1
|
Wang C, Chen W, Yu L, Wang X, Zhang L, Zhang X, Tang S, Han J, Gao W, Huang X, Zhang Y, An W, Yang M, Tian Z. Population immunity enhances the evolution of SARS-CoV-2 in Beijing revealed by wastewater genomic surveillance. WATER RESEARCH 2025; 282:123649. [PMID: 40245799 DOI: 10.1016/j.watres.2025.123649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
This study aims to elucidate the impact of population immunity on the regional evolution of SARS-CoV-2. A total of 3701 wastewater SARS-CoV-2 concentration values and 168 wastewater whole genomes of SARS-CoV-2 were obtained in Beijing over 11 months following the implementation of the "dynamic zero-COVID" policy adjustments in December 2022. The findings indicate that the number of variant strains identified through wastewater surveillance was 2.46 times greater than that detected by clinical monitoring, with single nucleotide polymorphisms showing an increase of up to 7.14 times. This enhanced surveillance facilitates a more comprehensive analysis of regional virus evolution patterns. Following the adjustment of epidemic measure, Beijing experienced three distinct waves of epidemics, and the dominant variant transitioned directly from BA.5 in the first wave to XBB after six months in the second one. During this period, strong population immunity formed by centralized infection in over 90 % of the population blocked the outbreak of internationally prevalent and concerning variants BQ.1 and CH.1.1, resulting in a 12.5 % faster regional evolution of SARS-CoV-2 strains in Beijing compared to the international context. Subsequently, in August 2023, EG.5 became the dominant variant in the third wave, aligning with international trends. The epidemics in Beijing have caused significant positive selection pressure on SARS-CoV-2 strains, favoring those with enhanced antigenic escape mutations in spike gene. These results underscore that the extensive infection after the adjustment of epidemic prevention policies has accelerated the evolution of SARS-CoV-2 in Beijing and been conducive to antigenic escape evolution, which can effectively inform decision making for epidemic control and preemptive vaccine design.
Collapse
Affiliation(s)
- Chen Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxiu Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiayi Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wenhui Gao
- Chaoyang District Center for Disease Prevention and Control of Beijing 100021, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei An
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe Tian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Bai Y, Wan X, Lei M, Wang L, Chen T. Research advances in mechanisms of arsenic hyperaccumulation of Pteris vittata: Perspectives from plant physiology, molecular biology, and phylogeny. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132463. [PMID: 37690196 DOI: 10.1016/j.jhazmat.2023.132463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Pteris vittata, as the firstly discovered arsenic (As) hyperaccumulator, has great application value in As-contaminated soil remediation. Currently, the genes involved in As hyperaccumulation in P. vittata have been mined continuously, while they have not been used in practice to enhance phytoremediation efficiency. Aiming to better assist the practice of phytoremediation, this review collects 130 studies to clarify the progress in research into the As hyperaccumulation process in P. vittata from multiple perspectives. Antioxidant defense, rhizosphere activities, vacuolar sequestration, and As efflux are important physiological activities involved in As hyperaccumulation in P. vittata. Among related 19 genes, PHT, TIP, ACR3, ACR2 and HAC family genes play essential roles in arsenate (AsⅤ) transport, arsenite (AsⅢ) transport, vacuole sequestration of AsⅢ, and the reduction of AsⅤ to AsⅢ, respectively. Gene ontology enrichment analysis indicated it is necessary to further explore genes that can bind to related ions, with transport activity, or with function of transmembrane transport. Phylogeny analysis results implied ACR2, HAC and ACR3 family genes with rapid evolutionary rate may be the decisive factors for P. vittata as an As hyperaccumulator. A deeper understanding of the As hyperaccumulation network and key gene components could provide useful tools for further bio-engineered phytoremediation.
Collapse
Affiliation(s)
- Yang Bai
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Moldovan MA, Gaydukova SA. Unusual Dependence between Gene Expression and Negative Selection in Euplotes. Mol Biol 2022. [DOI: 10.1134/s0026893323010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Genetic ancestry and population structure of vaccinia virus. NPJ Vaccines 2022; 7:92. [PMID: 35953491 PMCID: PMC9372083 DOI: 10.1038/s41541-022-00519-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/28/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccinia virus (VACV) was used for smallpox eradication, but its ultimate origin remains unknown. The genetic relationships among vaccine stocks are also poorly understood. We analyzed 63 vaccine strains with different origin, as well horsepox virus (HPXV). Results indicated the genetic diversity of VACV is intermediate between variola and cowpox viruses, and that mutation contributed more than recombination to VACV evolution. STRUCTURE identified 9 contributing subpopulations and showed that the lowest drift was experienced by the ancestry components of Tian Tan and HPXV/Mütter/Mulford genomes. Subpopulations that experienced very strong drift include those that contributed the ancestry of MVA and IHD-W, in good agreement with the very long passage history of these vaccines. Another highly drifted population contributed the full ancestry of viruses sampled from human/cattle infections in Brazil and, partially, to IOC clones, strongly suggesting that the recurrent infections in Brazil derive from the spillback of IOC to the feral state.
Collapse
|
5
|
Hou Y, Zhao S, Liu Q, Zhang X, Sha T, Su Y, Zhao W, Bao Y, Xue Y, Chen H. Ongoing Positive Selection Drives the Evolution of SARS-CoV-2 Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1214-1223. [PMID: 35760317 PMCID: PMC9233880 DOI: 10.1016/j.gpb.2022.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
SARS-CoV-2 is a new RNA virus affecting humans and spreads extensively through world populations since its first outbreak in December, 2019. Whether the transmissibility and pathogenicity of SARS-CoV-2 in humans after zoonotic transfer are actively evolving, and driven by adaptation to the new host and environments is still under debate. Understanding the evolutionary mechanism underlying epidemiological and pathological characteristics of COVID-19 is essential for predicting the epidemic trend, and providing guidance for disease control and treatments. Interrogating novel strategies for identifying natural selection using within-species polymorphisms and 3,674,076 SARS-CoV-2 genome sequences of 169 countries as of December 30, 2021, we demonstrate with population genetic evidence that during the course of SARS-CoV-2 pandemic in humans, 1) SARS-CoV-2 genomes are overall conserved under purifying selection, especially for the 14 genes related to viral RNA replication, transcription, and assembly; 2) ongoing positive selection is actively driving the evolution of 6 genes (e.g., S, ORF3a, and N) that play critical roles in molecular processes involving pathogen-host interactions, including viral invasion into and egress from host cells, and viral inhibition and evasion of host immune response, possibly leading to high transmissibility and mild symptom in SARS-CoV-2 evolution. According to an established haplotype phylogenetic relationship of 138 viral clusters, a spatial and temporal landscape of 556 critical mutations is constructed based on their divergence among viral haplotype clusters or repeatedly increase in frequency within at least 2 clusters, of which multiple mutations potentially conferring alterations in viral transmissibility, pathogenicity, and virulence of SARS-CoV-2 are highlighted, warranting attentions.
Collapse
Affiliation(s)
- Yali Hou
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilei Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Liu
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Sha
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yankai Su
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenming Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Bao
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongbiao Xue
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hua Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
6
|
Wei C, Shan KJ, Wang W, Zhang S, Huan Q, Qian W. Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. J Genet Genomics 2021; 48:1111-1121. [PMID: 34954396 PMCID: PMC8702434 DOI: 10.1016/j.jgg.2021.12.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
The rapid accumulation of mutations in the SARS-CoV-2 Omicron variant that enabled its outbreak raises questions as to whether its proximal origin occurred in humans or another mammalian host. Here, we identified 45 point mutations that Omicron acquired since divergence from the B.1.1 lineage. We found that the Omicron spike protein sequence was subjected to stronger positive selection than that of any reported SARS-CoV-2 variants known to evolve persistently in human hosts, suggesting a possibility of host-jumping. The molecular spectrum of mutations (i.e., the relative frequency of the 12 types of base substitutions) acquired by the progenitor of Omicron was significantly different from the spectrum for viruses that evolved in human patients but resembled the spectra associated with virus evolution in a mouse cellular environment. Furthermore, mutations in the Omicron spike protein significantly overlapped with SARS-CoV-2 mutations known to promote adaptation to mouse hosts, particularly through enhanced spike protein binding affinity for the mouse cell entry receptor. Collectively, our results suggest that the progenitor of Omicron jumped from humans to mice, rapidly accumulated mutations conducive to infecting that host, then jumped back into humans, indicating an inter-species evolutionary trajectory for the Omicron outbreak.
Collapse
Affiliation(s)
- Changshuo Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke-Jia Shan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiguang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuya Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Huan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Shan KJ, Wei C, Wang Y, Huan Q, Qian W. Host-specific asymmetric accumulation of mutation types reveals that the origin of SARS-CoV-2 is consistent with a natural process. Innovation (N Y) 2021; 2:100159. [PMID: 34485968 PMCID: PMC8405235 DOI: 10.1016/j.xinn.2021.100159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
The capacity of RNA viruses to adapt to new hosts and rapidly escape the host immune system is largely attributable to de novo genetic diversity that emerges through mutations in RNA. Although the molecular spectrum of de novo mutations-the relative rates at which various base substitutions occur-are widely recognized as informative toward understanding the evolution of a viral genome, little attention has been paid to the possibility of using molecular spectra to infer the host origins of a virus. Here, we characterize the molecular spectrum of de novo mutations for SARS-CoV-2 from transcriptomic data obtained from virus-infected cell lines, enabled by the use of sporadic junctions formed during discontinuous transcription as molecular barcodes. We find that de novo mutations are generated in a replication-independent manner, typically on the genomic strand, and highly dependent on mutagenic mechanisms specific to the host cellular environment. De novo mutations will then strongly influence the types of base substitutions accumulated during SARS-CoV-2 evolution, in an asymmetric manner favoring specific mutation types. Consequently, similarities between the mutation spectra of SARS-CoV-2 and the bat coronavirus RaTG13, which have accumulated since their divergence strongly suggest that SARS-CoV-2 evolved in a host cellular environment highly similar to that of bats before its zoonotic transfer into humans. Collectively, our findings provide data-driven support for the natural origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Jia Shan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changshuo Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Huan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Li Z, Qian SH, Wang F, Mohamed HI, Yang G, Chen ZX, Wei D. G-quadruplexes in genomes of viruses infecting eukaryotes or prokaryotes are under different selection pressures from hosts. J Genet Genomics 2021; 49:20-29. [PMID: 34601118 DOI: 10.1016/j.jgg.2021.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
G-quadruplexes in viral genomes can be applied as the targets of antiviral therapies, which has attracted wide interest. However, it is still not clear whether the pervasive number of such elements in the viral world is the result of natural selection for functionality. In this study, we identified putative quadruplex-forming sequences (PQSs) across the known viral genomes and analyzed the abundance, structural stability, and conservation of viral PQSs. A Viral Putative G-quadruplex Database (ViPGD,http://jsjds.hzau.edu.cn/MBPC/ViPGD/index.php/home/index) was constructed to collect the details of each viral PQS, which provides guidance for selecting the desirable PQS. The PQS with two putative G-tetrads (G2-PQS) was significantly enriched in both eukaryotic viruses and prokaryotic viruses, while the PQSs with three putative G-tetrads (G3-PQS) were only enriched in eukaryotic viruses and depleted in prokaryotic viruses. The structural stability of PQSs in prokaryotic viruses was significantly lower than that in eukaryotic viruses. Conservation analysis showed that the G2-PQS, instead of G3-PQS, was highly conserved within the genus. This suggested that the G2-quadruplex might play an important role in viral biology, and the difference in the occurrence of G-quadruplex between eukaryotic viruses and prokaryotic viruses may result from the different selection pressures from hosts.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Hu Qian
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; International joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Hany I Mohamed
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Guangfu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; International joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Zhen-Xia Chen
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518124, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|