1
|
Li R, Leiva C, Lemer S, Kirkendale L, Li J. Photosymbiosis shaped animal genome architecture and gene evolution as revealed in giant clams. Commun Biol 2025; 8:7. [PMID: 39755777 DOI: 10.1038/s42003-024-07423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome. Giant clams thrive in oligotrophic waters by forming a remarkable association with photosymbiotic dinoflagellate algae. Genome-based demographic inferences uncover a tight correlation between T. maxima global population change and major paleoclimate and habitat shifts, revealing how abiotic and biotic factors may dictate T. maxima microevolution. Comparative analyses reveal genomic features that may be symbiosis-driven, including expansion and contraction of immunity-related gene families and a large proportion of lineage-specific genes. Strikingly, about 70% of the genome is composed of repetitive elements, especially transposable elements, most likely resulting from a symbiosis-adapted immune system. This work greatly enhances our understanding of genomic drivers of symbiosis that underlie metazoan evolution and diversification.
Collapse
Affiliation(s)
- Ruiqi Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
- Museum of Natural History, University of Colorado Boulder, Boulder, CO, USA.
| | | | - Sarah Lemer
- University of Guam Marine Laboratory, Guam, USA
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Lisa Kirkendale
- Collections and Research, Western Australian Museum, Perth, WA, Australia
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
2
|
Dallinger R. Metals and metallothionein evolution in snails: a contribution to the concept of metal-specific functionality from an animal model group. Biometals 2024; 37:671-696. [PMID: 38416244 PMCID: PMC11101346 DOI: 10.1007/s10534-024-00584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
This is a critical review of what we know so far about the evolution of metallothioneins (MTs) in Gastropoda (snails, whelks, limpets and slugs), an important class of molluscs with over 90,000 known species. Particular attention will be paid to the evolution of snail MTs in relation to the role of some metallic trace elements (cadmium, zinc and copper) and their interaction with MTs, also compared to MTs from other animal phyla. The article also highlights the important distinction, yet close relationship, between the structural and metal-selective binding properties of gastropod MTs and their physiological functionality in the living organism. It appears that in the course of the evolution of Gastropoda, the trace metal cadmium (Cd) must have played an essential role in the development of Cd-selective MT variants. It is shown how the structures and Cd-selective binding properties in the basal gastropod clades have evolved by testing and optimizing different combinations of ancestral and novel MT domains, and how some of these domains have become established in modern and recent gastropod clades. In this context, the question of how adaptation to new habitats and lifestyles has affected the original MT traits in different gastropod lineages will also be addressed. The 3D structures and their metal binding preferences will be highlighted exemplarily in MTs of modern littorinid and helicid snails. Finally, the importance of the different metal requirements and pathways in snail tissues and cells for the shaping and functionality of the respective MT isoforms will be shown.
Collapse
|
3
|
Wu SX, Zeng QF, Han WT, Wang MY, Ding H, Teng MX, Wang MY, Li PY, Gao X, Bao ZM, Wang B, Hu JJ. Deciphering the population structure and genetic basis of growth traits from whole-genome resequencing of the leopard coral grouper ( Plectropomus leopardus). Zool Res 2024; 45:329-340. [PMID: 38485503 PMCID: PMC11017084 DOI: 10.24272/j.issn.2095-8137.2023.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
The leopard coral grouper ( Plectropomus leopardus) is a species of significant economic importance. Although artificial cultivation of P. leopardus has thrived in recent decades, the advancement of selective breeding has been hindered by the lack of comprehensive population genomic data. In this study, we identified over 8.73 million single nucleotide polymorphisms (SNPs) through whole-genome resequencing of 326 individuals spanning six distinct groups. Furthermore, we categorized 226 individuals with high-coverage sequencing depth (≥14×) into eight clusters based on their genetic profiles and phylogenetic relationships. Notably, four of these clusters exhibited pronounced genetic differentiation compared with the other populations. To identify potentially advantageous loci for P. leopardus, we examined genomic regions exhibiting selective sweeps by analyzing the nucleotide diversity ( θπ) and fixation index ( F ST) in these four clusters. Using these high-coverage resequencing data, we successfully constructed the first haplotype reference panel specific to P. leopardus. This achievement holds promise for enabling high-quality, cost-effective imputation methods. Additionally, we combined low-coverage sequencing data with imputation techniques for a genome-wide association study, aiming to identify candidate SNP loci and genes associated with growth traits. A significant concentration of these genes was observed on chromosome 17, which is primarily involved in skeletal muscle and embryonic development and cell proliferation. Notably, our detailed investigation of growth-related SNPs across the eight clusters revealed that cluster 5 harbored the most promising candidate SNPs, showing potential for genetic selective breeding efforts. These findings provide a robust toolkit and valuable insights into the management of germplasm resources and genome-driven breeding initiatives targeting P. leopardus.
Collapse
Affiliation(s)
- Shao-Xuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Qi-Fan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China
| | - Wen-Tao Han
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Meng-Ya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Ming-Xuan Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Ming-Yi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Pei-Yu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Xin Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Zhen-Min Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou, Guangdong 511458, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China. E-mail:
| | - Jing-Jie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou, Guangdong 511458, China. E-mail:
| |
Collapse
|
4
|
Baeza JA, González MT, Sigwart JD, Greve C, Pirro S. Insights into the genome of the 'Loco' Concholepas concholepas (Gastropoda: Muricidae) from low-coverage short-read sequencing: genome size, ploidy, transposable elements, nuclear RNA gene operon, mitochondrial genome, and phylogenetic placement in the family Muricidae. BMC Genomics 2024; 25:77. [PMID: 38243187 PMCID: PMC10797722 DOI: 10.1186/s12864-023-09953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/28/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The Peruvian 'chanque' or Chilean 'loco' Concholepas concholepas is an economically, ecologically, and culturally important muricid gastropod heavily exploited by artisanal fisheries in the temperate southeastern Pacific Ocean. In this study, we have profited from a set of bioinformatics tools to recover important biological information of C. concholepas from low-coverage short-read NGS datasets. Specifically, we calculated the size of the nuclear genome, ploidy, and estimated transposable elements content using an in silico k-mer approach, we discovered, annotated, and quantified those transposable elements, we assembled and annotated the 45S rDNA RNA operon and mitochondrial genome, and we confirmed the phylogenetic position of C. concholepas within the muricid subfamily Rapaninae based on translated protein coding genes. RESULTS Using a k-mer approach, the haploid genome size estimated for the predicted diploid genome of C. concholepas varied between 1.83 Gbp (with kmer = 24) and 2.32 Gbp (with kmer = 36). Between half and two thirds of the nuclear genome of C. concholepas was composed of transposable elements. The most common transposable elements were classified as Long Interspersed Nuclear Elements and Short Interspersed Nuclear Elements, which were more abundant than DNA transposons, simple repeats, and Long Terminal Repeats. Less abundant repeat elements included Helitron mobile elements, 45S rRNA DNA, and Satellite DNA, among a few others.The 45S rRNA DNA operon of C. concholepas that encodes for the ssrRNA, 5.8S rRNA, and lsrRNA genes was assembled into a single contig 8,090 bp long. The assembled mitochondrial genome of C. concholepas is 15,449 bp long and encodes 13 protein coding genes, two ribosomal genes, and 22 transfer RNAs. CONCLUSION The information gained by this study will inform the assembly of a high quality nuclear genome for C. concholepas and will support bioprospecting and biomonitoring using environmental DNA to advance development of conservation and management plans in this overexploited marine snail.
Collapse
Affiliation(s)
- J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
- Departamento de Biología Marina, Universidad Catolica del Norte, Coquimbo, Chile.
- Smithsonian Marine Station at Fort Pierce, Smithsonian Institution, Fort Pierce, FL, USA.
| | - M Teresa González
- Facultad de Ciencias del Mar y Recursos Biológicos, Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta, Angamos 601, Antofagasta, Chile
| | - Julia D Sigwart
- Marine Zoology Department, Senckenberg Research Institute and Museum, Frankfurt, Germany
- Institute of Ecology, Evolution & Diversity, Goethe University, Frankfurt, Germany
| | - Carola Greve
- LOEWE -Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, Frankfurt Am Main, Germany
- Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main, Germany
| | | |
Collapse
|
5
|
Law STS, Yu Y, Nong W, So WL, Li Y, Swale T, Ferrier DEK, Qiu J, Qian P, Hui JHL. The genome of the deep-sea anemone Actinernus sp. contains a mega-array of ANTP-class homeobox genes. Proc Biol Sci 2023; 290:20231563. [PMID: 37876192 PMCID: PMC10598428 DOI: 10.1098/rspb.2023.1563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Members of the phylum Cnidaria include sea anemones, corals and jellyfish, and have successfully colonized both marine and freshwater habitats throughout the world. The understanding of how cnidarians adapt to extreme environments such as the dark, high-pressure deep-sea habitat has been hindered by the lack of genomic information. Here, we report the first chromosome-level deep-sea cnidarian genome, of the anemone Actinernus sp., which was 1.39 Gbp in length and contained 44 970 gene models including 14 806 tRNA genes and 30 164 protein-coding genes. Analyses of homeobox genes revealed the longest chromosome hosts a mega-array of Hox cluster, HoxL, NK cluster and NKL homeobox genes; until now, such an array has only been hypothesized to have existed in ancient ancestral genomes. In addition to this striking arrangement of homeobox genes, analyses of microRNAs revealed cnidarian-specific complements that are distinctive for nested clades of these animals, presumably reflecting the progressive evolution of the gene regulatory networks in which they are embedded. Also, compared with other sea anemones, circadian rhythm genes were lost in Actinernus sp., which likely reflects adaptation to living in the dark. This high-quality genome of a deep-sea cnidarian thus reveals some of the likely molecular adaptations of this ecologically important group of metazoans to the extreme deep-sea environment. It also deepens our understanding of the evolution of genome content and organization of animals in general and cnidarians in particular, specifically from the viewpoint of key developmental control genes like the homeobox-encoding genes, where we find an array of genes that until now has only been hypothesized to have existed in the ancient ancestor that pre-dated both the cnidarians and bilaterians.
Collapse
Affiliation(s)
- Sean Tsz Sum Law
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yifei Yu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Thomas Swale
- Dovetail Genomics, LLC, Scotts Valley, CA 95066, USA
| | - David E. K. Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Jianwen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People's Republic of China
- Department of Biology, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Peiyuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
6
|
Hui M, Zhang Y, Wang A, Sha Z. The First Genome Survey of the Snail Provanna glabra Inhabiting Deep-Sea Hydrothermal Vents. Animals (Basel) 2023; 13:3313. [PMID: 37958068 PMCID: PMC10648102 DOI: 10.3390/ani13213313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The snail P. glabra is an endemic species in deep-sea chemosynthetic ecosystems of the Northwest Pacific Ocean. To obtain more genetic information on this species and provide the basis for subsequent whole-genome map construction, a genome survey was performed on this snail from the hydrothermal vent of Okinawa Trough. The genomic size of P. glabra was estimated to be 1.44 Gb, with a heterozygosity of 1.91% and a repeated sequence content of 69.80%. Based on the sequencing data, a draft genome of 1.32 Gb was assembled. Transposal elements (TEs) accounted for 40.17% of the entire genome, with DNA transposons taking the highest proportion. It was found that most TEs were inserted in the genome recently. In the simple sequence repeats, the dinucleotide motif was the most enriched microsatellite type, accounting for 53% of microsatellites. A complete mitochondrial genome of P. glabra with a total length of 16,268 bp was assembled from the sequencing data. After comparison with the published mitochondrial genome of Provanna sp. from a methane seep, 331 potential single nucleotide polymorphism (SNP) sites were identified in protein-coding genes (PCGs). Except for the cox1 gene, nad2, nad4, nad5, and cob genes are expected to be candidate markers for population genetic and phylogenetic studies of P. glabra and other deep-sea snails. Compared with shallow-water species, three mitochondrial genes of deep-sea gastropods exhibited a higher evolutionary rate, indicating strong selection operating on mitochondria of deep-sea species. This study provides insights into the genome characteristics of P. glabra and supplies genomic resources for further studies on the adaptive evolution of the snail in extreme deep-sea chemosynthetic environments.
Collapse
Affiliation(s)
- Min Hui
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.H.); (A.W.)
- Laoshan Laboratory, Qingdao 266237, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China;
| | - Aiyang Wang
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.H.); (A.W.)
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhongli Sha
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.H.); (A.W.)
- Laoshan Laboratory, Qingdao 266237, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
7
|
Liu J, Zhou Y, Pu Y, Zhang H. A chromosome-level genome assembly of a deep-sea starfish (Zoroaster cf. ophiactis). Sci Data 2023; 10:506. [PMID: 37528102 PMCID: PMC10394057 DOI: 10.1038/s41597-023-02397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Understanding of adaptation and evolution of organisms in the deep sea requires more genomic resources. Zoroaster cf. ophiactis is a sea star in the family Zoroasteridae occurring exclusively in the deep sea. In this study, a chromosome-level genome assembly for Z. cf. ophiactis was generated by combining Nanopore long-read, Illumina short-read, and Hi-C sequencing data. The final assembly was 1,002.0 Mb in length, with a contig N50 of 376 Kb and a scaffold N50 of 40.4 Mb, and included 22 pseudo-chromosomes, covering 92.3% of the assembly. Completeness analysis evaluated with BUSCO revealed that 95.91% of the metazoan conserved genes were complete. Additionally, 39,426 protein-coding genes were annotated for this assembly. This chromosome-level genome assembly represents the first high-quality genome for the deep-sea Asteroidea, and will provide a valuable resource for future studies on evolution and adaptation of deep-sea echinoderms.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Yang Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Yujin Pu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haibin Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.
| |
Collapse
|
8
|
Jiang D, Liu Q, Sun J, Liu S, Fan G, Wang L, Zhang Y, Seim I, An S, Liu X, Li Q, Zheng X. The gold-ringed octopus (Amphioctopus fangsiao) genome and cerebral single-nucleus transcriptomes provide insights into the evolution of karyotype and neural novelties. BMC Biol 2022; 20:289. [PMID: 36575497 PMCID: PMC9795677 DOI: 10.1186/s12915-022-01500-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Coleoid cephalopods have distinctive neural and morphological characteristics compared to other invertebrates. Early studies reported massive genomic rearrangements occurred before the split of octopus and squid lineages (Proc Natl Acad Sci U S A 116:3030-5, 2019), which might be related to the neural innovations of their brain, yet the details remain elusive. Here we combine genomic and single-nucleus transcriptome analyses to investigate the octopod chromosome evolution and cerebral characteristics. RESULTS We present a chromosome-level genome assembly of a gold-ringed octopus, Amphioctopus fangsiao, and a single-nucleus transcriptome of its supra-esophageal brain. Chromosome-level synteny analyses estimate that the chromosomes of the ancestral octopods experienced multiple chromosome fission/fusion and loss/gain events by comparing with the nautilus genome as outgroup, and that a conserved genome organization was detected during the evolutionary process from the last common octopod ancestor to their descendants. Besides, protocadherin, GPCR, and C2H2 ZNF genes are thought to be highly related to the neural innovations in cephalopods (Nature 524:220-4, 2015), and the chromosome analyses pinpointed several collinear modes of these genes on the octopod chromosomes, such as the collinearity between PCDH and C2H2 ZNF, as well as between GPCR and C2H2 ZNF. Phylogenetic analyses show that the expansion of the octopod protocadherin genes is driven by a tandem-duplication mechanism on one single chromosome, including two separate expansions at 65 million years ago (Ma) and 8-14 Ma, respectively. Furthermore, we identify eight cell types (i.e., cholinergic and glutamatergic neurons) in the supra-esophageal brain of A. fangsiao, and the single-cell expression analyses reveal the co-expression of protocadherin and GPCR in specific neural cells, which may contribute to the neural development and signal transductions in the octopod brain. CONCLUSIONS The octopod genome analyses reveal the dynamic evolutionary history of octopod chromosomes and neural-related gene families. The single-nucleus transcriptomes of the supra-esophageal brain indicate their cellular heterogeneities and functional interactions with other tissues (i.e., gill), which provides a foundation for further octopod cerebral studies.
Collapse
Affiliation(s)
- Dianhang Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China
| | - Qun Liu
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
| | - Guangyi Fan
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lihua Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China
| | - Yaolei Zhang
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia
| | - Shucai An
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Liu
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
| | - Xiaodong Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China.
| |
Collapse
|
9
|
Zhang H, Yao G, He M. Transcriptome analysis of gene expression profiling from the deep sea in situ to the laboratory for the cold seep mussel Gigantidas haimaensis. BMC Genomics 2022; 23:828. [DOI: 10.1186/s12864-022-09064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
The deep-sea mussel Gigantidas haimaensis is a representative species from the Haima cold seep ecosystem in the South China Sea that establishes endosymbiosis with chemotrophic bacteria. During long-term evolution, G. haimaensis has adapted well to the local environment of cold seeps. Until now, adaptive mechanisms responding to environmental stresses have remained poorly understood.
Results
In this study, transcriptomic analysis was performed for muscle tissue of G. haimaensis in the in situ environment (MH) and laboratory environment for 0 h (M0), 3 h (M3) and 9 h (M9), and 187,368 transcript sequences and 22,924 annotated differentially expressed genes (DEGs) were generated. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, these DEGs were enriched with a broad spectrum of biological processes and pathways, including those associated with antioxidants, apoptosis, chaperones, immunity and metabolism. Among these significantly enriched pathways, protein processing in the endoplasmic reticulum and metabolism were the most affected metabolic pathways. These results may imply that G. haimaensis struggles to support the life response to environmental change by changing gene expression profiles.
Conclusion
The present study provides a better understanding of the biological responses and survival strategies of the mussel G. haimaensis from deep sea in situ to the laboratory environment.
Collapse
|
10
|
Yuan J, Zhang X, Kou Q, Sun Y, Liu C, Li S, Yu Y, Zhang C, Jin S, Xiang J, Li X, Li F. Genome of a giant isopod, Bathynomus jamesi, provides insights into body size evolution and adaptation to deep-sea environment. BMC Biol 2022; 20:113. [PMID: 35562825 PMCID: PMC9107163 DOI: 10.1186/s12915-022-01302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The deep-sea may be regarded as a hostile living environment, due to low temperature, high hydrostatic pressure, and limited food and light. Isopods, a species-rich group of crustaceans, are widely distributed across different environments including the deep sea and as such are a useful model for studying adaptation, migration, and speciation. Similar to other deep-sea organisms, giant isopods have larger body size than their shallow water relatives and have large stomachs and fat bodies presumably to store organic reserves. In order to shed light on the genetic basis of these large crustaceans adapting to the oligotrophic environment of deep-sea, the high-quality genome of a deep-sea giant isopod Bathynomus jamesi was sequenced and assembled. RESULTS B. jamesi has a large genome of 5.89 Gb, representing the largest sequenced crustacean genome to date. Its large genome size is mainly attributable to the remarkable proliferation of transposable elements (84%), which may enable high genome plasticity for adaptive evolution. Unlike its relatives with small body size, B. jamesi has expanded gene families related to pathways of thyroid and insulin hormone signaling that potentially contribute to its large body size. Transcriptomic analysis showed that some expanded gene families related to glycolysis and vesicular transport were specifically expressed in its digestive organs. In addition, comparative genomics and gene expression analyses in six tissues suggested that B. jamesi has inefficient lipid degradation, low basal metabolic rate, and bulk food storage, suggesting giant isopods adopt a more efficient mechanism of nutrient absorption, storage, and utilization to provide sustained energy supply for their large body size. CONCLUSIONS Taken together, the giant isopod genome may provide a valuable resource for understanding body size evolution and adaptation mechanisms of macrobenthic organisms to deep-sea environments.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Kou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, Tianjin, 300457, China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Chengsong Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xinzheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
11
|
Yan G, Lan Y, Sun J, Xu T, Wei T, Qian PY. Comparative transcriptomic analysis of in situ and onboard fixed deep-sea limpets reveals sample preparation-related differences. iScience 2022; 25:104092. [PMID: 35402864 PMCID: PMC8983377 DOI: 10.1016/j.isci.2022.104092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Precise gene expression reflects the molecular response of deep-sea organisms to their harsh living environments. However, changes in environmental factors during lifting samples from the deep sea to a research vessel can also affect gene expression. By using the transcriptomic approach, we compared the gene expression profiles of the onboard fixed with the in situ fixed samples of the deep-sea limpet Bathyacmaea lactea. Our results revealed that the concomitant stress during conventional deep-sea sampling without RNA in situ fixation greatly influenced the gene expression. Various biological activities, such as cell and tissue structure, lysosomal activity, fluid balance, and unsaturated fatty acid metabolism, were perturbed, suggesting that the sampling stress has exerted systemic impacts on the life of the limpets. These findings clearly illustrate that deep-sea samples without RNA in situ fixation can easily lead to biased results in gene expression analysis, which requires to be appropriately addressed in future studies.
Collapse
Affiliation(s)
- Guoyong Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tong Wei
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Corresponding author
| |
Collapse
|
12
|
Zhang L, He J, Tan P, Gong Z, Qian S, Miao Y, Zhang HY, Tu G, Chen Q, Zhong Q, Han G, He J, Wang M. The genome of an apodid holothuroid (Chiridota heheva) provides insights into its adaptation to a deep-sea reducing environment. Commun Biol 2022; 5:224. [PMID: 35273345 PMCID: PMC8913654 DOI: 10.1038/s42003-022-03176-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
Cold seeps and hydrothermal vents are deep-sea reducing environments that are characterized by lacking oxygen and photosynthesis-derived nutrients. Most animals acquire nutrition in cold seeps or hydrothermal vents by maintaining epi- or endosymbiotic relationship with chemoautotrophic microorganisms. Although several seep- and vent-dwelling animals hosting symbiotic microbes have been well-studied, the genomic basis of adaptation to deep-sea reducing environment in nonsymbiotic animals is still lacking. Here, we report a high-quality genome of Chiridota heheva Pawson & Vance, 2004, which thrives by extracting organic components from sediment detritus and suspended material, as a reference for nonsymbiotic animal's adaptation to deep-sea reducing environments. The expansion of the aerolysin-like protein family in C. heheva compared with other echinoderms might be involved in the disintegration of microbes during digestion. Moreover, several hypoxia-related genes (Pyruvate Kinase M2, PKM2; Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase, LHPP; Poly(A)-specific Ribonuclease Subunit PAN2, PAN2; and Ribosomal RNA Processing 9, RRP9) were subject to positive selection in the genome of C. heheva, which contributes to their adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jian He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Peipei Tan
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shiyu Qian
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuanyuan Miao
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Han-Yu Zhang
- Hainan Key Laboratory of Marine Georesource and Prospecting, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Guangxian Tu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qi Chen
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qiqi Zhong
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Guanzhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China. .,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, 525435, China.
| | - Muhua Wang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, 525435, China.
| |
Collapse
|
13
|
Zhou Y, Feng C, Pu Y, Liu J, Liu R, Zhang H. The First Draft Genome of a Cold-Water Coral Trachythela sp. (Alcyonacea: Stolonifera: Clavulariidae). Genome Biol Evol 2021; 13:evaa265. [PMID: 33331875 PMCID: PMC7875002 DOI: 10.1093/gbe/evaa265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Cold-water corals (CWCs) are important habitats for creatures in the deep-sea environment, but they have been degraded by anthropogenic activity. So far, no genome for any CWC has been reported. Here, we report a draft genome of Trachythela sp., which represents the first genome of CWCs to date. In total, 56 and 65 Gb of raw reads were generated from Illumina and Nanopore sequencing platforms, respectively. The final assembled genome was 578.26 Mb, which consisted of 396 contigs with a contig N50 of 3.56 Mb, and the genome captured 90.1% of the metazoan Benchmarking Universal Single-Copy Orthologs. We identified 335 Mb (57.88% of the genome) of repetitive elements, which is a higher proportion compared with others in the Cnidarians, along with 35,305 protein-coding genes. We also detected 483 expanded and 51 contracted gene families, and many of them were associated with longevity, ion transposase, heme-binding nicotinamide adenine dinucleotide, and metabolic regulators of transcription. Overall, we believe this genome will serve as an important resource for studies on community protection for CWCs.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yujin Pu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Liu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ruoyu Liu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haibin Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
14
|
Weber AAT, Hugall AF, O’Hara TD. Convergent Evolution and Structural Adaptation to the Deep Ocean in the Protein-Folding Chaperonin CCTα. Genome Biol Evol 2020; 12:1929-1942. [PMID: 32780796 PMCID: PMC7643608 DOI: 10.1093/gbe/evaa167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
The deep ocean is the largest biome on Earth and yet it is among the least studied environments of our planet. Life at great depths requires several specific adaptations; however, their molecular mechanisms remain understudied. We examined patterns of positive selection in 416 genes from four brittle star (Ophiuroidea) families displaying replicated events of deep-sea colonization (288 individuals from 216 species). We found consistent signatures of molecular convergence in functions related to protein biogenesis, including protein folding and translation. Five genes were recurrently positively selected, including chaperonin-containing TCP-1 subunit α (CCTα), which is essential for protein folding. Molecular convergence was detected at the functional and gene levels but not at the amino-acid level. Pressure-adapted proteins are expected to display higher stability to counteract the effects of denaturation. We thus examined in silico local protein stability of CCTα across the ophiuroid tree of life (967 individuals from 725 species) in a phylogenetically corrected context and found that deep-sea-adapted proteins display higher stability within and next to the substrate-binding region, which was confirmed by in silico global protein stability analyses. This suggests that CCTα displays not only structural but also functional adaptations to deep-water conditions. The CCT complex is involved in the folding of ∼10% of newly synthesized proteins and has previously been categorized as a "cold-shock" protein in numerous eukaryotes. We thus propose that adaptation mechanisms to cold and deep-sea environments may be linked and highlight that efficient protein biogenesis, including protein folding and translation, is a key metabolic deep-sea adaptation.
Collapse
Affiliation(s)
- Alexandra A -T Weber
- Sciences, Museums Victoria, Melbourne, Victoria, Australia
- Centre de Bretagne, REM/EEP, Ifremer, Laboratoire Environnement Profond, Plouzané, France
- Zoological Institute, University of Basel, Switzerland
| | | | | |
Collapse
|