1
|
Blair BA, Bragdon E, Dhillon G, Baker N, Stasiak L, Muthig M, Miramon P, Lorenz MC, Wheeler RT. Forward genetic screen in zebrafish identifies new fungal regulators that limit host-protective Candida-innate immune interaction. mBio 2025; 16:e0052925. [PMID: 40172223 PMCID: PMC12077120 DOI: 10.1128/mbio.00529-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/04/2025] Open
Abstract
Candida is one of the most frequent causes of bloodstream infections, and our first line of defense against these invasive infections is the innate immune system. The early immune response is critical in controlling Candida albicans infection, but C. albicans has several strategies to evade host immune attack. Phagocytosis of C. albicans blocks hyphal growth, limiting host damage and virulence, but how C. albicans limits early recruitment and phagocytosis in vertebrate infection is poorly understood. To study innate immune evasion by intravital imaging, we utilized the transparent larval zebrafish infection model to screen 131 C. albicans mutants for altered virulence and phagocyte response. Infections with each of the seven hypovirulent mutants led to altered phagocyte recruitment and/or phagocytosis, falling into four categories. Of particular interest among these is NMD5, a predicted β-importin and newly identified virulence factor. The nmd5∆/∆ mutant fails to limit phagocytosis, and its virulence defects are eliminated when phagocyte activity is compromised, suggesting that its role in virulence is limited to immune evasion. These quantitative intravital imaging experiments are the first to document altered Candida-phagocyte interactions for several additional mutants and clearly distinguish recruitment from phagocytic uptake, suggesting that Candida modulates both events. This initial large-scale screen of individual C. albicans mutants in a vertebrate, coupled with high-resolution imaging of Candida-phagocyte interactions, provides a more nuanced view of how diverse mutations can lead to more effective phagocytosis, a key immune process that blocks germination and drives anti-fungal immunity. IMPORTANCE Candida albicans is part of the human microbial community and is a dangerous opportunistic pathogen, able to prevent its elimination by the host immune system. Although Candida avoids immune attack through several strategies, we still understand little about how it regulates when immune phagocytes get recruited to the infection site and when they engulf fungal cells. We tested over 130 selected Candida mutants for their ability to cause lethal infection and found several hypovirulent mutants, which provoked altered innate immune responses, resulting in lower overall inflammation and greater host survival. Of particular interest is NMD5, which acts to limit fungal phagocytosis and is predicted to regulate the activity of stress-associated transcription factors. Our high-content screening was enabled by modeling Candida infection in transparent vertebrate zebrafish larva. Our findings help us understand how Candida survives immune attack during commensal and pathogenic growth, and may eventually inform new strategies for controlling disease.
Collapse
Affiliation(s)
- Bailey A. Blair
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Emma Bragdon
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Gursimran Dhillon
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Nnamdi Baker
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Lena Stasiak
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Mya Muthig
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Pedro Miramon
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
2
|
Schille TB, Sprague JL, Naglik JR, Brunke S, Hube B. Commensalism and pathogenesis of Candida albicans at the mucosal interface. Nat Rev Microbiol 2025:10.1038/s41579-025-01174-x. [PMID: 40247134 DOI: 10.1038/s41579-025-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Fungi are important and often underestimated human pathogens. Infections with fungi mostly originate from the environment, from soil or airborne spores. By contrast, Candida albicans, one of the most common and clinically important fungal pathogens, permanently exists in the vast majority of healthy individuals as a member of the human mucosal microbiota. Only under certain circumstances will these commensals cause infections. However, although the pathogenic behaviour and disease manifestation of C. albicans have been at the centre of research for many years, its asymptomatic colonization of mucosal surfaces remains surprisingly understudied. In this Review, we discuss the interplay of the fungus, the host and the microbiome on the dualism of commensal and pathogenic life of C. albicans, and how commensal growth is controlled and permitted. We explore hypotheses that could explain how the mucosal environment shapes C. albicans adaptations to its commensal lifestyle, while still maintaining or even increasing its pathogenic potential.
Collapse
Affiliation(s)
- Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
3
|
Blair BA, Bragdon E, Dhillon G, Baker N, Stasiak L, Muthig M, Miramon P, Lorenz MC, Wheeler RT. Forward genetic screen in zebrafish identifies new fungal regulators that limit host-protective Candida-innate immune interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638315. [PMID: 39990375 PMCID: PMC11844468 DOI: 10.1101/2025.02.14.638315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Candida is one of the most frequent causes of bloodstream infections, and our first line of defense against these invasive infections is the innate immune system. The early immune response is critical in controlling C. albicans infection, but C. albicans has several strategies to evade host immune attack. Phagocytosis of C. albicans blocks hyphal growth, limiting host damage and virulence, but how C. albicans limits early recruitment and phagocytosis in vertebrate infection is poorly understood. To study innate immune evasion by intravital imaging, we utilized the transparent larval zebrafish infection model to screen 131 C. albicans mutants for altered virulence and phagocyte response. Infections with each of seven hypovirulent mutants led to altered phagocyte recruitment and/or phagocytosis, falling into four categories. Of particular interest among these is NMD5, a predicted β-importin and newly-identified virulence factor. The nmd5∆/∆ mutant fails to limit phagocytosis and its virulence defects are eliminated when phagocyte activity is compromised, suggesting that its role in virulence is limited to immune evasion. These quantitative intravital imaging experiments are the first to document altered Candida-phagocyte interactions for several additional mutants, and clearly distinguish recruitment from phagocytic uptake, suggesting that Candida modulates both events. This initial large-scale screen of individual C. albicans mutants in a vertebrate, coupled with high-resolution imaging of Candida-phagocyte interactions, provides a more nuanced view of how diverse mutations can lead to more effective phagocytosis, a key immune process which blocks germination and drives anti-fungal immunity.
Collapse
Affiliation(s)
- Bailey A. Blair
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469
| | - Emma Bragdon
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Gursimran Dhillon
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Nnamdi Baker
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Lena Stasiak
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Mya Muthig
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Pedro Miramon
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469
| |
Collapse
|
4
|
Kim MJ, White AM, Mitchell AP. Strain variation in Candida albicans glycolytic gene regulation. mSphere 2024; 9:e0057924. [PMID: 39431903 PMCID: PMC11580466 DOI: 10.1128/msphere.00579-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Central carbon metabolism is vital for the proliferation of Candida albicans, a fungus that is prominent as a commensal and pathogen. Glycolytic genes are activated by overlapping activities of the transcription factors Tye7 and Gal4, as shown by studies in the SC5314 genetic background. However, regulatory relationships can vary among C. albicans isolates. Here, we analyzed Tye7- and Gal4-related phenotypes in five diverse clinical isolates of C. albicans. We tested growth properties and gene expression impact through Nanostring profiling and, for the two strains SC5314 and P87, RNA sequencing. Our results lead to three main conclusions. First, the functional redundancy of Tye7 and Gal4 for glycolytic gene activation is preserved among all strains tested. Second, at the gene expression level, strain P87 is an outlier with regard to tye7Δ/Δ impact, and strain SC5314 is an outlier with regard to gal4Δ/Δ impact. Third, while Gal4 is well known to be dispensable for induction of the GAL1, GAL7, and GAL10 galactose-specific metabolic genes, we find that gal4Δ/Δ mutants of several strains have a mild galactose fermentation defect, as assayed by growth on galactose with the respiration inhibitor antimycin A. Our findings indicate that even a central metabolic regulatory network is subject to strain variation and illustrates an unexpected genotype-phenotype relationship.The fungal commensal and pathogen Candida albicans rely upon metabolic flexibility to colonize and infect host niches. Central carbon metabolism is governed by two regulators, Tye7 and Gal4, as defined in the reference strain SC5314. Here, we have explored the impact of Tye7 and Gal4 on carbon utilization and gene expression across five diverse C. albicans clinical isolates. Novel aspects of this study are the finding that even a central metabolic regulatory network is subject to strain variation and the observation of an unexpected mutant phenotype.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Amelia M. White
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Aydin M, Unusan N, Sumlu E, Korucu EN. Rosmarinic Acid Exhibits Antifungal and Antibiofilm Activities Against Candida albicans: Insights into Gene Expression and Morphological Changes. J Fungi (Basel) 2024; 10:751. [PMID: 39590670 PMCID: PMC11595412 DOI: 10.3390/jof10110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Candida species, opportunistic pathogens that cause various infections, pose a significant threat due to their ability to form biofilms that resist antifungal treatments and immune responses. The increasing resistance of Candida spp. and the limited availability of effective treatments have prompted the research of natural compounds as alternative therapies. This study assessed the antifungal properties of RA against Candida species, focusing on its impact on C. albicans biofilms and the underlying mechanisms. The antifungal efficacy of RA was evaluated using the CLSI M27-A3 microdilution method on both fluconazole-susceptible and -resistant strains. Biofilm formation by C. albicans was assessed through a crystal violet assay, while its antibiofilm activity was analyzed using an MTT assay and field emission scanning electron microscopy (FESEM). Gene expression related to biofilm formation was studied using quantitative real-time PCR (qRT-PCR), and statistical analysis was performed with an ANOVA. Among the 28 Candida strains tested, RA exhibited minimum inhibitory concentration (MIC) values ranging from 160 to 1280 μg/mL. At a 640 μg/mL concentration, it significantly reduced the expression of genes associated with adhesion (ALS3, HWP1, and ECE1), hyphal development (UME6 and HGC1), and hyphal cAMP-dependent protein kinase regulators (CYR1, RAS1, and EFG1) in RAS1-cAMP-EFG1 pathway (p < 0.05). FESEM analysis revealed a reduction in hyphal networks and disruptions on the cell surface. Our study is the first to demonstrate the effects of RA on C. albicans adhesion, hyphae development, and biofilm formation through gene expression analysis with findings supported by FESEM. This approach distinguishes our study from previous studies on the effect of RA on Candida. However, the high MIC values of RA limit its antifungal potential. Therefore, more extensive research using innovative methods is required to increase the antifungal effect of RA.
Collapse
Affiliation(s)
- Merve Aydin
- Department of Medical Microbiology, Faculty of Medicine, KTO Karatay University, Konya 42020, Turkey
| | - Nurhan Unusan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, KTO Karatay University, Konya 42020, Turkey;
| | - Esra Sumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, Konya 42020, Turkey;
| | - Emine Nedime Korucu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya 42090, Turkey;
| |
Collapse
|
6
|
Xiong L, Goerlich K, Do E, Mitchell AP. Strain variation in the Candida albicans iron limitation response. mSphere 2024; 9:e0037224. [PMID: 38980069 PMCID: PMC11288005 DOI: 10.1128/msphere.00372-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024] Open
Abstract
Iron acquisition is critical for pathogens to proliferate during invasive infection, and the human fungal pathogen Candida albicans is no exception. The iron regulatory network, established in reference strain SC5314 and derivatives, includes the central player Sef1, a transcription factor that activates iron acquisition genes in response to iron limitation. Here, we explored potential variation in this network among five diverse C. albicans strains through mutant analysis, Nanostring gene expression profiling, and, for two strains, RNA-Seq. Our findings highlight four features that may inform future studies of natural variation and iron acquisition in this species. (i) Conformity: In all strains, major iron acquisition genes are upregulated during iron limitation, and a sef1Δ/Δ mutation impairs that response and growth during iron limitation. (ii) Response variation: Some aspects of the iron limitation response vary among strains, notably the activation of hypha-associated genes. As this gene set is tied to tissue damage and virulence, variation may impact the progression of infection. (iii) Genotype-phenotype variation: The impact of a sef1Δ/Δ mutation on cell wall integrity varies, and for the two strains examined the phenotype correlated with sef1Δ/Δ impact on several cell wall integrity genes. (iv) Phenotype discovery: DNA repair genes were induced modestly by iron limitation in sef1Δ/Δ mutants, with fold changes we would usually ignore. However, the response occurred in both strains tested and was reminiscent of a much stronger response described in Cryptococcus neoformans, a suggestion that it may have biological meaning. In fact, we observed that the iron limitation of a sef1Δ/Δ mutant caused recessive phenotypes to emerge at two heterozygous loci. Overall, our results show that a network that is critical for pathogen proliferation presents variation outside of its core functions.IMPORTANCEA key virulence factor of Candida albicans is the ability to maintain iron homeostasis in the host where iron is scarce. We focused on a central iron regulator, SEF1. We found that iron regulator Sef1 is required for growth, cell wall integrity, and genome integrity during iron limitation. The novel aspect of this work is the characterization of strain variation in a circuit that is required for survival in the host and the connection of iron acquisition to genome integrity in C. albicans.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Eunsoo Do
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
O'Meara TR. Going fishing: how to get what you want from a fungal genetic screen. mSphere 2024; 9:e0063823. [PMID: 38958459 PMCID: PMC11287994 DOI: 10.1128/msphere.00638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Five years ago, as I was starting my lab, I wrote about two functional genomic screens in fungi that had inspired me (mSphere 4:e00299-19, https://doi.org/10.1128/mSphere.00299-19). Now, I want to discuss some of the principles and questions that I ask myself and my students as we embark on our own screens. A good screen, whether it is a genetic or chemical screen, can be the starting point for new discovery and an excellent basis for the beginning of a scientific research project. However, screens are often criticized for being "fishing expeditions." To stretch this metaphor to the extreme, this is because people are worried that we do not know how to fish, that we will come home without any fish, bring home the wrong fish, or not know what to do with a fish if we caught it. How you set up the screen and analyze the results determines whether the screen will be useful. In this mini-review, and in the spirit of teaching a scientist to fish, I will discuss recent excellent fungal genetic and chemical screens that illustrate some of the key aspects of a successful screen.
Collapse
Affiliation(s)
- Teresa R. O'Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Iracane E, Arias-Sardá C, Maufrais C, Ene IV, d’Enfert C, Buscaino A. Identification of an active RNAi pathway in Candida albicans. Proc Natl Acad Sci U S A 2024; 121:e2315926121. [PMID: 38625945 PMCID: PMC11047096 DOI: 10.1073/pnas.2315926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/08/2024] [Indexed: 04/18/2024] Open
Abstract
RNA interference (RNAi) is a fundamental regulatory pathway with a wide range of functions, including regulation of gene expression and maintenance of genome stability. Although RNAi is widespread in the fungal kingdom, well-known species, such as the model yeast Saccharomyces cerevisiae, have lost the RNAi pathway. Until now evidence has been lacking for a fully functional RNAi pathway in Candida albicans, a human fungal pathogen considered critically important by the World Health Organization. Here, we demonstrated that the widely used C. albicans reference strain (SC5314) contains an inactivating missense mutation in the gene encoding for the central RNAi component Argonaute. In contrast, most other C. albicans isolates contain a canonical Argonaute protein predicted to be functional and RNAi-active. Indeed, using high-throughput small and long RNA sequencing combined with seamless CRISPR/Cas9-based gene editing, we demonstrate that an active C. albicans RNAi machinery represses expression of subtelomeric gene families. Thus, an intact and functional RNAi pathway exists in C. albicans, highlighting the importance of using multiple reference strains when studying this dangerous pathogen.
Collapse
Affiliation(s)
- Elise Iracane
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Cristina Arias-Sardá
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Bioinformatic Hub, ParisF-75015, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, ParisF-75015, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement USC2019, Fungal Biology and Pathogenicity Unit, ParisF-75015, France
| | - Alessia Buscaino
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| |
Collapse
|