1
|
Kaplan G. Human-Caused High Direct Mortality in Birds: Unsustainable Trends and Ameliorative Actions. Animals (Basel) 2024; 15:73. [PMID: 39795016 PMCID: PMC11719028 DOI: 10.3390/ani15010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Human interaction with birds has never been more positive and supported by so many private citizens and professional groups. However, direct mortality of birds from anthropogenic causes has increased and has led to significant annual losses of birds. We know of the crucial impact of habitat loss on the survival of birds and its effects on biodiversity. Direct mortality via anthropogenic causes is an additive but biologically important cause of avian decline. This is the focus of this paper. This paper synthesises and interprets the data on direct anthropogenic causes of mortality in birds, and it also discusses emerging and relatively hidden problems, including new challenges that birds may not be able to manage. This paper points out that such deaths occur indiscriminately and have negative behavioural and reproductive consequences even for survivors. All of these factors are important to address, because any functional habitat depends on birds. This paper suggests that some of this death toll can be reduced substantially and immediately, even some of the seemingly intractable problems. This paper also proposes cross-disciplinary solutions, bearing in mind that "ecosystem services" provided by birds benefit us all, and that the continued existence of avian diversity is one cornerstone for human survival.
Collapse
Affiliation(s)
- Gisela Kaplan
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
2
|
Guyonnet AEM, Racicot KJ, Brinkman B, Iwaniuk AN. The quantitative anatomy of the hippocampal formation in homing pigeons and other pigeon breeds: implications for spatial cognition. Brain Struct Funct 2024; 230:9. [PMID: 39688732 DOI: 10.1007/s00429-024-02882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/30/2024] [Indexed: 12/18/2024]
Abstract
Artificial selection for specific behavioural and physical traits in domesticated animals has resulted in a wide variety of breeds. One of the most widely recognized examples of behavioural selection is the homing pigeon (Columba livia), which has undergone intense selection for fast and efficient navigation, likely resulting in significant anatomical changes to the hippocampal formation. Previous neuroanatomical comparisons between homing and other pigeon breeds yielded mixed results, but only focused on volumes. We completed a more systematic test for differences in hippocampal formation anatomy between homing and other pigeon breeds by measuring volumes, neuron numbers and neuron densities in the hippocampal formation and septum across homing pigeons and seven other breeds. Overall, we found few differences in hippocampal formation volume across breeds, but large, significant differences in neuron numbers and densities. More specifically, homing pigeons have significantly more hippocampal neurons and at higher density than most other pigeon breeds, with nearly twice as many neurons as feral pigeons. These findings suggest that neuron numbers may be an important component of homing behaviour in homing pigeons. Our data also provide the first evidence that neuronal density can be modified by artificial selection, which has significant implications for the study of domestication and interbreed variation in anatomy and behaviour.
Collapse
Affiliation(s)
- Audrey E M Guyonnet
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Kelsey J Racicot
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Benjamin Brinkman
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
3
|
Balog K, Wadday AS, Al-Hasan BA, Wanjala G, Kusza S, Fehér P, Stéger V, Bagi Z. MtDNA genetic diversity and phylogeographic insights into giant domestic pigeon (Columba livia domestica) breeds: connections between Central Europe and the Middle East. Poult Sci 2024; 103:104310. [PMID: 39306953 PMCID: PMC11458985 DOI: 10.1016/j.psj.2024.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 10/11/2024] Open
Abstract
Humans have selectively bred domestic pigeons (Columba livia domestica) to create breeds with a diversity of shapes, colors and other attributes. Since Darwin, the domestic pigeon has always been a popular model species for scientific research because of its richness of form, colouration and behaviour. It is believed that the world's squab pigeon industry uses breeds and hybrids from the Mediterranean region. An exception is the indigenous giant pigeon breeds of the Carpathian Basin, whose origin is not known. Therefore, our aims were 1) to understand the phylogenetic relationships of giant pigeons, which sheds light on the origin of Hungarian breeds and their relationship to the Mediterranean giant pigeon breed group; 2) to contribute molecular genetic data to the genealogy of 2 Iraqi pigeon breeds close to the pigeon domestication center, including the culturally important Iraqi Red Pigeon, and 3) to compare the genetic diversity of European and Middle Eastern domestic pigeon populations and to draw conclusions on the phylogenetic relationships between pigeon breeds and molecular clues to their different breeding practices of both regions. A 655-bp-long sequence of the cytochrome oxidase 1 (COI) region of the mitochondrial DNA was studied in a total of 276 pigeons (19 breeds). A total of 27 haplotypes were found, of which 22 were unique. The highest genetic diversity was found in the Carpathian Basin, and the lowest in the Iraqi region. STRUCTURE analysis revealed low structurality, K=3 was the most likely. The majority of the samples belong to the most ancient haplotype H_2=219, however the Jacobin pigeon is on a very separate evolutionary branch with a large number of mutations. None of the 19 breeds investigated in this study have been previously studied in phylogenetics, and most of these breeds have potential as squab pigeons, and have good meat forms for utilization, therefore the results of this study may also be of help to the squab pigeon industry.
Collapse
Affiliation(s)
- K Balog
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary; Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
| | - A S Wadday
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - B A Al-Hasan
- Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq; Department of Laboratory, Al-Najaf Veterinary Hospital, Najaf, Iraq; Department of Veterinary Microbiology, College of Veterinary Medicine, University of Al-Qadisiyah, Diwaniyah City, Iraq
| | - G Wanjala
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary; Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary; Institute of Animal Sciences and Wildlife Management, University of Szeged, Hungary
| | - Sz Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary
| | - P Fehér
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - V Stéger
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Z Bagi
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
4
|
Zhang R, Mu C, Chang L, Shen X, Bu Z, Yang M, Fu S, Tang Q, Liu P, Yang X. Whole-Genome Sequencing for Identifying Candidate Genes Related to the Special Phenotypes of the Taihu Dianzi Pigeon. Animals (Basel) 2024; 14:1047. [PMID: 38612286 PMCID: PMC11011069 DOI: 10.3390/ani14071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The Taihu Dianzi pigeon is a breed native to China, and its special piebalding, crest, and polydactyly phenotypes are the result of artificial and natural selection. Here, we analyzed the genetic differences among three kinds of pigeons with different phenotypes at the genomic level. A selective sweep was conducted based on the fixation index (FST) and nucleotide diversity (π) ratio, and the results revealed that MC1R was related to the formation of the distinctive piebalding of the Taihu Dianzi pigeon. Combined with the results of genome-wide association studies, we identified candidate genes associated with the crest (SMYD and STOX2) and polydactyly (SLC52A3 and ANGPT4). The candidate genes identified in this study and their variants may be useful for understanding the genetic mechanism underlying the special phenotypes of the Taihu Dianzi pigeon. This study provides new insights into the genetic factors that may influence the formation of the special piebalding, crest, and polydactyly characteristics in pigeons.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Chunyu Mu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Lingling Chang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Xinyue Shen
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Zhu Bu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Mingjun Yang
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| | - Shengyong Fu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Qingping Tang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Peiyao Liu
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| | - Xiaoming Yang
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| |
Collapse
|
5
|
Hernández-Alonso G, Ramos-Madrigal J, van Grouw H, Ciucani MM, Cavill EL, Sinding MHS, Gopalakrishnan S, Pacheco G, Gilbert MTP. Redefining the Evolutionary History of the Rock Dove, Columba livia, Using Whole Genome Sequences. Mol Biol Evol 2023; 40:msad243. [PMID: 37950889 PMCID: PMC10667084 DOI: 10.1093/molbev/msad243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023] Open
Abstract
The domestic pigeon's exceptional phenotypic diversity was key in developing Darwin's Theory of Evolution and establishing the concept of artificial selection. However, unlike its domestic counterpart, its wild progenitor, the rock dove Columba livia has received considerably less attention. Therefore, questions regarding its domestication, evolution, taxonomy, and conservation status remain unresolved. We generated whole-genome sequencing data from 65 historical rock doves that represent all currently recognized subspecies and span the species' original geographic distribution. Our dataset includes 3 specimens from Darwin's collection, and the type specimens of 5 different taxa. We characterized their population structure, genomic diversity, and gene-flow patterns. Our results show the West African subspecies C. l. gymnocyclus is basal to rock doves and domestic pigeons, and suggests gene-flow between the rock dove's sister species C. rupestris, and the ancestor of rock doves after its split from West African populations. These genomes allowed us to propose a model for the evolution of the rock dove in light of the refugia theory. We propose that rock dove genetic diversity and introgression patterns derive from a history of allopatric cycles and dispersion waves during the Quaternary glacial and interglacial periods. To explore the rock dove domestication history, we combined our new dataset with available genomes from domestic pigeons. Our results point to at least 1 domestication event in the Levant that gave rise to all domestic breeds analysed in this study. Finally, we propose a species-level taxonomic arrangement to reflect the evolutionary history of the West African rock dove populations.
Collapse
Affiliation(s)
- Germán Hernández-Alonso
- Section for Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Section for Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hein van Grouw
- Bird Group, Department of Life Sciences, Natural History Museum, Tring, United Kingdom
| | - Marta Maria Ciucani
- Section for Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Emily Louisa Cavill
- Section for Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Shyam Gopalakrishnan
- Section for Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - George Pacheco
- Section for Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Section for Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Podbielska A, Radko A. Genetic Structure of Racing Pigeons (Columba livia) Kept in Poland Based on Microsatellite Markers. Genes (Basel) 2022; 13:genes13071175. [PMID: 35885956 PMCID: PMC9318851 DOI: 10.3390/genes13071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pigeons played a major role in communication before the invention of the telephone and the telegraph, as well as in wars, where they were used to carry information and orders over long distances. Currently, numerous sports competitions and races are held with their participation, and their breeding is demanding not only for breeders, but also for the birds themselves. Therefore, an analysis of the genetic structure of racing pigeons kept in Poland was undertaken on the basis of 16 microsatellite markers, as well as the evaluation of the microsatellite panel recommended by ISAG. For this purpose, Bayesian clustering, a dendrogram, and Principal Coordinate Analysis were conducted. In addition, statistical analysis was performed. Based on this research, it was observed that racing pigeons are genetically mixed, regardless of their place of origin. Moreover, genetic diversity was estimated at a relatively satisfactory level (Ho = 0.623, He = 0.684), and no alarmingly high inbreeding coefficient was observed (F = 0.088). Moreover, it was found that the panel recommended by ISAG can be successfully used in Poland for individual identification and parentage testing (PIC = 0.639, CE-1P = 0.9987233, CE-2P = 0.9999872, CE-PP = 0.99999999).
Collapse
|
7
|
Mauki DH, Tijjani A, Ma C, Ng’ang’a SI, Mark AI, Sanke OJ, Abdussamad AM, Olaogun SC, Ibrahim J, Dawuda PM, Mangbon GF, Kazwala RR, Gwakisa PS, Yin TT, Li Y, Peng MS, Adeola AC, Zhang YP. Genome-wide investigations reveal the population structure and selection signatures of Nigerian cattle adaptation in the sub-Saharan tropics. BMC Genomics 2022; 23:306. [PMID: 35428239 PMCID: PMC9012019 DOI: 10.1186/s12864-022-08512-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2022] [Indexed: 11/11/2022] Open
Abstract
Background Cattle are considered to be the most desirable livestock by small scale farmers. In Africa, although comprehensive genomic studies have been carried out on cattle, the genetic variations in indigenous cattle from Nigeria have not been fully explored. In this study, genome-wide analysis based on genotyping-by-sequencing (GBS) of 193 Nigerian cattle was used to reveal new insights on the history of West African cattle and their adaptation to the tropical African environment, particularly in sub-Saharan region. Results The GBS data were evaluated against whole-genome sequencing (WGS) data and high rate of variant concordance between the two platforms was evident with high correlated genetic distance matrices genotyped by both methods suggestive of the reliability of GBS applicability in population genetics. The genetic structure of Nigerian cattle was observed to be homogenous and unique from other African cattle populations. Selection analysis for the genomic regions harboring imprints of adaptation revealed genes associated with immune responses, growth and reproduction, efficiency of feeds utilization, and heat tolerance. Our findings depict potential convergent adaptation between African cattle, dogs and humans with adaptive genes SPRY2 and ITGB1BP1 possibly involved in common physiological activities. Conclusion The study presents unique genetic patterns of Nigerian cattle which provide new insights on the history of cattle in West Africa based on their population structure and the possibility of parallel adaptation between African cattle, dogs and humans in Africa which require further investigations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08512-w.
Collapse
|
8
|
Hou H, Wang X, Ding W, Xiao C, Cai X, Lv W, Tu Y, Zhao W, Yao J, Yang C. Whole-genome sequencing reveals the artificial selection and local environmental adaptability of pigeons ( Columba livia). Evol Appl 2022; 15:603-617. [PMID: 35505885 PMCID: PMC9046921 DOI: 10.1111/eva.13284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
To meet human needs, domestic pigeons (Columba livia) with various phenotypes have been bred to provide genetic material for our research on artificial selection and local environmental adaptation. Seven pigeon breeds were resequenced and can be divided into commercial varieties (Euro-pigeon, Shiqi, Shen King, Taishen, and Silver King), ornamental varieties (High Fliers), and local varieties (Tarim pigeon). Phylogenetic analysis based on population resequencing showed that one group contained local breeds and ornamental pigeons from China, whereas all commercial varieties were clustered together. It is revealed that the traditional Chinese ornamental pigeon is a branch of Tarim pigeon. Runs of homozygosity (ROH) and linkage disequilibrium (LD) analyses revealed significant differences in the genetic diversity of the three types of pigeons. Genome sweep analysis revealed that the selected genes of commercial breeds were related to body size, reproduction, and plumage color. The genomic imprinting genes left by the ornamental pigeon breeds were mostly related to special human facial features and muscular dystrophy. The Tarim pigeon has evolved genes related to chemical ion transport, photoreceptors, oxidative stress, organ development, and olfaction in order to adapt to local environmental stress. This research provides a molecular basis for pigeon genetic resource evaluation and genetic improvement and suggests that the understanding of adaptive evolution should integrate the effects of various natural environmental characteristics.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Weixing Ding
- Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Changfeng Xiao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xia Cai
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Wenwei Lv
- National Poultry Engineer Research CenterShanghaiChina
| | - Yingying Tu
- National Poultry Engineer Research CenterShanghaiChina
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon CompanyShanghaiChina
| | - Junfeng Yao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Changsuo Yang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| |
Collapse
|
9
|
Boer EF, Van Hollebeke HF, Maclary ET, Holt C, Yandell M, Shapiro MD. A ROR2 coding variant is associated with craniofacial variation in domestic pigeons. Curr Biol 2021; 31:5069-5076.e5. [PMID: 34551284 PMCID: PMC8612976 DOI: 10.1016/j.cub.2021.08.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
Vertebrate craniofacial morphogenesis is a highly orchestrated process that is directed by evolutionarily conserved developmental pathways.1,2 Within species, canalized development typically produces modest morphological variation. However, as a result of millennia of artificial selection, the domestic pigeon displays radical craniofacial variation within a single species. One of the most striking cases of pigeon craniofacial variation is the short-beak phenotype, which has been selected in numerous breeds. Classical genetic experiments suggest that pigeon beak length is regulated by a small number of genetic factors, one of which is sex linked (Ku2 locus).3-5 However, the genetic underpinnings of pigeon craniofacial variation remain unknown. Using geometric morphometrics and quantitative trait locus (QTL) mapping on an F2 intercross between a short-beaked Old German Owl (OGO) and a medium-beaked Racing Homer (RH), we identified a single Z chromosome locus that explains a majority of the variation in beak morphology in the F2 population. Complementary comparative genomic analyses revealed that the same locus is strongly differentiated between breeds with short and medium beaks. Within the Ku2 locus, we identified an amino acid substitution in the non-canonical Wnt receptor ROR2 as a putative regulator of pigeon beak length. The non-canonical Wnt pathway serves critical roles in vertebrate neural crest cell migration and craniofacial morphogenesis.6,7 In humans, ROR2 mutations cause Robinow syndrome, a congenital disorder characterized by skeletal abnormalities, including a widened and shortened facial skeleton.8,9 Our results illustrate how the extraordinary craniofacial variation among pigeons can reveal genetic regulators of vertebrate craniofacial diversity.
Collapse
Affiliation(s)
- Elena F Boer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Emily T Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Carson Holt
- Department of Human Genetics and USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Yandell
- Department of Human Genetics and USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael D Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
10
|
Exterior Evaluation of Selected Breeds of Pigeons: Owls and Frills. FOLIA VETERINARIA 2021. [DOI: 10.2478/fv-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Owl and frill pigeons are considered one of the oldest breeds of domestic pigeons and for breeders they mean the embodiment of beauty, pride, elegance and temperament. The common feature of the whole group of owl and frill pigeons is the presence of vertically growing feather adornment—frill and a significant refinement of exterior features on the head. The main goal of this study was to record the current situation in the exhibition sector and to compare the exterior of selected breeds of owl and frill pigeons with the relevant European standard at top breeder’s exhibitions. Altogether 722 short-beaked owl and frill pigeons (Oriental frill, African owl and Turbit) raised by breeders from seventeen European countries were evaluated at five important exhibitions in Europe. The examination of the exterior showed that the most common exterior faults on the body of oriental frills were defects in colour pattern or lacing, poorly developed frill, faults in figure as well as defects in positioning and body posture. Exterior faults observed on the heads of oriental frill included: short top or forehead, defects in shape or length of the beak, as well as defects in its line. In addition to the faults in the oriental frills, there were observed imperfections in the rounding of the head and in the length of the wings and tail in the African owls. Turbits frequently exhibited deficiencies with respect to the length of the top or forehead. The exterior evaluation of owl and frill pigeons for breeders in the future shows the need for systematic elimination of deviations from physiological and physical development with culling of individuals transmitting morphological defects.
Collapse
|
11
|
A Pilot Study Investigating the Dynamics of Pigeon Circovirus Recombination in Domesticated Pigeons Housed in a Single Loft. Viruses 2021; 13:v13060964. [PMID: 34067378 PMCID: PMC8224587 DOI: 10.3390/v13060964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
Pigeon circovirus (PiCV) infects pigeon populations worldwide and has been associated with immunosuppression in younger pigeons. Recombination is a common mechanism of evolution that has previously been shown in various members of the Circoviridae family, including PiCV. In this study, three groups of pigeons acquired from separate lofts were screened for PiCV, and their genome sequence was determined. Following this, they were housed in a single loft for 22 days, during which blood and cloacal swab samples were taken. From these blood and cloacal swabs, PiCV genomes were determined with the aim to study the spread and recombination dynamics of PiCV in the birds. Genome sequences of PiCV were determined from seven pigeons (seven tested PiCV positive) before they were housed together in a loft (n = 58 sequences) and thereafter from the ten pigeons from blood and cloacal swabs (n = 120). These 178 PiCV genome sequences represent seven genotypes (98% pairwise identity genotype demarcation), and they share >88% genome-wide pairwise identity. Recombination analysis revealed 13 recombination events, and a recombination hotspot spanning the 3′ prime region, the replication-associated protein (rep) gene and the intergenic region. A cold spot in the capsid protein-coding region of the genome was also identified. The majority of the recombinant regions were identified in the rep coding region. This study provides insights into the evolutionary dynamics of PiCV in pigeons kept under closed rearing systems.
Collapse
|