1
|
Mellor NJ, Webster TH, Byrne H, Williams AS, Edwards T, DeNardo DF, Wilson MA, Kusumi K, Dolby GA. Divergence in Regulatory Regions and Gene Duplications May Underlie Chronobiological Adaptation in Desert Tortoises. Mol Ecol 2025; 34:e17600. [PMID: 39624910 PMCID: PMC11774117 DOI: 10.1111/mec.17600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025]
Abstract
Many cellular processes and organismal behaviours are time-dependent, and asynchrony of these phenomena can facilitate speciation through reinforcement mechanisms. The Mojave and Sonoran desert tortoises (Gopherus agassizii and G. morafkai respectively) reside in adjoining deserts with distinct seasonal rainfall patterns and they exhibit asynchronous winter brumation and reproductive behaviours. We used whole genome sequencing of 21 individuals from the two tortoise species and an outgroup to understand genes potentially underlying these characteristics. Genes within the most diverged 1% of the genome (FST ≥ 0.63) with putatively functional variation showed extensive divergence in regulatory elements, particularly promoter regions. Such genes related to UV nucleotide excision repair, mitonuclear and homeostasis functions. Genes mediating chronobiological (cell cycle, circadian and circannual) processes were also among the most highly diverged regions (e.g., XPA and ZFHX3). Putative promoter variants had significant enrichment of genes related to regulatory machinery (ARC-Mediator complex), suggesting that transcriptional cascades driven by regulatory divergence may underlie the behavioural differences between these species, leading to asynchrony-based prezygotic isolation. Further investigation revealed extensive expansion of respiratory and intestinal mucins (MUC5B and MUC5AC) within Gopherus, particularly G. morafkai. This expansion could be a xeric-adaptation to water retention and/or contribute to differential Mycoplasma agassizii infection rates between the two species, as mucins help clear inhaled dust and bacterial. Overall, results highlight the diverse array of genetic changes underlying divergence, adaptation and reinforcement during speciation.
Collapse
Affiliation(s)
- N. Jade Mellor
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City, Utah
| | - Avery S. Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Taylor Edwards
- Arizona Molecular Clinical Core, University of Arizona, Tucson, Arizona 85721
| | - Dale F. DeNardo
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Greer A. Dolby
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
2
|
Melepat B, Li T, Vinkler M. Natural selection directing molecular evolution in vertebrate viral sensors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105147. [PMID: 38325501 DOI: 10.1016/j.dci.2024.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/30/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Diseases caused by pathogens contribute to molecular adaptations in host immunity. Variety of viral pathogens challenging animal immunity can drive positive selection diversifying receptors recognising the infections. However, whether distinct virus sensing systems differ across animals in their evolutionary modes remains unclear. Our review provides a comparative overview of natural selection shaping molecular evolution in vertebrate viral-binding pattern recognition receptors (PRRs). Despite prevailing negative selection arising from the functional constraints, multiple lines of evidence now suggest diversifying selection in the Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs) and oligoadenylate synthetases (OASs). In several cases, location of the positively selected sites in the ligand-binding regions suggests effects on viral detection although experimental support is lacking. Unfortunately, in most other PRR families including the AIM2-like receptor family, C-type lectin receptors (CLRs), and cyclic GMP-AMP synthetase studies characterising their molecular evolution are rare, preventing comparative insight. We indicate shared characteristics of the viral sensor evolution and highlight priorities for future research.
Collapse
Affiliation(s)
- Balraj Melepat
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Tao Li
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic.
| |
Collapse
|
3
|
Immunity in Sea Turtles: Review of a Host-Pathogen Arms Race Millions of Years in the Running. Animals (Basel) 2023; 13:ani13040556. [PMID: 36830343 PMCID: PMC9951749 DOI: 10.3390/ani13040556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system of sea turtles is not completely understood. Sea turtles (as reptiles) bridge a unique evolutionary gap, being ectothermic vertebrates like fish and amphibians and amniotes like birds and mammals. Turtles are ectotherms; thus, their immune system is influenced by environmental conditions like temperature and season. We aim to review the turtle immune system and note what studies have investigated sea turtles and the effect of the environment on the immune response. Turtles rely heavily on the nonspecific innate response rather than the specific adaptive response. Turtles' innate immune effectors include antimicrobial peptides, complement, and nonspecific leukocytes. The antiviral defense is understudied in terms of the diversity of pathogen receptors and interferon function. Turtles also mount adaptive responses to pathogens. Lymphoid structures responsible for lymphocyte activation and maturation are either missing in reptiles or function is affected by season. Turtles are a marker of health for their marine environment, and their immune system is commonly dysregulated because of disease or contaminants. Fibropapillomatosis (FP) is a tumorous disease that afflicts sea turtles and is thought to be caused by a virus and an environmental factor. We aim, by exploring the current understanding of the immune system in turtles, to aid the investigation of environmental factors that contribute to the pathogenesis of this disease and provide options for immunotherapy.
Collapse
|
4
|
Field EK, Hartzheim A, Terry J, Dawson G, Haydt N, Neuman-Lee LA. Reptilian Innate Immunology and Ecoimmunology: What Do We Know and Where Are We Going? Integr Comp Biol 2022; 62:1557-1571. [PMID: 35833292 DOI: 10.1093/icb/icac116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/05/2023] Open
Abstract
Reptiles, the only ectothermic amniotes, employ a wide variety of physiological adaptations to adjust to their environments but remain vastly understudied in the field of immunology and ecoimmunology in comparison to other vertebrate taxa. To address this knowledge gap, we assessed the current state of research on reptilian innate immunology by conducting an extensive literature search of peer-reviewed articles published across the four orders of Reptilia (Crocodilia, Testudines, Squamata, and Rhynchocephalia). Using our compiled dataset, we investigated common techniques, characterization of immune components, differences in findings and type of research among the four orders, and immune responses to ecological and life-history variables. We found that there are differences in the types of questions asked and approaches used for each of these reptilian orders. The different conceptual frameworks applied to each group has led to a lack of unified understanding of reptilian immunological strategies, which, in turn, have resulted in large conceptual gaps in the field of ecoimmunology as a whole. To apply ecoimmunological concepts and techniques most effectively to reptiles, we must combine traditional immunological studies with ecoimmunological studies to continue to identify, characterize, and describe the reptilian immune components and responses. This review highlights the advances and gaps that remain to help identify targeted and cohesive approaches for future research in reptilian ecoimmunological studies.
Collapse
Affiliation(s)
- Emily K Field
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Alyssa Hartzheim
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jennifer Terry
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Grant Dawson
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Natalie Haydt
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Lorin A Neuman-Lee
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
5
|
Yu M. Computational analysis on two putative mitochondrial protein-coding genes from the Emydura subglobosa genome: A functional annotation approach. PLoS One 2022; 17:e0268031. [PMID: 35981005 PMCID: PMC9387794 DOI: 10.1371/journal.pone.0268031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
Rapid advancements in automated genomic technologies have uncovered many unique findings about the turtle genome and its associated features including olfactory gene expansions and duplications of toll-like receptors. However, despite the advent of large-scale sequencing, assembly, and annotation, about 40-50% of genes in eukaryotic genomes are left without functional annotation, severely limiting our knowledge of the biological information of genes. Additionally, these automated processes are prone to errors since draft genomes consist of several disconnected scaffolds whose order is unknown; erroneous draft assemblies may also be contaminated with foreign sequences and propagate to cause errors in annotation. Many of these automated annotations are thus incomplete and inaccurate, highlighting the need for functional annotation to link gene sequences to biological identity. In this study, we have functionally annotated two genes of the red-bellied short-neck turtle (Emydura subglobosa), a member of the relatively understudied pleurodire lineage of turtles. We improved upon initial ab initio gene predictions through homology-based evidence and generated refined consensus gene models. Through functional, localization, and structural analyses of the predicted proteins, we discovered conserved putative genes encoding mitochondrial proteins that play a role in C21-steroid hormone biosynthetic processes and fatty acid catabolism-both of which are distantly related by the tricarboxylic acid (TCA) cycle and share similar metabolic pathways. Overall, these findings further our knowledge about the genetic features underlying turtle physiology, morphology, and longevity, which have important implications for the treatment of human diseases and evolutionary studies.
Collapse
Affiliation(s)
- Megan Yu
- Department of Molecular, Cell & Developmental Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
6
|
TLR7 and TLR8 evolution in lagomorphs: different patterns in the different lineages. Immunogenetics 2022; 74:475-485. [PMID: 35419618 DOI: 10.1007/s00251-022-01262-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
Toll-like receptors (TLRs) are one of the most ancient and widely studied innate immune receptors responsible for host defense against invading pathogens. Among the known TLRs, TLR7 and TLR8 sense and recognize single-stranded (ss) RNAs with a dynamic evolutionary history. While TLR8 was lost in birds and duplicated in turtles and crocodiles, TLR7 is duplicated in some birds, but in other tetrapods, there is only one copy. In mammals, with the exception of lagomorphs, TLR7 and TLR8 are highly conserved. Here, we aim to study the evolution of TLR7 and TLR8 in mammals, with a special focus in the order Lagomorpha. By searching public sequence databases, conducting evolutionary analysis, and evaluating gene expression, we were able to confirm that TLR8 is absent in hares but widely expressed in the European rabbit. In contrast, TLR7 is absent in the European rabbit and quite divergent in hares. Our results suggest that, in lagomorphs, more in particular in leporids, TLR7 and TLR8 genes have evolved faster than in any other mammalian group. The long history of interaction with viruses and their location in highly dynamic telomeric regions might explain the pattern observed.
Collapse
|
7
|
Xu C, Dolby GA, Drake KK, Esque TC, Kusumi K. Immune and sex-biased gene expression in the threatened Mojave desert tortoise, Gopherus agassizii. PLoS One 2020; 15:e0238202. [PMID: 32846428 PMCID: PMC7449761 DOI: 10.1371/journal.pone.0238202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022] Open
Abstract
The immune system of ectotherms, particularly non-avian reptiles, remains poorly characterized regarding the genes involved in immune function, and their function in wild populations. We used RNA-Seq to explore the systemic response of Mojave desert tortoise (Gopherus agassizii) gene expression to three levels of Mycoplasma infection to better understand the host response to this bacterial pathogen. We found over an order of magnitude more genes differentially expressed between male and female tortoises (1,037 genes) than differentially expressed among immune groups (40 genes). There were 8 genes differentially expressed among both variables that can be considered sex-biased immune genes in this tortoise. Among experimental immune groups we find enriched GO biological processes for cysteine catabolism, regulation of type 1 interferon production, and regulation of cytokine production involved in immune response. Sex-biased transcription involves iron ion transport, iron ion homeostasis, and regulation of interferon-beta production to be enriched. More detailed work is needed to assess the seasonal response of the candidate genes found here. How seasonal fluctuation of testosterone and corticosterone modulate the immunosuppression of males and their susceptibility to Mycoplasma infection also warrants further investigation, as well as the importance of iron in the immune function and sex-biased differences of this species. Finally, future transcriptional studies should avoid drawing blood from tortoises via subcarapacial venipuncture as the variable aspiration of lymphatic fluid will confound the differential expression of genes.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Greer A. Dolby
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - K. Kristina Drake
- Western Ecological Research Center, U.S. Geological Survey, Henderson, Nevada, United States of America
| | - Todd C. Esque
- Western Ecological Research Center, U.S. Geological Survey, Henderson, Nevada, United States of America
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|