1
|
Popovic A, Cao EY, Han J, Nursimulu N, Alves-Ferreira EVC, Burrows K, Kennard A, Alsmadi N, Grigg ME, Mortha A, Parkinson J. Commensal protist Tritrichomonas musculus exhibits a dynamic life cycle that induces extensive remodeling of the gut microbiota. THE ISME JOURNAL 2024; 18:wrae023. [PMID: 38366179 PMCID: PMC10944700 DOI: 10.1093/ismejo/wrae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus and intestinal bacteria in healthy and B-cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with Tritrichomonas musculus functional changes, which were accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single-cell transcriptomics identified distinct Tritrichomonas musculus life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable data sets to drive future mechanistic studies.
Collapse
Affiliation(s)
- Ana Popovic
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Eric Y Cao
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joanna Han
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Nirvana Nursimulu
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
| | - Eliza V C Alves-Ferreira
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrea Kennard
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD 20892, United States
| | - Noor Alsmadi
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD 20892, United States
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - John Parkinson
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
2
|
Popovic A, Cao EY, Han J, Nursimulu N, Alves-Ferreira EVC, Burrows K, Kennard A, Alsmadi N, Grigg ME, Mortha A, Parkinson J. The commensal protist Tritrichomonas musculus exhibits a dynamic life cycle that induces extensive remodeling of the gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.528774. [PMID: 37090671 PMCID: PMC10120700 DOI: 10.1101/2023.03.06.528774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus ( T. mu ) and intestinal bacteria in healthy and B cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with T. mu functional changes, accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single cell transcriptomics identified distinct T. mu life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable datasets to drive future mechanistic studies.
Collapse
|
3
|
Rivera-Rivas LA, Arroyo R. Iron restriction increases the expression of a cytotoxic cysteine proteinase TvCP2 by a novel mechanism of tvcp2 mRNA alternative polyadenylation in Trichomonas vaginalis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194935. [PMID: 37011833 DOI: 10.1016/j.bbagrm.2023.194935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
Trichomonas vaginalis TvCP2 (TVAG_057000) is a cytotoxic cysteine proteinase (CP) expressed under iron-limited conditions. This work aimed to identify one of the mechanisms of tvcp2 gene expression regulation by iron at the posttranscriptional level. We checked tvcp2 mRNA stability under both iron-restricted (IR) and high iron (HI) conditions in the presence of actinomycin D. Greater stability of the tvcp2 mRNA under the IR than in HI conditions was observed, as expected. In silico analysis of the 3' regulatory region showed the presence of two putative polyadenylation signals in the tvcp2 transcript. By 3'-RACE assays, we demonstrated the existence of two isoforms of the tvcp2 mRNA with different 3'-UTR that resulted in more TvCP2 protein under IR than in HI conditions detected by WB assays. Additionally, we searched for homologs of the trichomonad polyadenylation machinery by an in silico analysis in the genome database, TrichDB. 16 genes that encode proteins that could be part of the trichomonad polyadenylation machinery were found. qRT-PCR assays showed that most of these genes were positively regulated by iron. Thus, our results show the presence of alternative polyadenylation as a novel iron posttranscriptional regulatory mechanism in T. vaginalis for the tvcp2 gene expression.
Collapse
Affiliation(s)
- Luis Alberto Rivera-Rivas
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
4
|
Tachezy J, Makki A, Hrdý I. The hydrogenosomes of Trichomonas vaginalis. J Eukaryot Microbiol 2022; 69:e12922. [PMID: 35567536 DOI: 10.1111/jeu.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review is dedicated to the 50th anniversary of the discovery of hydrogenosomes by Miklós Müller and Donald Lindmark, which we will celebrate the following year. It was a long journey from the first observation of enigmatic rows of granules in trichomonads at the end of the 19th century to their first biochemical characterization in 1973. The key experiments by Müller and Lindmark revealed that the isolated granules contain hydrogen-producing hydrogenase, similar to some anaerobic bacteria-a discovery that gave birth to the field of hydrogenosomes. It is also important to acknowledge the parallel work of the team of Apolena Čerkasovová, Jiří Čerkasov, and Jaroslav Kulda, who demonstrated that these granules, similar to mitochondria, produce ATP. However, the evolutionary origin of hydrogenosomes remained enigmatic until the turn of the millennium, when it was finally accepted that hydrogenosomes and mitochondria evolved from a common ancestor. After a historical introduction, the review provides an overview of hydrogenosome biogenesis, hydrogenosomal protein import, and the relationship between the peculiar structure of membrane translocases and its low inner membrane potential due to the lack of respiratory complexes. Next, it summarizes the current state of knowledge on energy metabolism, the oxygen defense system, and iron/sulfur cluster assembly.
Collapse
Affiliation(s)
- Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| |
Collapse
|
5
|
Huang PJ, Huang CY, Li YX, Liu YC, Chu LJ, Yeh YM, Cheng WH, Chen RM, Lee CC, Chen LC, Lin HC, Chiu SF, Lin WN, Lyu PC, Tang P, Huang KY. Dissecting the Transcriptomes of Multiple Metronidazole-Resistant and Sensitive Trichomonas vaginalis Strains Identified Distinct Genes and Pathways Associated with Drug Resistance and Cell Death. Biomedicines 2021; 9:biomedicines9121817. [PMID: 34944632 PMCID: PMC8698965 DOI: 10.3390/biomedicines9121817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent non-viral sexually transmitted infection worldwide. Metronidazole (MTZ) is the mainstay of anti-trichomonal chemotherapy; however, drug resistance has become an increasingly worrying issue. Additionally, the molecular events of MTZ-induced cell death in T. vaginalis remain elusive. To gain insight into the differential expression of genes related to MTZ resistance and cell death, we conducted RNA-sequencing of three paired MTZ-resistant (MTZ-R) and MTZ-sensitive (MTZ-S) T. vaginalis strains treated with or without MTZ. Comparative transcriptomes analysis identified that several putative drug-resistant genes were exclusively upregulated in different MTZ-R strains, such as ATP-binding cassette (ABC) transporters and multidrug resistance pumps. Additionally, several shared upregulated genes among all the MTZ-R transcriptomes were not previously identified in T. vaginalis, such as 5′-nucleotidase surE and Na+-driven multidrug efflux pump, which are a potential stress response protein and a multidrug and toxic compound extrusion (MATE)-like protein, respectively. Functional enrichment analysis revealed that purine and pyrimidine metabolisms were suppressed in MTZ-S parasites upon drug treatment, whereas the endoplasmic reticulum-associated degradation (ERAD) pathway, proteasome, and ubiquitin-mediated proteolysis were strikingly activated, highlighting the novel pathways responsible for drug-induced stress. Our work presents the most detailed analysis of the transcriptional changes and the regulatory networks associated with MTZ resistance and MTZ-induced signaling, providing insights into MTZ resistance and cell death mechanisms in trichomonads.
Collapse
Affiliation(s)
- Po-Jung Huang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 333, Taiwan;
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan; (Y.-M.Y.); (C.-C.L.)
| | - Ching-Yun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114, Taiwan; (C.-Y.H.); (S.-F.C.)
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City 114, Taiwan
| | - Yu-Xuan Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-X.L.); (L.-J.C.); (P.T.)
| | - Yi-Chung Liu
- Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-C.L.); (P.-C.L.)
| | - Lichieh-Julie Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-X.L.); (L.-J.C.); (P.T.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan; (Y.-M.Y.); (C.-C.L.)
| | - Wei-Hung Cheng
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung City 824, Taiwan;
| | - Ruei-Ming Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan; (R.-M.C.); (H.-C.L.)
| | - Chi-Ching Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan; (Y.-M.Y.); (C.-C.L.)
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
| | - Hsin-Chung Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan; (R.-M.C.); (H.-C.L.)
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City 114, Taiwan
| | - Shu-Fang Chiu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114, Taiwan; (C.-Y.H.); (S.-F.C.)
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City 114, Taiwan
- Department of Inspection, Taipei City Hospital, Renai Branch, Taipei City 114, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-C.L.); (P.-C.L.)
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-X.L.); (L.-J.C.); (P.T.)
| | - Kuo-Yang Huang
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City 114, Taiwan
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923100 (ext. 18564)
| |
Collapse
|
6
|
Peixoto JF, dos Santos DG, Ribeiro L, de Oliveira VSC, Nunes-da-Fonseca R, Nepomuceno-Silva JL. Establishment of suitable reference genes for studying relative gene expression during the transition from trophozoites to cyst-like stages and first evidences of stress-induced expression of meiotic genes in Trichomonas vaginalis. Parasitology 2021; 148:934-946. [PMID: 33827719 PMCID: PMC11010144 DOI: 10.1017/s0031182021000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/07/2022]
Abstract
Trichomonas vaginalis is a parasite of the human urogenital tract and the causative agent of trichomoniasis, a sexually transmitted disease of worldwide importance. This parasite is usually found as a motile flagellated trophozoite. However, when subjected to stressful microenvironmental conditions, T. vaginalis trophozoites can differentiate into peculiar cyst-like stages, which exhibit notable physiological resistance to unfavourable conditions. Although well documented in morphological and proteomic terms, patterns of gene expression changes involved in the cellular differentiation into cyst-like stages are mostly unknown. The real-time reverse transcription polymerase chain reaction (RT-qPCR) is recognized as a sensitive and accurate method for quantification of gene expression, providing fluorescence-based data that are proportional to the amount of a target RNA. However, the reliability of relative expression studies depends on the validation of suitable reference genes, which RNAs exhibit a minimum of variation between tested conditions. Here, we attempt to determine suitable reference genes to be used as controls of invariant expression during cold-induced in vitro differentiation of T. vaginalis trophozoites into cyst-like forms. Furthermore, we reveal that the mRNA from the meiotic recombinase Dmc1 is upregulated during this process, indicating that cryptic sexual events may take place in cyst-like stages of T. vaginalis.
Collapse
Affiliation(s)
- Juliana Figueiredo Peixoto
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Daniele Graças dos Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Lupis Ribeiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Vitor Silva Cândido de Oliveira
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - José Luciano Nepomuceno-Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| |
Collapse
|
7
|
Lizarraga A, Muñoz D, Strobl-Mazzulla PH, de Miguel N. Toward incorporating epigenetics into regulation of gene expression in the parasite Trichomonas vaginalis. Mol Microbiol 2021; 115:959-967. [PMID: 33599017 DOI: 10.1111/mmi.14704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
Trichomonas vaginalis is an extracellular parasite that colonizes the human urogenital tract, causing a highly prevalent sexually transmitted infection. The parasite must change its transcriptional profile in order to establish and maintain infection. However, few core regulatory elements and transcription factors have been identified to date and little is known about other mechanisms that may control these rapid changes in gene expression during parasite infection. In the last years, epigenetic mechanisms involved in the regulation of gene expression have been gaining major attention in this parasite. In this review, we summarize and discuss the major advances of the last few years with regard to epigenetics (DNA methylation, post-translational histone modifications, and histone variants) in the parasite T. vaginalis. These studies can shed light into our current understanding of this parasite's biology with far-reaching implications for the prognosis and treatment of trichomoniasis.
Collapse
Affiliation(s)
- Ayelen Lizarraga
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Daniela Muñoz
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Pablo H Strobl-Mazzulla
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
| |
Collapse
|
8
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
9
|
Cheng WH, Huang KY, Ong SC, Ku FM, Huang PJ, Lee CC, Yeh YM, Lin R, Chiu CH, Tang P. Protein cysteine S-nitrosylation provides reducing power by enhancing lactate dehydrogenase activity in Trichomonas vaginalis under iron deficiency. Parasit Vectors 2020; 13:477. [PMID: 32948226 PMCID: PMC7501694 DOI: 10.1186/s13071-020-04355-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Iron plays essential roles in the pathogenesis and proliferation of Trichomonas vaginalis, the causative agent of the most prevalent non-viral human sexually transmitted infection. We previously demonstrated that under iron deficiency, the endogenous nitric oxide (NO) is accumulated and capable of regulating the survival of T. vaginalis. Herein, we aim to explore the influence of NO on the activity of the pyruvate-reducing enzyme lactate dehydrogenase in T. vaginalis (TvLDH). METHODS Levels of lactate and pyruvate were detected for determining glycolysis activity in T. vaginalis under iron deficiency. Quantitative PCR was performed to determine the expression of TvLDH. S-nitrosylated (SNO) proteomics was conducted to identify the NO-modified proteins. The activities of glyceraldehyde-3-phosphate dehydrogenase (TvGAPDH) and TvLDH were measured after sodium nitrate treatment. The effects of protein nitrosylation on the production of cellular reducing power were examined by measuring the amount of nicotinamide adenine dinucleotide (NAD) and the ratio of the NAD redox pair (NAD+/NADH). RESULTS We found that although the glycolytic pathway was activated in cells under iron depletion, the level of pyruvate was decreased due to the increased level of TvLDH. By analyzing the SNO proteome of T. vaginalis upon iron deficiency, we found that TvLDH is one of the glycolytic enzymes modified by SNO. The production of pyruvate was significantly reduced after nitrate treatment, indicating that protein nitrosylation accelerated the consumption of pyruvate by increasing TvLDH activity. Nitrate treatment also induced NAD oxidation, suggesting that protein nitrosylation was the key posttranslational modification controlling cellular redox status. CONCLUSIONS We demonstrated that NO-mediated protein nitrosylation plays pivotal roles in the regulation of glycolysis, pyruvate metabolism, and the activity of TvLDH. The recycling of oxidized NAD catalyzed by TvLDH provided the reducing power that allowed T. vaginalis to adapt to the iron-deficient environment.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Seow-Chin Ong
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Fu-Man Ku
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Po-Jung Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chi-Ching Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Rose Lin
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Petrus Tang
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
10
|
A systematic review of the literature on mechanisms of 5-nitroimidazole resistance in Trichomonas vaginalis. Parasitology 2020; 147:1383-1391. [PMID: 32729451 DOI: 10.1017/s0031182020001237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Trichomonas vaginalis is the most common non-viral sexually transmitted infection. 5-Nitroimidazoles [metronidazole (MTZ) and tinidazole (TDZ)] are FDA-approved treatments. To better understand treatment failure, we conducted a systematic review on mechanisms of 5-nitroimidazole resistance. METHODS PubMed, ScienceDirect and EMBASE databases were searched using keywords Trichomonas vaginalis, trichomoniasis, 5-nitroimidazole, metronidazole, tinidazole and drug resistance. Non-English language articles and articles on other treatments were excluded. RESULTS The search yielded 606 articles, of which 550 were excluded, leaving 58 articles. Trichomonas vaginalis resistance varies and is higher with MTZ (2.2-9.6%) than TDZ (0-2%). Resistance can be aerobic or anaerobic and is relative rather than absolute. Differential expression of enzymes involved in trichomonad energy production and antioxidant defenses affects 5-nitroimidazole drug activation; reduced expression of pyruvate:ferredoxin oxidoreductase, ferredoxin, nitroreductase, hydrogenase, thioredoxin reductase and flavin reductase are implicated in drug resistance. Trichomonas vaginalis infection with Mycoplasma hominis or T. vaginalis virus has also been associated with resistance. Trichomonas vaginalis has two genotypes, with greater resistance seen in type 2 (vs type 1) populations. DISCUSSION 5-Nitroimidazole resistance results from differential expression of enzymes involved in energy production or antioxidant defenses, along with genetic mutations in the T. vaginalis genome. Alternative treatments outside of the 5-nitroimidazole class are needed.
Collapse
|
11
|
Adenine DNA methylation, 3D genome organization, and gene expression in the parasite Trichomonas vaginalis. Proc Natl Acad Sci U S A 2020; 117:13033-13043. [PMID: 32461362 DOI: 10.1073/pnas.1917286117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract causing infections that range from asymptomatic to highly inflammatory. Recent works have highlighted the importance of histone modifications in the regulation of transcription and parasite pathogenesis. However, the nature of DNA methylation in the parasite remains unexplored. Using a combination of immunological techniques and ultrahigh-performance liquid chromatography (UHPLC), we analyzed the abundance of DNA methylation in strains with differential pathogenicity demonstrating that N6-methyladenine (6mA), and not 5-methylcytosine (5mC), is the main DNA methylation mark in T. vaginalis Genome-wide distribution of 6mA reveals that this mark is enriched at intergenic regions, with a preference for certain superfamilies of DNA transposable elements. We show that 6mA in T. vaginalis is associated with silencing when present on genes. Interestingly, bioinformatics analysis revealed the presence of transcriptionally active or repressive intervals flanked by 6mA-enriched regions, and results from chromatin conformation capture (3C) experiments suggest these 6mA flanked regions are in close spatial proximity. These associations were disrupted when parasites were treated with the demethylation activator ascorbic acid. This finding revealed a role for 6mA in modulating three-dimensional (3D) chromatin structure and gene expression in this divergent member of the Excavata.
Collapse
|
12
|
The effect of iron on Trichomonas vaginalis TvCP2: a cysteine proteinase found in vaginal secretions of trichomoniasis patients. Parasitology 2020; 147:760-774. [PMID: 32174285 DOI: 10.1017/s0031182020000438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trichomonas vaginalis (Tv) induces host cell damage through cysteine proteinases (CPs) modulated by iron. An immunoproteomic analysis showed that trichomoniasis patient sera recognize various CPs, also some of them are present in vaginal washes (VWs). Thus, the goal of this work was to determine whether TvCP2 is expressed during infection and to assess the effect of iron on TvCP2 expression, localization and contribution to in vitro cellular damage. Western-blotting (WB) assays using TvCP2r and vaginitis patient serum samples showed that 6/9 Tv (+) but none of the Tv (-) patient sera recognized TvCP2r. WB using an anti-TvCP2r antibody and VWs from the same patients showed that in all of the Tv (+) but none of the Tv (-) VWs, the anti-TvCP2r antibody detected a 27 kDa protein band that corresponded to the mature TvCP2, which was confirmed by mass spectrometry analysis. Iron decreased the amount of TvCP2 mRNA and the protein localized on the parasite surface and cytoplasmic vesicles concomitant with the cytotoxic effect of TvCP2 on HeLa cells. Parasites pretreated with the anti-TvCP2r antibody also showed reduced levels of cytotoxicity and apoptosis induction in HeLa cell monolayers. In conclusion, these results show that TvCP2 is expressed during trichomonal infection and plays an important role in the in vitro HeLa cell cytotoxic damage under iron-restricted conditions.
Collapse
|
13
|
Hsu HM, Huang YH, Aryal S, Liu HW, Chen C, Chen SH, Chu CH, Tai JH. Endomembrane Protein Trafficking Regulated by a TvCyP2 Cyclophilin in the Protozoan Parasite, Trichomonas vaginalis. Sci Rep 2020; 10:1275. [PMID: 31988345 PMCID: PMC6985235 DOI: 10.1038/s41598-020-58270-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/10/2020] [Indexed: 01/08/2023] Open
Abstract
In Trichomonas vaginalis, the TvCyP1-catalyzed conformational switches of two glycinyl-prolyl imide bonds in Myb3 were previously shown to regulate the trafficking of Myb3 from cytoplasmic membrane compartments towards the nucleus. In this study, TvCyP2 was identified as a second cyclophilin that binds to Myb3 at the same dipeptide motifs. The enzymatic proficiency of TvCyP2, but not its binding to Myb3, was aborted by a mutation of Arg75 in the catalytic domain. TvCyP2 was localized to the endoplasmic reticulum with a weak signal that extensively extends into the cytoplasm as well as to the plasma membrane according to an immunofluorescence assay. Moreover, TvCyP2 was co-enriched with TvCyP1 and Myb3 in various membrane fractions purified by differential and gradient centrifugation. TvCyP2 was found to proficiently enzymatically regulate the distribution of TvCyP1 and Myb3 among purified membrane fractions, and to localize TvCyP1 in hydrogenosomes and on plasma membranes. Protein complexes immunoprecipitated from lysates of cells overexpressing TvCyP1 and TvCyP2 were found to share some common components, like TvCyP1, TvCyP2, TvBip, Myb3, TvHSP72, and the hydrogenosomal heat shock protein 70 (HSP70). Direct interaction between TvCyP1 and TvCyP2 was confirmed by a GST pull-down assay. Fusion of vesicles with hydrogenosomes was observed by transmission electron microscopy, whereas TvCyP1, TvCyP2, and Myb3 were each detected at the fusion junction by immunoelectron microscopy. These observations suggest that T. vaginalis may have evolved a novel protein trafficking pathway to deliver proteins among the endomembrane compartments, hydrogenosomes and plasma membranes.
Collapse
Affiliation(s)
- Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Huang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sarita Aryal
- Structural Biology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsing-Wei Liu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chinpan Chen
- Structural Biology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hsin Chu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Jung-Hsiang Tai
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
14
|
Mach J, Sutak R. Iron in parasitic protists – from uptake to storage and where we can interfere. Metallomics 2020; 12:1335-1347. [DOI: 10.1039/d0mt00125b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comprehensive review of iron metabolism in parasitic protists and its potential use as a drug target.
Collapse
Affiliation(s)
- Jan Mach
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| | - Robert Sutak
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| |
Collapse
|
15
|
Dias-Lopes G, Wiśniewski JR, de Souza NP, Vidal VE, Padrón G, Britto C, Cuervo P, De Jesus JB. In-Depth Quantitative Proteomic Analysis of Trophozoites and Pseudocysts of Trichomonas vaginalis. J Proteome Res 2018; 17:3704-3718. [PMID: 30239205 DOI: 10.1021/acs.jproteome.8b00343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis is a sexually transmitted anaerobic parasite that infects humans causing trichomoniasis, a common and ubiquitous sexually transmitted disease. The life cycle of this parasite possesses a trophozoite form without a cystic stage. However, the presence of nonproliferative and nonmotile, yet viable and reversible spherical forms with internalized flagella, denominated pseudocysts, has been commonly observed for this parasite. To understand the mechanisms involved in the formation of pseudocysts, we performed a mass spectrometry-based high-throughput quantitative proteomics study using a label-free approach and functional assays by biochemical and flow cytometric methods. We observed that the morphological transformation of trophozoite to pseudocysts is coupled to (i) a metabolic shift toward a less glycolytic phenotype; (ii) alterations in the abundance of hydrogenosomal iron-sulfur cluster (ISC) assembly machinery; (iii) increased abundance of regulatory particles of the ubiquitin-proteasome system; (iv) significant alterations in proteins involved in adhesion and cytoskeleton reorganization; and (v) arrest in G2/M phase associated with alterations in the abundance of regulatory proteins of the cell cycle. These data demonstrate that pseudocysts experience important physiological and structural alterations for survival under unfavorable environmental conditions.
Collapse
Affiliation(s)
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction , Max-Planck-Institute for Biochemistry , 82152 Martinsried , Germany
| | | | | | | | | | | | - José Batista De Jesus
- Departamento de Medicina , Universidade Federal de São João del Rei , 36301-160 São João del Rei , Minas Gerais Brazil
| |
Collapse
|
16
|
Identification of a perchloric acid-soluble protein (PSP)-like ribonuclease from Trichomonas vaginalis. Parasitol Res 2018; 117:3639-3652. [PMID: 30191309 DOI: 10.1007/s00436-018-6065-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
A perchloric acid-soluble protein (PSP), named here tv-psp1, was identified in Trichomonas vaginalis. It is expressed under normal culture conditions according to expressed sequence tag (EST) analysis. On the other hand, Tv-PSP1 protein was identified by mass spectrometry with a 40% of identity to human PSP (p14.1). Polyclonal antibodies against recombinant Tv-PSP1 (rTv-PSP1) recognized a single band at 13.5 kDa in total protein parasite extract by SDS-PAGE and a high molecular weight band analyzed by native PAGE. Structural analysis of Tv-PSP1, using dynamic light scattering, size exclusion chromatography, and circular dichroism spectroscopy, showed a trimeric structure stable at 7 M urea with 38% α-helix and 14% β-sheet in solution and a molecular weight of 40.5 kD. Tv-PSP1 models were used to perform dynamic simulations over 100 ns suggesting a stable homotrimeric structure. Tv-PSP1 was located in the nucleus, cytoplasm, and hydrogenosomes of T. vaginalis, and the in silico analysis by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) showed interactions with RNA binding proteins. The preliminary results of RNA degradation analysis with the recombinant Tv-PSP1 showed RNA partial deterioration suggesting a possible putative ribonuclease function.
Collapse
|
17
|
Bradic M, Warring SD, Tooley GE, Scheid P, Secor WE, Land KM, Huang PJ, Chen TW, Lee CC, Tang P, Sullivan SA, Carlton JM. Genetic Indicators of Drug Resistance in the Highly Repetitive Genome of Trichomonas vaginalis. Genome Biol Evol 2018. [PMID: 28633446 PMCID: PMC5522705 DOI: 10.1093/gbe/evx110] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Trichomonas vaginalis, the most common nonviral sexually transmitted parasite, causes ∼283 million trichomoniasis infections annually and is associated with pregnancy complications and increased risk of HIV-1 acquisition. The antimicrobial drug metronidazole is used for treatment, but in a fraction of clinical cases, the parasites can become resistant to this drug. We undertook sequencing of multiple clinical isolates and lab derived lines to identify genetic markers and mechanisms of metronidazole resistance. Reduced representation genome sequencing of ∼100 T. vaginalis clinical isolates identified 3,923 SNP markers and presence of a bipartite population structure. Linkage disequilibrium was found to decay rapidly, suggesting genome-wide recombination and the feasibility of genetic association studies in the parasite. We identified 72 SNPs associated with metronidazole resistance, and a comparison of SNPs within several lab-derived resistant lines revealed an overlap with the clinically resistant isolates. We identified SNPs in genes for which no function has yet been assigned, as well as in functionally-characterized genes relevant to drug resistance (e.g., pyruvate:ferredoxin oxidoreductase). Transcription profiles of resistant strains showed common changes in genes involved in drug activation (e.g., flavin reductase), accumulation (e.g., multidrug resistance pump), and detoxification (e.g., nitroreductase). Finally, we identified convergent genetic changes in lab-derived resistant lines of Tritrichomonas foetus, a distantly related species that causes venereal disease in cattle. Shared genetic changes within and between T. vaginalis and Tr. foetus parasites suggest conservation of the pathways through which adaptation has occurred. These findings extend our knowledge of drug resistance in the parasite, providing a panel of markers that can be used as a diagnostic tool.
Collapse
Affiliation(s)
- Martina Bradic
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York
| | - Sally D Warring
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York
| | - Grace E Tooley
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York
| | - Paul Scheid
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York
| | - William E Secor
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GE
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA
| | - Po-Jung Huang
- Bioinformatics Center/Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Wen Chen
- Bioinformatics Center/Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Ching Lee
- Bioinformatics Center/Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Petrus Tang
- Bioinformatics Center/Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Steven A Sullivan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York
| |
Collapse
|
18
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
19
|
Štáfková J, Rada P, Meloni D, Žárský V, Smutná T, Zimmann N, Harant K, Pompach P, Hrdý I, Tachezy J. Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases. Mol Cell Proteomics 2018; 17:304-320. [PMID: 29233912 PMCID: PMC5795393 DOI: 10.1074/mcp.ra117.000434] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Indexed: 11/06/2022] Open
Abstract
The secretion of virulence factors by parasitic protists into the host environment plays a fundamental role in multifactorial host-parasite interactions. Several effector proteins are known to be secreted by Trichomonas vaginalis, a human parasite of the urogenital tract. However, a comprehensive profiling of the T. vaginalis secretome remains elusive, as do the mechanisms of protein secretion. In this study, we used high-resolution label-free quantitative MS to analyze the T. vaginalis secretome, considering that secretion is a time- and temperature-dependent process, to define the cutoff for secreted proteins. In total, we identified 2 072 extracellular proteins, 89 of which displayed significant quantitative increases over time at 37 °C. These 89 bona fide secreted proteins were sorted into 13 functional categories. Approximately half of the secreted proteins were predicted to possess transmembrane helixes. These proteins mainly include putative adhesins and leishmaniolysin-like metallopeptidases. The other half of the soluble proteins include several novel potential virulence factors, such as DNaseII, pore-forming proteins, and β-amylases. Interestingly, current bioinformatic tools predicted the secretory signal in only 18% of the identified T. vaginalis-secreted proteins. Therefore, we used β-amylases as a model to investigate the T. vaginalis secretory pathway. We demonstrated that two β-amylases (BA1 and BA2) are transported via the classical endoplasmic reticulum-to-Golgi pathways, and in the case of BA1, we showed that the protein is glycosylated with multiple N-linked glycans of Hex5HexNAc2 structure. The secretion was inhibited by brefeldin A but not by FLI-06. Another two β-amylases (BA3 and BA4), which are encoded in the T. vaginalis genome but absent from the secretome, were targeted to the lysosomal compartment. Collectively, under defined in vitro conditions, our analysis provides a comprehensive set of constitutively secreted proteins that can serve as a reference for future comparative studies, and it provides the first information about the classical secretory pathway in this parasite.
Collapse
Affiliation(s)
| | - Petr Rada
- From the ‡Department of Parasitology
| | | | | | | | | | | | - Petr Pompach
- §Institute of Biotechnology CAS, v. v. i., BIOCEV, Vestec, Czech Republic
- ¶Department of Biochemistry, Charles University, Faculty of Science, BIOCEV, Vestec, Czech Republic
| | - Ivan Hrdý
- From the ‡Department of Parasitology
| | | |
Collapse
|
20
|
Westrop GD, Wang L, Blackburn GJ, Zhang T, Zheng L, Watson DG, Coombs GH. Metabolomic profiling and stable isotope labelling of Trichomonas vaginalis and Tritrichomonas foetus reveal major differences in amino acid metabolism including the production of 2-hydroxyisocaproic acid, cystathionine and S-methylcysteine. PLoS One 2017; 12:e0189072. [PMID: 29267346 PMCID: PMC5739422 DOI: 10.1371/journal.pone.0189072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/17/2017] [Indexed: 11/19/2022] Open
Abstract
Trichomonas vaginalis and Tritrichomonas foetus are pathogens that parasitise, respectively, human and bovine urogenital tracts causing disease. Using LC-MS, reference metabolomic profiles were obtained for both species and stable isotope labelling with D-[U-13C6] glucose was used to analyse central carbon metabolism. This facilitated a comparison of the metabolic pathways of T. vaginalis and T. foetus, extending earlier targeted biochemical studies. 43 metabolites, whose identities were confirmed by comparison of their retention times with authentic standards, occurred at more than 3-fold difference in peak intensity between T. vaginalis and T. foetus. 18 metabolites that were removed from or released into the medium during growth also showed more than 3-fold difference between the species. Major differences were observed in cysteine and methionine metabolism in which homocysteine, produced as a bi-product of trans-methylation, is catabolised by methionine γ-lyase in T. vaginalis but converted to cystathionine in T. foetus. Both species synthesise methylthioadenosine by an unusual mechanism, but it is not used as a substrate for methionine recycling. T. vaginalis also produces and exports high levels of S-methylcysteine, whereas only negligible levels were found in T. foetus which maintains significantly higher intracellular levels of cysteine. 13C-labeling confirmed that both cysteine and S-methylcysteine are synthesised by T. vaginalis; S-methylcysteine can be generated by recombinant T. vaginalis cysteine synthase using phosphoserine and methanethiol. T. foetus contained higher levels of ornithine and citrulline than T. vaginalis and exported increased levels of putrescine, suggesting greater flux through the arginine dihydrolase pathway. T. vaginalis produced and exported hydroxy acid derivatives of certain amino acids, particularly 2-hydroxyisocaproic acid derived from leucine, whereas negligible levels of these metabolites occurred in T. foetus.
Collapse
Affiliation(s)
- Gareth D. Westrop
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
- * E-mail:
| | - Lijie Wang
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| | | | - Tong Zhang
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Liang Zheng
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai, China
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| |
Collapse
|
21
|
TvZNF1 is a C 2H 2 zinc finger protein of Trichomonas vaginalis. Biometals 2017; 30:861-872. [PMID: 28993928 DOI: 10.1007/s10534-017-0053-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
The zinc fingers proteins (ZNF) are the largest family of DNA binding proteins and can act as transcriptional factors in eukaryotes. ZNF are implicated in activation in response to environmental stimulus by biometals such as Zn2+. Many of these proteins have the classical C2H2 zinc finger motifs (C2H2-ZNFm) of approximately 30 amino acids, where a Zn2+ ion is coordinated by two cysteine and two histidine residues. Trichomonas vaginalis is a protozoan parasite than responds to environmental changes including Zn2+. Until now has not been described any ZNF that could be involved in the regulation of genic expression of T. vaginalis. Here, we characterized in silico and experimentally an annoted ZNF (TvZNF1) from T. vaginalis and isolated the gene, tvznf1 encoding it. TvZNF1 have eight C2H2-ZNFm with residues that maybe involved in the structural stability of DNA binding motifs. In this work we confirmed the Zn2+ upregulation expression of tvznf1 gene. Recombinant TvZNF1 was able to bind to specific DNA sequences according to EMSA assay. Additionally, we demonstrated that recombinant TvZNF1 bind to MRE signature in vitro, which strongly suggests its role in transcriptional regulation, similar to the one observed for mammalian MTF-1. This result suggested a conserved mechanism of genic regulation mediated by ZNFs in T. vaginalis.
Collapse
|
22
|
Cheng WH, Huang KY, Huang PJ, Lee CC, Yeh YM, Ku FM, Lin R, Cheng ML, Chiu CH, Tang P. γ-Carboxymuconolactone decarboxylase: a novel cell cycle-related basal body protein in the early branching eukaryote Trichomonas vaginalis. Parasit Vectors 2017; 10:443. [PMID: 28950916 PMCID: PMC5615479 DOI: 10.1186/s13071-017-2381-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND γ-Carboxymuconolactone decarboxylase (CMD) participates in the β-ketoadipate pathway, which catalyzes aromatic compounds to produce acetyl- or succinyl-CoA, in prokaryotes and yeast. Our previous study demonstrated that expression of a CMD homologue that contains two signatures (dualCMD) is negatively regulated by iron in Trichomonas vaginalis. However, we were not able to identify the components of the β-ketoadipate pathway in the parasite's genome. These observations prompted us to investigate the biological functions of this novel CMD homologue in T. vaginalis. METHODS The specific anti-TvCMD1 antibody was generated, and the expression of TvCMD1 in T. vaginalis cultured under iron-rich and iron-deficient were evaluated. Phylogenetic, metabolomic and substrate induction (protocatechuate and benzoate) analysis were conducted to clarify the function of dualCMD in trichomonad cells. Subcellular localization of TvCMD1 was observed by confocal microscopy. The cell cycle-related role of TvCMD1 was assessed by treating cells with G2/M inhibitor nocodazole. RESULTS We confirmed that T. vaginalis is not able to catabolize the aromatic compounds benzoate and protocatechuate, which are known substrates of the β-ketoadipate pathway. Using immunofluorescence microscopy, we found that TvCMD1 is spatially associated with the basal body, a part of the cytoskeletal organizing center in T. vaginalis. TvCMD1 accumulated upon treatment with the G2/M inhibitor nocodazole. Additionally, TvCMD1 was expressed and transported to/from the basal body during cytokinesis, suggesting that TvCMD1 plays a role in cell division. CONCLUSION We demonstrated that TvCMD1 is unlikely to participate in the β-ketoadipate pathway and demonstrated that it is a novel basal body-localizing (associated) protein. This model sheds light on the importance of genes that are acquired laterally in the coevolution of ancient protists, which surprisingly functions in cell cycle regulation of T. vaginalis.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jung Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chi-Ching Lee
- Department and Graduate Institute of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Fu-Man Ku
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Rose Lin
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
23
|
Elwakil HS, Tawfik RA, Alam-Eldin YH, Nassar DA. The effect of iron on metronidazole activity against Trichomonas vaginalis in vitro. Exp Parasitol 2017; 182:34-36. [PMID: 28935536 DOI: 10.1016/j.exppara.2017.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/18/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
Abstract
Metronidazole is administered in an inactive form then activated to its cytotoxic form within the hydrogenosome of trichomonads. Two hydrogenosomal proteins, pyruvate ferredoxin oxidoreductase (PFOR) and ferredoxin, play a critical role in the reductive activation of metronidazole. The expression of these proteins and other hydrogenosomal proteins are likewise positively regulated by iron. In the present study, the effect of iron on minimal lethal concentration (MLC) of metronidazole on in vitro cultured Trichomonas vaginalis(T. vaginalis) isolates was investigated. Interestingly, Addition of Ferrous ammonium sulphate (FAS) to T. vaginalis culture led to decrease in the MLC of metronidazole. On using aerobic assay, MLC of metronidazole on untreated T. vaginalis of both isolates was 12.5 μg/ml that decreased to 0.38 μg/ml on FAS treated trichomonads. Also anaerobic assay revealed that MLC on untreated parasites was 3.12 μg/ml that decreased to 0.097 μg/ml and 0.19 μg/ml for isolate 1 and isolate 2 respectively after iron addition. It was concluded that, addition of iron to in vitro cultured T. vaginalis decreases metronidazole MLC that was detected by both aerobic and anaerobic assays.
Collapse
Affiliation(s)
- Hala Salah Elwakil
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Rania Ayman Tawfik
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt.
| | | | - Doaa Ashraf Nassar
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
24
|
Pachano T, Nievas YR, Lizarraga A, Johnson PJ, Strobl-Mazzulla PH, de Miguel N. Epigenetics regulates transcription and pathogenesis in the parasite Trichomonas vaginalis. Cell Microbiol 2017; 19:e12716. [PMID: 28054438 DOI: 10.1111/cmi.12716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/14/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Different T. vaginalis strains vary greatly in their adherence and cytolytic capacities. These phenotypic differences might be attributed to differentially expressed genes as a consequence of extra-genetic variation, such as epigenetic modifications. In this study, we explored the role of histone acetylation in regulating gene transcription and pathogenesis in T. vaginalis. Here, we show that histone 3 lysine acetylation (H3KAc) is enriched in nucleosomes positioned around the transcription start site of active genes (BAP1 and BAP2) in a highly adherent parasite strain; compared with the low acetylation abundance in contrast to that observed in a less-adherent strain that expresses these genes at low levels. Additionally, exposition of less-adherent strain with a specific histone deacetylases inhibitor, trichostatin A, upregulated the transcription of BAP1 and BAP2 genes in concomitance with an increase in H3KAc abundance and chromatin accessibility around their transcription start sites. Moreover, we demonstrated that the binding of initiator binding protein, the transcription factor responsible for the initiation of transcription of ~75% of known T. vaginalis genes, depends on the histone acetylation state around the metazoan-like initiator to which initiator binding protein binds. Finally, we found that trichostatin A treatment increased parasite aggregation and adherence to host cells. Our data demonstrated for the first time that H3KAc is a permissive histone modification that functions to mediate both transcription and pathogenesis of the parasite T. vaginalis.
Collapse
Affiliation(s)
- Tomas Pachano
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Yesica R Nievas
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Ayelen Lizarraga
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Patricia J Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Pablo H Strobl-Mazzulla
- Laboratorio de Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Argentina
| |
Collapse
|
25
|
Kenyon CR. Bypassing the 'rapid-clearance-in-males-buffer': A fourth mechanism to explain how concurrency enhances STI spread. Int J STD AIDS 2017; 28:1444-1446. [PMID: 28457203 DOI: 10.1177/0956462417706246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A number of sexually transmitted infections (STIs) persist for a considerably shorter period in the male urethra than the vagina. If the gap between sequential partnerships is longer than the duration of STI colonization in males, then this would protect future female partners from this STI in a setting of serial monogamy. If, however, males have more than one partner at a time (concurrency), then this would enable the STI to bypass this gap/buffer. We therefore propose bypassing the rapid-clearance-in-males-buffer as a fourth mechanism, whereby concurrency could enhance the spread of STIs.
Collapse
Affiliation(s)
- Chris R Kenyon
- 1 Institute of Tropical Medicine, Antwerp, Belgium.,2 Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Song MJ, Kim M, Choi Y, Yi MH, Kim J, Park SJ, Yong TS, Kim HP. Epigenome mapping highlights chromatin-mediated gene regulation in the protozoan parasite Trichomonas vaginalis. Sci Rep 2017; 7:45365. [PMID: 28345651 PMCID: PMC5366954 DOI: 10.1038/srep45365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Trichomonas vaginalis is an extracellular flagellated protozoan parasite that causes trichomoniasis, one of the most common non-viral sexually transmitted diseases. To survive and to maintain infection, T. vaginalis adapts to a hostile host environment by regulating gene expression. However, the mechanisms of transcriptional regulation are poorly understood for this parasite. Histone modification has a marked effect on chromatin structure and directs the recruitment of transcriptional machinery, thereby regulating essential cellular processes. In this study, we aimed to outline modes of chromatin-mediated gene regulation in T. vaginalis. Inhibition of histone deacetylase (HDAC) alters global transcriptional responses and induces hyperacetylation of histones and hypermethylation of H3K4. Analysis of the genome of T. vaginalis revealed that a number of enzymes regulate histone modification, suggesting that epigenetic mechanisms are important to controlling gene expression in this organism. Additionally, we describe the genome-wide localization of two histone H3 modifications (H3K4me3 and H3K27Ac), which we found to be positively associated with active gene expression in both steady and dynamic transcriptional states. These results provide the first direct evidence that histone modifications play an essential role in transcriptional regulation of T. vaginalis, and may help guide future epigenetic research into therapeutic intervention strategies against this parasite.
Collapse
Affiliation(s)
- Min-Ji Song
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Mikyoung Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yeeun Choi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Juri Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Soon-Jung Park
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul, 03722, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| |
Collapse
|
27
|
Abstract
This article provides a timely critique of a recent Nature paper by Pittis and Gabaldón that has suggested a late origin of mitochondria in eukaryote evolution. It shows that the inferred ancestry of many mitochondrial proteins has been incorrectly assigned by Pittis and Gabaldón to bacteria other than the aerobic proteobacteria from which the ancestor of mitochondria originates, thereby questioning the validity of their suggestion that mitochondrial acquisition may be a late event in eukaryote evolution. The analysis and approach presented here may guide future studies to resolve the true ancestry of mitochondria.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Italian Institute of Technology, Genoa, Italy Centre for Genomic Sciences, UNAM Cuernavaca, Mexico
| |
Collapse
|
28
|
Menezes CB, Frasson AP, Tasca T. Trichomoniasis - are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:404-419. [PMID: 28357378 PMCID: PMC5354568 DOI: 10.15698/mic2016.09.526] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 02/03/2023]
Abstract
ETIOLOGY Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease (STD) in the world. Transmission: Trichomoniasis is transmitted by sexual intercourse and transmission via fomites is rare. Epidemiology, incidence and prevalence: The WHO estimates an incidence of 276 million new cases each year and prevalence of 187 million of infected individuals. However, the infection is not notifiable. Pathology/Symptomatology: The T. vaginalis infection results in a variety of clinical manifestations - in most cases the patients are asymptomatic, but some may develop signs typically associated to the disease. Importantly, the main issue concerning trichomoniasis is its relationship with serious health consequences such as cancer, adverse pregnancy outcomes, infertility, and HIV acquisition. Molecular mechanisms of infection: To achieve success in parasitism trichomonads develop a complex process against the host cells that includes dependent- and independent-contact mechanisms. This multifactorial pathogenesis includes molecules such as soluble factors, secreted proteinases, adhesins, lipophosphoglycan that culminate in cytoadherence and cytotoxicity against the host cells. Treatment and curability: The treatment with metronidazole or tinidazole is recommended; however, cure failures remain problematic due to noncompliance, reinfection and/or lack of treatment of sexual partners, inaccurate diagnosis, or drug resistance. Therefore, new therapeutic alternatives are urgently needed. Protection: Strategies for protection including sexual behavior, condom usage, and therapy have not contributed to the decrease on disease prevalence, pointing to the need for innovative approaches. Vaccine development has been hampered by the lack of long-lasting humoral immunity associated to the absence of good animal models.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| | - Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Barratt J, Gough R, Stark D, Ellis J. Bulky Trichomonad Genomes: Encoding a Swiss Army Knife. Trends Parasitol 2016; 32:783-797. [PMID: 27312283 DOI: 10.1016/j.pt.2016.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
The trichomonads are a remarkably successful lineage of ancient, predominantly parasitic protozoa. Recent molecular analyses have revealed extensive duplication of certain genetic loci in trichomonads. Consequently, their genomes are exceptionally large compared to other parasitic protozoa. Retention of these large gene expansions across different trichomonad families raises the question: do these duplications afford an advantage? Many duplicated genes are linked to the parasitic lifestyle and some are regulated differently to their paralogues, suggesting they have acquired new functions. It is proposed that these large genomes encode a Swiss army knife of sorts, packed with a multitude of tools for use in many different circumstances. This may have bestowed trichomonads with the extraordinary versatility that has undoubtedly contributed to their success.
Collapse
Affiliation(s)
- Joel Barratt
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia.
| | - Rory Gough
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Damien Stark
- Division of Microbiology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| |
Collapse
|
30
|
Nobre LS, Meloni D, Teixeira M, Viscogliosi E, Saraiva LM. Trichomonas vaginalis Repair of Iron Centres Proteins: The Different Role of Two Paralogs. Protist 2016; 167:222-33. [PMID: 27124376 DOI: 10.1016/j.protis.2016.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/28/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
Trichomonas vaginalis, the causative parasite of one of the most prevalent sexually transmitted diseases is, so far, the only protozoan encoding two putative Repair of Iron Centres (RIC) proteins. Homologs of these proteins have been shown to protect bacteria from the chemical stress imposed by mammalian immunity. In this work, the biochemical and functional characterisation of the T. vaginalis RICs revealed that the two proteins have different properties. Expression of ric1 is induced by nitrosative stress but not by hydrogen peroxide, while ric2 transcription remained unaltered under similar conditions. T. vaginalis RIC1 contains a di-iron centre, but RIC2 apparently does not. Only RIC1 resembles bacterial RICs on spectroscopic profiling and repairing ability of oxidatively-damaged iron-sulfur clusters. Unexpectedly, RIC2 was found to bind DNA plasmid and T. vaginalis genomic DNA, a function proposed to be related with its leucine zipper domain. The two proteins also differ in their cellular localization: RIC1 is expressed in the cytoplasm only, and RIC2 occurs both in the nucleus and cytoplasm. Therefore, we concluded that the two RIC paralogs have different roles in T. vaginalis, with RIC2 showing an unprecedented DNA binding ability when compared with all other until now studied RICs.
Collapse
Affiliation(s)
- Lígia S Nobre
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | - Dionigia Meloni
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, 1 rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | - Eric Viscogliosi
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, 1 rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal.
| |
Collapse
|
31
|
Abstract
SUMMARYIron is an essential element for the survival of trichomonads during host–parasite interaction. The availability of this metal modulates several metabolic pathways of the parasites and regulates the expression of virulence factors such as adhesins and proteolytic enzymes. In this study, we investigated the effect of iron depletion on the morphology and life cycle ofTritrichomonas foetus. Scanning and transmission electron microscopy analyses revealed that depletion of iron from the culture medium (named TYM-DIP inducer medium) induces morphological transformation of typical pear-shaped trophozoites into spherical and non-motile pseudocysts. Remarkably, inoculation of pseudocysts into an iron-rich medium (standard TYM medium), or addition of FeSO4to a TYM-DIP inducer medium reverted the morphological transformation process and typical trophozoites were recovered. These results show that pseudocysts are viable forms of the parasite and highlight the role of iron as a modulator of the parasite phenotype. Although iron is required for the survival ofT. foetus, iron depletion does not cause a cellular collapse of pseudocysts, but instead induces phenotypic alterations, probably in order to allow the parasite to survive conditions of nutritional stress. Together, these findings support previous studies that suggest pseudocysts are a resistance form in the life cycle ofT. foetusand enable new approaches to understanding the multifactorial role of iron in the cell biology of this protozoan parasite.
Collapse
|
32
|
Abstract
The microaerophilic protist parasite Trichomonas vaginalis is occurring globally and causes infections in the urogenital tract in humans, a condition termed trichomoniasis. In fact, trichomoniasis is the most prevalent non-viral sexually transmitted disease with more than 250 million people infected every year. Although trichomoniasis is not life threatening in itself, it can be debilitating and increases the risk of adverse pregnancy outcomes, HIV infection, and, possibly, neoplasias in the prostate and the cervix. Apart from its role as a pathogen, T. vaginalis is also a fascinating organism with a surprisingly large genome for a parasite, i. e. larger than 160 Mb, and a physiology adapted to its microaerophilic lifestyle. In particular, the hydrogenosome, a mitochondria-derived organelle that produces hydrogen, has attracted much interest in the last few decades and rendered T. vaginalis a model organism for eukaryotic evolution. This review will give a succinct overview of the major advances in the T. vaginalis field in the last few years.
Collapse
Affiliation(s)
- David Leitsch
- Institute of Parasitology, Vetsuisse Faculty of the University of Bern, University of Bern, Längassstrasse, Bern, 3012, Switzerland
| |
Collapse
|
33
|
Figueroa-Angulo EE, Calla-Choque JS, Mancilla-Olea MI, Arroyo R. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins. Biomolecules 2015; 5:3354-95. [PMID: 26703754 PMCID: PMC4693282 DOI: 10.3390/biom5043354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.
Collapse
Affiliation(s)
- Elisa E Figueroa-Angulo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Jaeson S Calla-Choque
- Laboratorio de Inmunopatología en Neurocisticercosis, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P., Lima 15102, Peru.
| | - Maria Inocente Mancilla-Olea
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| |
Collapse
|
34
|
dos Santos O, de Vargas Rigo G, Frasson AP, Macedo AJ, Tasca T. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis. PLoS One 2015; 10:e0138331. [PMID: 26393928 PMCID: PMC4579074 DOI: 10.1371/journal.pone.0138331] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/28/2015] [Indexed: 01/13/2023] Open
Abstract
Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.
Collapse
Affiliation(s)
- Odelta dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Amanda Piccoli Frasson
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
35
|
Novel insights into the molecular events linking to cell death induced by tetracycline in the amitochondriate protozoan Trichomonas vaginalis. Antimicrob Agents Chemother 2015; 59:6891-903. [PMID: 26303799 DOI: 10.1128/aac.01779-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/14/2015] [Indexed: 11/20/2022] Open
Abstract
Trichomonas vaginalis colonizes the human urogenital tract and causes trichomoniasis, the most common nonviral sexually transmitted disease. Currently, 5-nitroimidazoles are the only recommended drugs for treating trichomoniasis. However, increased resistance of the parasite to 5-nitroimidazoles has emerged as a highly problematic public health issue. Hence, it is essential to identify alternative chemotherapeutic agents against refractory trichomoniasis. Tetracycline (TET) is a broad-spectrum antibiotic with activity against several protozoan parasites, but the mode of action of TET in parasites remains poorly understood. The in vitro effect of TET on the growth of T. vaginalis was examined, and the mode of cell death was verified by various apoptosis-related assays. Next-generation sequencing-based RNA sequencing (RNA-seq) was employed to elucidate the transcriptome of T. vaginalis in response to TET. We show that TET has a cytotoxic effect on both metronidazole (MTZ)-sensitive and -resistant T. vaginalis isolates, inducing some features resembling apoptosis. RNA-seq data reveal that TET significantly alters the transcriptome via activation of specific pathways, such as aminoacyl-tRNA synthetases and carbohydrate metabolism. Functional analyses demonstrate that TET disrupts the hydrogenosomal membrane potential and antioxidant system, which concomitantly elicits a metabolic shift toward glycolysis, suggesting that the hydrogenosomal function is impaired and triggers cell death. Collectively, we provide in vitro evidence that TET is a potential alternative therapeutic choice for treating MTZ-resistant T. vaginalis. The in-depth transcriptomic signatures in T. vaginalis upon TET treatment presented here will shed light on the signaling pathways linking to cell death in amitochondriate organisms.
Collapse
|
36
|
Cheng WH, Huang KY, Huang PJ, Hsu JH, Fang YK, Chiu CH, Tang P. Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion. Parasit Vectors 2015. [PMID: 26205151 PMCID: PMC4513698 DOI: 10.1186/s13071-015-1000-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. Methods T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. Results We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. Conclusion The findings in this study provide a novel role of NO in adaptation to iron-deficient stress in T. vaginalis and shed light on a potential therapeutic strategy for trichomoniasis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1000-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Kuo-Yang Huang
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Po-Jung Huang
- Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Bioinformatics Center, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jo-Hsuan Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Yi-Kai Fang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Bioinformatics Center, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
37
|
Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:946787. [PMID: 26090464 PMCID: PMC4450334 DOI: 10.1155/2015/946787] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/09/2015] [Indexed: 12/29/2022]
Abstract
We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes.
Collapse
|
38
|
Kusdian G, Gould SB. The biology of Trichomonas vaginalis in the light of urogenital tract infection. Mol Biochem Parasitol 2015; 198:92-9. [PMID: 25677793 DOI: 10.1016/j.molbiopara.2015.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
The human pathogen Trichomonas vaginalis is a parasitic protist. It is a representative of the eukaryotic supergroup Excavata that includes a few other protist parasites such as Leishmania, Trypanosoma and Giardia. T. vaginalis is the agent of trichomoniasis and in the US alone, one in 30 women tests positive for this parasite. The disease is easily treated with metronidazole in most cases, but resistant strains are on the rise. The biology of Trichomonas is remarkable: it includes for example the biggest protist genome currently sequenced, the expression of about 30,000 protein-encoding genes (and thousands of lncRNAs and pseudogenes), anaerobic hydrogenosomes, rapid morphogenesis during infection, the secretion of exosomes, the manipulation of the vaginal microbiota through phagocytosis and a rich strain-dependent diversity. Here we provide an overview of Trichomonas biology with a focus on its relevance for pathogenicity and summarise the most recent advances. With some respect this parasite offers the opportunity to serve as a model system to study certain aspects of cell and genome biology, but tackling the complex biology of T. vaginalis is also important to better understand the effects that accompany infection and direct symptoms.
Collapse
Affiliation(s)
- Gary Kusdian
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
39
|
Evidence for repeated gene duplications in Tritrichomonas foetus supported by EST analysis and comparison with the Trichomonas vaginalis genome. Vet Parasitol 2014; 206:267-76. [DOI: 10.1016/j.vetpar.2014.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 01/01/2023]
|
40
|
Fang YK, Huang KY, Huang PJ, Lin R, Chao M, Tang P. Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 48:662-75. [PMID: 25440978 DOI: 10.1016/j.jmii.2014.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted disease in the world. This infection affects millions of individuals worldwide annually. Although direct sexual contact is the most common mode of transmission, increasing evidence indicates that T. vaginalis can survive in the external environment and can be transmitted by contaminated utensils. We found that the growth of T. vaginalis under cold conditions is greatly inhibited, but recovers after placing these stressed cells at the normal cultivation temperature of 37 °C. However, the mechanisms by which T. vaginalis regulates this adaptive process are unclear. METHODS An expressed sequence tag (EST) database generated from a complementary DNA library of T. vaginalis messenger RNAs expressed under cold-culture conditions (4 °C, TvC) was compared with a previously published normal-cultured EST library (37 °C, TvE) to assess the cold-stress responses of T. vaginalis. RESULTS A total of 9780 clones were sequenced from the TvC library and were mapped to 2934 genes in the T. vaginalis genome. A total of 1254 genes were expressed in both the TvE and TvC libraries, and 1680 genes were only found in the TvC library. A functional analysis showed that cold temperature has effects on many cellular mechanisms, including increased H2O2 tolerance, activation of the ubiquitin-proteasome system, induction of iron-sulfur cluster assembly, and reduced energy metabolism and enzyme expression. CONCLUSION The current study is the first large-scale transcriptomic analysis in cold-stressed T. vaginalis and the results enhance our understanding of this important protist.
Collapse
Affiliation(s)
- Yi-Kai Fang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Yang Huang
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jung Huang
- Bioinformatics Center, Chang Gung University, Taoyuan, Taiwan
| | - Rose Lin
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei Chao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Bioinformatics Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
41
|
Hsu HM, Lee Y, Hsu PH, Liu HW, Chu CH, Chou YW, Chen YR, Chen SH, Tai JH. Signal transduction triggered by iron to induce the nuclear importation of a Myb3 transcription factor in the parasitic protozoan Trichomonas vaginalis. J Biol Chem 2014; 289:29334-49. [PMID: 25183012 DOI: 10.1074/jbc.m114.599498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron was previously shown to induce rapid nuclear translocation of a Myb3 transcription factor in the protozoan parasite, Trichomonas vaginalis. In the present study, iron was found to induce a transient increase in cellular cAMP, followed by the nuclear influx of Myb3, whereas the latter was also induced by 8-bromo-cyclic AMP. Iron-inducible cAMP production and nuclear influx of Myb3 were inhibited by suramin and SQ22536, respective inhibitors of the Gα subunit of heterotrimeric G proteins and adenylyl cyclases. In contrast, the nuclear influx of Myb3 induced by iron or 8-bromo-cAMP was delayed or inhibited, respectively, by H89, the inhibitor of protein kinase A. Using liquid chromatography-coupled tandem mass spectrometry, Thr(156) and Lys(143) in Myb3 were found to be phosphorylated and ubiquitinated, respectively. These modifications were induced by iron and inhibited by H89, as shown by immunoprecipitation-coupled Western blotting. Iron-inducible ubiquitination and nuclear influx were aborted in T156A and K143R, but T156D was constitutively ubiquitinated and persistently localized to the nucleus. Myb3 was phosphorylated in vitro by the catalytic subunit of a T. vaginalis protein kinase A, TvPKAc. A transient interaction between TvPKAc and Myb3 and the phosphorylation of both proteins were induced in the parasite shortly after iron or 8-bromo-cAMP treatment. Together, these observations suggest that iron may induce production of cAMP and activation of TvPKAc, which then induces the phosphorylation of Myb3 and subsequent ubiquitination for accelerated nuclear influx. It is conceivable that iron probably exerts a much broader impact on the physiology of the parasite than previously thought to encounter environmental changes.
Collapse
Affiliation(s)
- Hong-Ming Hsu
- From the Division of Infectious Diseases, Institute of Biomedical Sciences and
| | - Yu Lee
- From the Division of Infectious Diseases, Institute of Biomedical Sciences and
| | - Pang-Hung Hsu
- the Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelun 20224, Taiwan, and
| | - Hsing-Wei Liu
- From the Division of Infectious Diseases, Institute of Biomedical Sciences and
| | - Chien-Hsin Chu
- From the Division of Infectious Diseases, Institute of Biomedical Sciences and
| | - Ya-Wen Chou
- Research Center of Agriculture and Biotechnology, Academia Sinica, Taipei 11529, Taiwan
| | - Yet-Ran Chen
- Research Center of Agriculture and Biotechnology, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Hui Chen
- the Department of Chemistry, National Chen Kung University, Tainan 70101, Taiwan
| | - Jung-Hsiang Tai
- From the Division of Infectious Diseases, Institute of Biomedical Sciences and
| |
Collapse
|
42
|
Greganova E, Steinmann M, Mäser P, Fankhauser N. In silico ionomics segregates parasitic from free-living eukaryotes. Genome Biol Evol 2014; 5:1902-9. [PMID: 24048281 PMCID: PMC3814192 DOI: 10.1093/gbe/evt134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals.
Collapse
Affiliation(s)
- Eva Greganova
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
43
|
α -Actinin TvACTN3 of Trichomonas vaginalis is an RNA-binding protein that could participate in its posttranscriptional iron regulatory mechanism. BIOMED RESEARCH INTERNATIONAL 2014; 2014:424767. [PMID: 24719864 PMCID: PMC3955661 DOI: 10.1155/2014/424767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/24/2013] [Indexed: 01/09/2023]
Abstract
Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system.
Collapse
|
44
|
Huang KY, Chen YYM, Fang YK, Cheng WH, Cheng CC, Chen YC, Wu TE, Ku FM, Chen SC, Lin R, Tang P. Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim Biophys Acta Gen Subj 2014; 1840:53-64. [DOI: 10.1016/j.bbagen.2013.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/22/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
|
45
|
Land KM, Wrischnik LA. Basic biology ofTrichomonas vaginalis:current explorations and future directions. Sex Transm Infect 2013; 89:416-7. [DOI: 10.1136/sextrans-2013-051153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
46
|
Alderete JF, Neace CJ. Identification, characterization, and synthesis of peptide epitopes and a recombinant six-epitope protein for Trichomonas vaginalis serodiagnosis. Immunotargets Ther 2013; 2:91-103. [PMID: 27471691 PMCID: PMC4928357 DOI: 10.2147/itt.s46694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
There is a need for a rapid, accurate serodiagnostic test useful for both women and men infected by Trichomonas vaginalis, which causes the number one sexually transmitted infection (STI). Women and men exposed to T. vaginalis make serum antibody to fructose-1,6-bisphosphate aldolase (ALD), α-enolase (ENO), and glyceraldehyde-3-phosphate dehydrogenase (GAP). We identified, by epitope mapping, the common and distinct epitopes of each protein detected by the sera of women patients with trichomonosis and by the sera of men highly seropositive to the immunogenic protein α-actinin (positive control sera). We analyzed the amino acid sequences to determine the extent of identity of the epitopes of each protein with other proteins in the databanks. This approach identified epitopes unique to T. vaginalis, indicating these peptide-epitopes as possible targets for a serodiagnostic test. Individual or combinations of 15-mer peptide epitopes with low to no identity with other proteins were reactive with positive control sera from both women and men but were unreactive with negative control sera. These analyses permitted the synthesis of a recombinant His6 fusion protein of 111 amino acids with an Mr of ~13.4 kDa, which consisted of 15-mer peptides of two distinct epitopes each for ALD, ENO, and GAP. This recombinant protein was purified by affinity chromatography. This composite protein was detected by enzyme-linked immunosorbent assay (ELISA), dot blots, and immunoblots, using positive control sera from women and men. These data indicate that it is possible to identify epitopes and that either singly, in combination, or as a composite protein represent targets for a point-of-care serodiagnostic test for T. vaginalis.
Collapse
Affiliation(s)
- J F Alderete
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Calvin J Neace
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
47
|
Gould SB, Woehle C, Kusdian G, Landan G, Tachezy J, Zimorski V, Martin WF. Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int J Parasitol 2013; 43:707-19. [DOI: 10.1016/j.ijpara.2013.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/15/2023]
|
48
|
Abstract
Despite having the highest prevalence of any sexually transmitted infection (STI) globally, there is a dearth of data describing Trichomonas vaginalis (TV) incidence and prevalence in the general population. The lack of basic epidemiological data is an obstacle to addressing the epidemic. Once considered a nuisance infection, the morbidities associated with TV have been increasingly recognised over the past decade, highlighting the importance of this pathogen as a public health problem. Recent developments in TV diagnostics and molecular biology have improved our understanding of TV epidemiology. Improved characterisation of the natural history of TV infection has allowed us to hypothesise possible explanations for observed variations in TV prevalence with age. Direct and indirect hormonal effects on the female genital tract provide a likely explanation for the greater burden of persistent TV infection among women compared with men. Further characterisation of the global epidemiology of TV could enhance our ability to respond to the TV epidemic.
Collapse
Affiliation(s)
- Danielle N Poole
- Department of Medicine, University of Washington, Seattle, Washington 98104, USA
| | | |
Collapse
|
49
|
Beltrán NC, Horváthová L, Jedelský PL, Šedinová M, Rada P, Marcinčiková M, Hrdý I, Tachezy J. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS One 2013; 8:e65148. [PMID: 23741475 PMCID: PMC3669245 DOI: 10.1371/journal.pone.0065148] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/17/2013] [Indexed: 12/02/2022] Open
Abstract
Iron plays a crucial role in metabolism as a key component of catalytic and redox cofactors, such as heme or iron-sulfur clusters in enzymes and electron-transporting or regulatory proteins. Limitation of iron availability by the host is also one of the mechanisms involved in immunity. Pathogens must regulate their protein expression according to the iron concentration in their environment and optimize their metabolic pathways in cases of limitation through the availability of respective cofactors. Trichomonas vaginalis, a sexually transmitted pathogen of humans, requires high iron levels for optimal growth. It is an anaerobe that possesses hydrogenosomes, mitochondrion-related organelles that harbor pathways of energy metabolism and iron-sulfur cluster assembly. We analyzed the proteomes of hydrogenosomes obtained from cells cultivated under iron-rich and iron-deficient conditions employing two-dimensional peptide separation combining IEF and nano-HPLC with quantitative MALDI-MS/MS. We identified 179 proteins, of which 58 were differentially expressed. Iron deficiency led to the upregulation of proteins involved in iron-sulfur cluster assembly and the downregulation of enzymes involved in carbohydrate metabolism. Interestingly, iron affected the expression of only some of multiple protein paralogues, whereas the expression of others was iron independent. This finding indicates a stringent regulation of differentially expressed multiple gene copies in response to changes in the availability of exogenous iron.
Collapse
Affiliation(s)
- Neritza Campo Beltrán
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Lenka Horváthová
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Petr L. Jedelský
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Miroslava Šedinová
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Petr Rada
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Michaela Marcinčiková
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
50
|
Conrad MD, Bradic M, Warring SD, Gorman AW, Carlton JM. Getting trichy: tools and approaches to interrogating Trichomonas vaginalis in a post-genome world. Trends Parasitol 2012; 29:17-25. [PMID: 23219217 DOI: 10.1016/j.pt.2012.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis is a parasite of the urogenital tract in men and women, with a worldwide presence and significant implications for global public health. T. vaginalis research entered the age of genomics with the publication of the first genome sequence in 2007, but subsequent utilization of other 'omics' technologies and methods has been slow. Here, we review some of the tools and approaches available to interrogate T. vaginalis biology, with an emphasis on recent advances and current limitations, and draw attention to areas where further efforts are needed to examine effectively the complex and intriguing biology of the parasite.
Collapse
Affiliation(s)
- Melissa D Conrad
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|