2 leading to rapid induction of a non-apoptotic form of cell death. Summarizing, cisPt(PhB)2 is a new orally applicable platinum(IV) prodrug with promising activity especially against cisplatin-resistant cancer cells with "Warburg-like" properties.
Collapse
Affiliation(s)
- Theresa Mendrina
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Isabella Poetsch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Dina Baier
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Alexander Ries
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christian R. Kowol
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| |
Collapse
|
10
|
Stein D, Slobodnik Z, Tam B, Einav M, Akabayov B, Berstein S, Toiber D. 4-phenylbutyric acid-Identity crisis; can it act as a translation inhibitor? Aging Cell 2022; 21:e13738. [PMID: 36373957 PMCID: PMC9741500 DOI: 10.1111/acel.13738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Loss of proteostasis can occur due to mutations, the formation of aggregates, or general deficiency in the correct translation and folding of proteins. These phenomena are commonly observed in pathologies, but most significantly, loss of proteostasis characterizes aging. This loss leads to the chronic activation of stress responses and has a generally deleterious impact on the organism. While finding molecules that can alleviate these symptoms is an important step toward solutions for these conditions, some molecules might be mischaracterized on the way. 4-phenylbutyric acid (4PBA) is known for its role as a chemical chaperone that helps alleviate endoplasmic reticulum (ER) stress, yet a scan of the literature reveals that no biochemical or molecular experiments have shown any protein refolding capacity. Here, we show that 4PBA is a conserved weak inhibitor of mRNA translation, both in vitro and in cellular systems, and furthermore-it does not promote protein folding nor prevents aggregation. 4PBA possibly alleviates proteostatic or ER stress by inhibiting protein synthesis, allowing the cells to cope with misfolded proteins by reducing the protein load. Better understanding of 4PBA biochemical mechanisms will improve its usage in basic science and as a drug in different pathologies, also opening new venues for the treatment of different diseases.
Collapse
Affiliation(s)
- Daniel Stein
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael,The Zlotowski Center for NeuroscienceBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Zeev Slobodnik
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael,The Zlotowski Center for NeuroscienceBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Benjamin Tam
- Department of ChemistryBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Monica Einav
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael,The Zlotowski Center for NeuroscienceBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Barak Akabayov
- Department of ChemistryBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Shimon Berstein
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Debra Toiber
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael,The Zlotowski Center for NeuroscienceBen‐Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
11
|
Tiwari S, Gupta P, Singh A, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. 4-Phenylbutyrate Mitigates the Motor Impairment and Dopaminergic Neuronal Death During Parkinson's Disease Pathology via Targeting VDAC1 Mediated Mitochondrial Function and Astrocytes Activation. Neurochem Res 2022; 47:3385-3401. [PMID: 35922743 DOI: 10.1007/s11064-022-03691-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Parkinson's disease (PD) is a progressive motor neurodegenerative disorder significantly associated with protein aggregation related neurodegenerative mechanisms. In view of no disease modifying drugs, the present study was targeted to investigate the therapeutic effects of pharmacological agent 4-phenylbutyric acid (4PBA) in PD pathology. 4PBA is an FDA approved monocarboxylic acid with inhibitory activity towards histone deacetylase and clinically treats urea cycle disorder. First, we observed the significant protective effects of 4PBA on PD specific neuromuscular coordination, level of tyrosine hydroxylase, α-synuclein level and neurotransmitter dopamine in both substantia nigra and striatal regions of the experimental rat model of PD. Further results revealed that treatment with 4PBA drug exhibited significant protection against disease related oxidative stress and augmented nitrite levels. The disease pathology-related depletion in mitochondrial membrane potential and augmented level of calcium as well as mitochondrion membrane located VDAC1 protein level and cytochrome-c translocation were also significantly attenuated with 4PBA administration. Inhibited neuronal apoptosis and restored neuronal morphology were also observed with 4PBA treatment as measured by level of pro-apoptotic proteins t-Bid, Bax and cleaved caspase-3 along with cresyl violet staining in both substantia nigra and striatal regions. Lastly, PD-linked astrocyte activation was significantly inhibited with 4PBA treatment. Altogether, our findings suggest that 4PBA exerts broad-spectrum neuroprotective effects in PD animal model.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Parul Gupta
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Chaturvedi
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - M Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
12
|
Gomez-Navarro N, Maldutyte J, Poljak K, Peak-Chew SY, Orme J, Bisnett BJ, Lamb CH, Boyce M, Gianni D, Miller EA. Selective inhibition of protein secretion by abrogating receptor-coat interactions during ER export. Proc Natl Acad Sci U S A 2022; 119:e2202080119. [PMID: 35901214 PMCID: PMC9351455 DOI: 10.1073/pnas.2202080119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 01/03/2023] Open
Abstract
Protein secretion is an essential process that drives cell growth, movement, and communication. Protein traffic within the secretory pathway occurs via transport intermediates that bud from one compartment and fuse with a downstream compartment to deliver their contents. Here, we explore the possibility that protein secretion can be selectively inhibited by perturbing protein-protein interactions that drive capture into transport vesicles. Human proprotein convertase subtilisin/kexin type 9 (PCSK9) is a determinant of cholesterol metabolism whose secretion is mediated by a specific cargo adaptor protein, SEC24A. We map a series of protein-protein interactions between PCSK9, its endoplasmic reticulum (ER) export receptor SURF4, and SEC24A that mediate secretion of PCSK9. We show that the interaction between SURF4 and SEC24A can be inhibited by 4-phenylbutyrate (4-PBA), a small molecule that occludes a cargo-binding domain of SEC24. This inhibition reduces secretion of PCSK9 and additional SURF4 clients that we identify by mass spectrometry, leaving other secreted cargoes unaffected. We propose that selective small-molecule inhibition of cargo recognition by SEC24 is a potential therapeutic intervention for atherosclerosis and other diseases that are modulated by secreted proteins.
Collapse
Affiliation(s)
- Natalia Gomez-Navarro
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Julija Maldutyte
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Kristina Poljak
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Sew-Yeu Peak-Chew
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jonathon Orme
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, United Kingdom
| | - Brittany J. Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710, USA
| | - Caitlin H. Lamb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710, USA
| | - Davide Gianni
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, United Kingdom
| | - Elizabeth A. Miller
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| |
Collapse
|
13
|
Ishiwata-Kimata Y, Hata T, Kimata Y. Self-association status-dependent inactivation of the endoplasmic reticulum stress sensor Ire1 by C-terminal tagging with artificial peptides. Biosci Biotechnol Biochem 2022; 86:739-746. [PMID: 35285870 DOI: 10.1093/bbb/zbac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/08/2022] [Indexed: 11/14/2022]
Abstract
Upon endoplasmic reticulum (ER) stress, eukaryotic cells commonly induce unfolded protein response (UPR), which is triggered, at least partly, by the ER stress sensor Ire1. Upon ER stress, Ire1 is dimerized or forms oligomeric clusters, resulting in the activation of Ire1 as an endoribonuclease. In ER-stressed Saccharomyces cerevisiae cells, HAC1 mRNA is spliced by Ire1 and then translated into a transcription factor that promotes the UPR. Herein, we report that Ire1 tagged artificially with irrelevant peptides at the C terminus is almost completely inactive when only dimerized, while it induced the UPR as well as untagged Ire1 when clustered. This finding suggests a fundamental difference between the dimeric and clustered forms of Ire1. By comparing UPR levels in S. cerevisiae cells carrying artificially peptide-tagged Ire1 to that in cells carrying untagged Ire1, we estimated the self-association status of Ire1 under various ER stress conditions.
Collapse
Affiliation(s)
- Yuki Ishiwata-Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Tatsuya Hata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| |
Collapse
|
14
|
Induction of the Unfolded Protein Response at High Temperature in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23031669. [PMID: 35163590 PMCID: PMC8836091 DOI: 10.3390/ijms23031669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/10/2023] Open
Abstract
Ire1 is an endoplasmic reticulum (ER)-located endoribonuclease that is activated in response to ER stress. In yeast Saccharomyces cerevisiae cells, Ire1 promotes HAC1-mRNA splicing to remove the intron sequence from the HAC1u mRNA (“u” stands for “uninduced”). The resulting mRNA, which is named HAC1i mRNA (“i” stands for “induced”), is then translated into a transcription factor that is involved in the unfolded protein response (UPR). In this study, we designed an oligonucleotide primer that specifically hybridizes to the exon-joint site of the HAC1i cDNA. This primer allowed us to perform real-time reverse transcription-PCR to quantify HAC1i mRNA abundance with high sensitivity. Using this method, we detected a minor induction of HAC1-mRNA splicing in yeast cells cultured at their maximum growth temperature of 39 °C. Based on our analyses of IRE1-gene mutant strains, we propose that when yeast cells are cultured at or near their maximum growth temperature, protein folding in the ER is disturbed, leading to a minor UPR induction that supports cellular growth.
Collapse
|
15
|
Ishiwata-Kimata Y, Le QG, Kimata Y. Induction and Aggravation of the Endoplasmic-Reticulum Stress by Membrane-Lipid Metabolic Intermediate Phosphatidyl- N-Monomethylethanolamine. Front Cell Dev Biol 2022; 9:743018. [PMID: 35071223 PMCID: PMC8770322 DOI: 10.3389/fcell.2021.743018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylcholine (PC) is produced via two distinct pathways in both hepatocytes and yeast, Saccharomyces cerevisiae. One of these pathways involves the sequential methylation of phosphatidylethanolamine (PE). In yeast cells, the methyltransferase, Cho2, converts PE to phosphatidylmonomethylethanolamine (PMME), which is further modified to PC by another methyltransferase, Opi3. On the other hand, free choline is utilized for PC production via the Kennedy pathway. The blockage of PC production is well known to cause endoplasmic reticulum (ER) stress and activate the ER-stress sensor, Ire1, to induce unfolded protein response (UPR). Here, we demonstrate that even when free choline is sufficiently supplied, the opi3Δ mutation, but not the cho2 Δ mutation, induces the UPR. The UPR was also found to be induced by CHO2 overexpression. Further, monomethylethanolamine, which is converted to PMME probably through the Kennedy pathway, caused or potentiated ER stress in both mammalian and yeast cells. We thus deduce that PMME per se is an ER-stressing molecule. Interestingly, spontaneously accumulated PMME seemed to aggravate ER stress in yeast cells. Collectively, our findings demonstrate the multiple detrimental effects of the low-abundance phospholipid species, PMME.
Collapse
Affiliation(s)
- Yuki Ishiwata-Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Quynh Giang Le
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
16
|
Fauzee YNBM, Taniguchi N, Ishiwata-Kimata Y, Takagi H, Kimata Y. The unfolded protein response in Pichia pastoris without external stressing stimuli. FEMS Yeast Res 2021; 20:5905408. [PMID: 32926110 DOI: 10.1093/femsyr/foaa053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Dysfunction or capacity shortage of the endoplasmic reticulum (ER) is cumulatively called ER stress and provokes the unfolded protein response (UPR). In various yeast species, the ER-located transmembrane protein Ire1 is activated upon ER stress and performs the splicing reaction of HAC1 mRNA, the mature form of which is translated into a transcription factor protein that is responsible for the transcriptome change on the UPR. Here we carefully assessed the splicing of HAC1 mRNA in Pichia pastoris (Komagataella phaffii) cells. We found that, inconsistent with previous reports by others, the HAC1 mRNA was substantially, but partially, spliced even without ER-stressing stimuli. Unlike Saccharomyces cerevisiae, growth of P. pastoris was significantly retarded by the IRE1-gene knockout mutation. Moreover, P. pastoris cells seemed to push more abundant proteins into the secretory pathway than S. cerevisiae cells. We also suggest that P. pastoris Ire1 has the ability to control its activity stringently in an ER stress-dependent manner. We thus propose that P. pastoris cells are highly ER-stressed possibly because of the high load of endogenous proteins into the ER.
Collapse
Affiliation(s)
- Yasmin Nabilah Binti Mohd Fauzee
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Naoki Taniguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yuki Ishiwata-Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
17
|
Phuong HT, Ishiwata-Kimata Y, Nishi Y, Oguchi N, Takagi H, Kimata Y. Aeration mitigates endoplasmic reticulum stress in Saccharomyces cerevisiae even without mitochondrial respiration. MICROBIAL CELL 2021; 8:77-86. [PMID: 33816593 PMCID: PMC8010904 DOI: 10.15698/mic2021.04.746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Saccharomyces cerevisiae is a facultative anaerobic organism that grows well under both aerobic and hypoxic conditions in media containing abundant fermentable nutrients such as glucose. In order to deeply understand the physiological dependence of S. cerevisiae on aeration, we checked endoplasmic reticulum (ER)-stress status by monitoring the splicing of HAC1 mRNA, which is promoted by the ER stress-sensor protein, Ire1. HAC1-mRNA splicing that was caused by conventional ER-stressing agents, including low concentrations of dithiothreitol (DTT), was more potent in hypoxic cultures than in aerated cultures. Moreover, growth retardation was observed by adding low-dose DTT into hypoxic cultures of ire1Δ cells. Unexpectedly, aeration mitigated ER stress and DTT-induced impairment of ER oxidative protein folding even when mitochondrial respiration was halted by the ρo mutation. An ER-located protein Ero1 is known to directly consume molecular oxygen to initiate the ER protein oxidation cascade, which promotes oxidative protein folding of ER client proteins. Our further study using ero1-mutant strains suggested that, in addition to mitochondrial respiration, this Ero1-medaited reaction contributes to mitigation of ER stress by molecular oxygen. Taken together, here we demonstrate a scenario in which aeration acts beneficially on S. cerevisiae cells even under fermentative conditions.
Collapse
Affiliation(s)
- Huong Thi Phuong
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yuki Ishiwata-Kimata
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yuki Nishi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Norie Oguchi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hiroshi Takagi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yukio Kimata
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
18
|
Le QG, Ishiwata-Kimata Y, Phuong TH, Fukunaka S, Kohno K, Kimata Y. The ADP-binding kinase region of Ire1 directly contributes to its responsiveness to endoplasmic reticulum stress. Sci Rep 2021; 11:4506. [PMID: 33627709 PMCID: PMC7904763 DOI: 10.1038/s41598-021-83890-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/05/2021] [Indexed: 01/22/2023] Open
Abstract
Upon endoplasmic-reticulum (ER) stress, the ER-located transmembrane protein, Ire1, is autophosphorylated and acts as an endoribonuclease to trigger the unfolded protein response (UPR). Previous biochemical studies have shown that Ire1 exhibits strong endoribonuclease activity when its cytosolic kinase region captures ADP. Here, we asked how this event contributes to the regulation of Ire1 activity. At the beginning of this study, we obtained a luminal-domain mutant of Saccharomyces cerevisiae Ire1, deltaIdeltaIIIdeltaV/Y225H Ire1, which is deduced to be controlled by none of the luminal-side regulatory events. ER-stress responsiveness of deltaIdeltaIIIdeltaV/Y225H Ire1 was largely compromised by a further mutation on the kinase region, D797N/K799N, which allows Ire1 to be activated without capturing ADP. Therefore, in addition to the ER-luminal domain of Ire1, which monitors ER conditions, the kinase region is directly involved in the ER-stress responsiveness of Ire1. We propose that potent ER stress harms cells’ “vividness”, increasing the cytosolic ADP/ATP ratio, and eventually strongly activates Ire1. This mechanism seems to contribute to the suppression of inappropriately potent UPR under weak ER-stress conditions.
Collapse
Affiliation(s)
- Quynh Giang Le
- Division of Bioscience, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.,Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay, Ha Noi, Vietnam
| | - Yuki Ishiwata-Kimata
- Division of Bioscience, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Thi Huong Phuong
- Division of Bioscience, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Shigeto Fukunaka
- Division of Bioscience, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Kenji Kohno
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Yukio Kimata
- Division of Bioscience, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
19
|
Xu J, Taubert S. Beyond Proteostasis: Lipid Metabolism as a New Player in ER Homeostasis. Metabolites 2021; 11:52. [PMID: 33466824 PMCID: PMC7830277 DOI: 10.3390/metabo11010052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Biological membranes are not only essential barriers that separate cellular and subcellular structures, but also perform other critical functions such as the initiation and propagation of intra- and intercellular signals. Each membrane-delineated organelle has a tightly regulated and custom-made membrane lipid composition that is critical for its normal function. The endoplasmic reticulum (ER) consists of a dynamic membrane network that is required for the synthesis and modification of proteins and lipids. The accumulation of unfolded proteins in the ER lumen activates an adaptive stress response known as the unfolded protein response (UPR-ER). Interestingly, recent findings show that lipid perturbation is also a direct activator of the UPR-ER, independent of protein misfolding. Here, we review proteostasis-independent UPR-ER activation in the genetically tractable model organism Caenorhabditis elegans. We review the current knowledge on the membrane lipid composition of the ER, its impact on organelle function and UPR-ER activation, and its potential role in human metabolic diseases. Further, we summarize the bi-directional interplay between lipid metabolism and the UPR-ER. We discuss recent progress identifying the different respective mechanisms by which disturbed proteostasis and lipid bilayer stress activate the UPR-ER. Finally, we consider how genetic and metabolic disturbances may disrupt ER homeostasis and activate the UPR and discuss how using -omics-type analyses will lead to more comprehensive insights into these processes.
Collapse
Affiliation(s)
- Jiaming Xu
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
20
|
Huang J, Zhao Q, Chen L, Zhang C, Bu W, Zhang X, Zhang K, Yang Z. Improved production of recombinant Rhizomucor miehei lipase by coexpressing protein folding chaperones in Pichia pastoris, which triggered ER stress. Bioengineered 2020; 11:375-385. [PMID: 32175802 PMCID: PMC7161542 DOI: 10.1080/21655979.2020.1738127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rhizomucor miehei lipase (RML) is a biocatalyst that widely used in laboratory and industrial. Previously, RML with a 70-amino acid propeptide (pRML) was cloned and expressed in P. pastoris. Recombinant strains with (strain containing 4-copy prml) and without ER stress (strain containing 2-copy prml) were obtained. However, the effective expression of pRML in P. pastoris by coexpressing ER-related elements in pRML-produced strain with or without ER stress has not been reported to date. In this study, an efficient way to produce functional pRML was explored in P. pastoris. The coexpression of protein folding chaperones, including PDI and ERO1, in different strains with or without ER stress, was investigated. PDI overexpression only increased pRML production in 4-copy strain from 705 U/mL to 1430 U/mL because it alleviated the protein folded stress, increased the protein concentration from 0.56 mg/mL to 0.65 mg/mL, and improved enzyme-specific activity from 1238 U/mg to 2186 U/mg. However, PDI coexpression could not improve pRML production in the 2-copy strain because it increased protein folded stress, while ERO1 coexpression in the two strains all had a negative effect on pRML expression. We also investigated the effect of the propeptide on the substrate specificity and the condition for pRML enzyme powder preparation. Results showed that the relative activity exceeded 80% when the substrates C8–C10 were detected at 35°C and pH 6, and C8–C12 at 45°C and pH 8. The optimal enzyme powder preparation pH was 7, and the maximum recovery rate for pRML was 73.19%.
Collapse
Affiliation(s)
- Jinjin Huang
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China.,State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingyi Zhao
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Lingxiao Chen
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Chunmei Zhang
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Wei Bu
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Xin Zhang
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Kaini Zhang
- The key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| | - Zhen Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
22
|
Ho N, Yap WS, Xu J, Wu H, Koh JH, Goh WWB, George B, Chong SC, Taubert S, Thibault G. Stress sensor Ire1 deploys a divergent transcriptional program in response to lipid bilayer stress. J Cell Biol 2020; 219:e201909165. [PMID: 32349127 PMCID: PMC7337508 DOI: 10.1083/jcb.201909165] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/26/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Membrane integrity at the endoplasmic reticulum (ER) is tightly regulated, and its disturbance is implicated in metabolic diseases. Using an engineered sensor that activates the unfolded protein response (UPR) exclusively when normal ER membrane lipid composition is compromised, we identified pathways beyond lipid metabolism that are necessary to maintain ER integrity in yeast and in C. elegans. To systematically validate yeast mutants that disrupt ER membrane homeostasis, we identified a lipid bilayer stress (LBS) sensor in the UPR transducer protein Ire1, located at the interface of the amphipathic and transmembrane helices. Furthermore, transcriptome and chromatin immunoprecipitation analyses pinpoint the UPR as a broad-spectrum compensatory response wherein LBS and proteotoxic stress deploy divergent transcriptional UPR programs. Together, these findings reveal the UPR program as the sum of two independent stress responses, an insight that could be exploited for future therapeutic intervention.
Collapse
Affiliation(s)
- Nurulain Ho
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Wei Sheng Yap
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jiaming Xu
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Haoxi Wu
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jhee Hong Koh
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Wilson Wen Bin Goh
- Bio-Data Science and Education Research Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Bhawana George
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shu Chen Chong
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Guillaume Thibault
- Lipid Regulation and Cell Stress Group, School of Biological Sciences, Nanyang Technological University, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| |
Collapse
|
23
|
Huang J, Wang Q, Bu W, Chen L, Yang Z, Zheng W, Li Y, Li J. Different construction strategies affected on the physiology of Pichia pastoris strains highly expressed lipase by transcriptional analysis of key genes. Bioengineered 2019; 10:150-161. [PMID: 31079540 PMCID: PMC6527059 DOI: 10.1080/21655979.2019.1614422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We demonstrated previously that expression of Rhizomucor miehei lipase (RML) in Pichia pastoris could be significantly increased by addition of gene propeptide, optimized signal peptide codons and manipulation of gene dosage. In this study, effects of various strategies on the protein synthesis and secretion pathways were analyzed. Using nine strains previously constructed, we evaluated cell culture properties, enzymatic activities, and analyzed transcriptional levels of nine genes involved in protein synthesis and secretion pathways by qPCR. We observed that (i) Addition of propeptide decreased lipase folding stress by down-regulated four UPR-related genes. (ii) Signal peptide codons optimization had no effect on host with no change in the nine detected genes. (iii) Folding stress and limited transport capacity produced when rml gene dosage exceed 2. Different limiting factors on lipase expression in strains with different construction strategies were identified. This study provides a theoretical basis for further improving RML by transforming host.
Collapse
Affiliation(s)
- Jinjin Huang
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China.,b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Qing Wang
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China.,c School of Life Sciences , Beijing University of Chinese Medicine , Beijing , P. R. China
| | - Wei Bu
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Lingxiao Chen
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Zhen Yang
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Weifa Zheng
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Ying Li
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Jilun Li
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| |
Collapse
|
24
|
Tran DM, Ishiwata-Kimata Y, Mai TC, Kubo M, Kimata Y. The unfolded protein response alongside the diauxic shift of yeast cells and its involvement in mitochondria enlargement. Sci Rep 2019; 9:12780. [PMID: 31484935 PMCID: PMC6726593 DOI: 10.1038/s41598-019-49146-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
Upon dysfunction of the endoplasmic reticulum (ER), eukaryotic cells evoke the unfolded protein response (UPR), which, in yeast Saccharomyces cerevisaie cells, is promoted by the ER-located transmembrane endoribonuclease Ire1. When activated, Ire1 splices and matures the HAC1 mRNA which encodes a transcription-factor protein that is responsible for the gene induction of the UPR. Here we propose that this signaling pathway is also used in cellular adaptation upon diauxic shift, in which cells shift from fermentative phase (fast growth) to mitochondrial respiration phase (slower growth). Splicing of the HAC1 mRNA was induced upon diauxic shift of cells cultured in glucose-based media or in cells transferred from glucose-based medium to non-fermentable glycerol-based medium. Activation of Ire1 in this situation was not due to ER accumulation of unfolded proteins, and was mediated by reactive oxygen species (ROS), which are byproducts of aerobic respiration. Here we also show that the UPR induced by diauxic shift causes enlargement of the mitochondria, and thus contributes to cellular growth under non-fermentative conditions, in addition to transcriptional induction of the canonical UPR target genes, which includes those encoding ER-located molecular chaperones and protein-folding enzymes.
Collapse
Affiliation(s)
- Duc Minh Tran
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.,Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay, Ha Noi, Vietnam
| | - Yuki Ishiwata-Kimata
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Thanh Chi Mai
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Minoru Kubo
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.,Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yukio Kimata
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
25
|
Besio R, Garibaldi N, Leoni L, Cipolla L, Sabbioneda S, Biggiogera M, Mottes M, Aglan M, Otaify GA, Temtamy SA, Rossi A, Forlino A. Cellular stress due to impairment of collagen prolyl hydroxylation complex is rescued by the chaperone 4-phenylbutyrate. Dis Model Mech 2019; 12:dmm.038521. [PMID: 31171565 PMCID: PMC6602311 DOI: 10.1242/dmm.038521] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022] Open
Abstract
Osteogenesis imperfecta (OI) types VII, VIII and IX, caused by recessive mutations in cartilage-associated protein (CRTAP), prolyl-3-hydroxylase 1 (P3H1) and cyclophilin B (PPIB), respectively, are characterized by the synthesis of overmodified collagen. The genes encode for the components of the endoplasmic reticulum (ER) complex responsible for the 3-hydroxylation of specific proline residues in type I collagen. Our study dissects the effects of mutations in the proteins of the complex on cellular homeostasis, using primary fibroblasts from seven recessive OI patients. In all cell lines, the intracellular retention of overmodified type I collagen molecules causes ER enlargement associated with the presence of protein aggregates, activation of the PERK branch of the unfolded protein response and apoptotic death. The administration of 4-phenylbutyrate (4-PBA) alleviates cellular stress by restoring ER cisternae size, and normalizing the phosphorylated PERK (p-PERK):PERK ratio and the expression of apoptotic marker. The drug also has a stimulatory effect on autophagy. We proved that the rescue of cellular homeostasis following 4-PBA treatment is associated with its chaperone activity, since it increases protein secretion, restoring ER proteostasis and reducing PERK activation and cell survival also in the presence of pharmacological inhibition of autophagy. Our results provide a novel insight into the mechanism of 4-PBA action and demonstrate that intracellular stress in recessive OI can be alleviated by 4-PBA therapy, similarly to what we recently reported for dominant OI, thus allowing a common target for OI forms characterized by overmodified collagen. This article has an associated First Person interview with the first author of the paper. Editor's choice: Mutations in the collagen 3-prolyl hydroxylation complex cause a cellular stress that is rescued by the chaperone ability of 4-phenylbutyrate.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.,Istituto Universitario di Studi Superiori - IUSS, 27100 Pavia, Italy
| | - Laura Leoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Lina Cipolla
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Monica Mottes
- Department of Neuroscience, Biomedicine and Movement, University of Verona, 37134 Verona, Italy
| | - Mona Aglan
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo 12622, Egypt
| | - Ghada A Otaify
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo 12622, Egypt
| | - Samia A Temtamy
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo 12622, Egypt
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
26
|
Nguyen PTM, Ishiwata-Kimata Y, Kimata Y. Monitoring ADP/ATP ratio in yeast cells using the fluorescent-protein reporter PercevalHR. Biosci Biotechnol Biochem 2019; 83:824-828. [PMID: 30704350 DOI: 10.1080/09168451.2019.1574204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PercevalHR (Perceval High Resolution) is an artificially designed fluorescent protein, which changes its excitation spectrum based on the ADP/ATP ratio of the environment. Here we demonstrated that PercevalHR can be used for monitoring energy status of Saccharomyces cerevisiae cells, which are affected by diauxic shift and mitochondria inhibition, in a non-invasive and non-destructive manner.
Collapse
Affiliation(s)
- Phuong Thi Mai Nguyen
- a Graduate School of Science and Technology , Nara Institute of Science and Technology , Nara , Japan
| | - Yuki Ishiwata-Kimata
- a Graduate School of Science and Technology , Nara Institute of Science and Technology , Nara , Japan
| | - Yukio Kimata
- a Graduate School of Science and Technology , Nara Institute of Science and Technology , Nara , Japan
| |
Collapse
|
27
|
Chen J, Huang JH, Wang Z, Song X, Chen Z, Zeng Q, Zhou X, Zuo Z, Zhao S, Chen X, Kang J. Endoplasmic reticulum stress-mediated autophagy contributes to 5-ethylamino-9-diethylaminobenzo[a]phenoselenazinium-mediated photodynamic therapy via the PERK-eIF2α pathway. Onco Targets Ther 2018; 11:4315-4325. [PMID: 30100737 PMCID: PMC6065466 DOI: 10.2147/ott.s163366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction 5-ethylamino-9-diethylaminobenzo[a]phenoselenazinium (EtNBSe) is a novel synthetic bipolar photosensitizer with many promising applications. This study investigated the impact of EtNBSe-mediated photodynamic therapy (EtNBSe-PDT) on the autophagy and endoplasmic reticulum (ER) stress of squamous carcinoma cells (A-431 cells), as well as the related molecular mechanisms. Methods The potency of EtNBSe-PDT against squamous cell carcinoma was evaluated in BALB/c nude mice. Cell viability was evaluated using MTT. Western blotting and immunofluorescence were used to determine the expression levels of ER stress- and autophagy-related proteins. Results Both morphological and microscopic findings showed that the tumor on the xenograft mice exhibited an apparent reduction in volume and was replaced with fibrosis 20 days after EtNBSe-PDT. Additionally, in an in vitro study using A-431 cells, EtNBSe-PDT was found to inhibit A-431 cell survival in an EtNBSe concentration- and light dose- dependent manner, and to induce ER stress via the PERK-eIF2α signaling pathway. Additionally, EtNBSe-PDT could also induce autophagy of A-431 cells. Furthermore, the ER stress inhibitor 4-PBA and the eIF2α inhibitor salubrinal were found to inhibit the autophagy induced by EtNBSe-PDT. Conclusion This study demonstrated that the PERK-eIF2α signaling pathway was involved in the ER stress induced by EtNBSe-PDT. Meanwhile, the ER stress via the PERK-eIF2α pathway promoted the occurrence of autophagy in A-431 cells.
Collapse
Affiliation(s)
- Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,
| | - Jin-Hua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,
| | - Zhen Wang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People's Republic of China
| | - Zeyi Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,
| | - Xiping Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,
| | - Zhihong Zuo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,
| | - Jian Kang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China,
| |
Collapse
|