1
|
Garcia S, Kovarik A, Maiwald S, Mann L, Schmidt N, Pascual-Díaz JP, Vitales D, Weber B, Heitkam T. The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics. Mol Biol Evol 2024; 41:msae025. [PMID: 38306580 PMCID: PMC10946416 DOI: 10.1093/molbev/msae025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | - Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | | | - Daniel Vitales
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Laboratori de Botànica–Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Beatrice Weber
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Austria
| |
Collapse
|
2
|
Maiwald S, Mann L, Garcia S, Heitkam T. Evolving Together: Cassandra Retrotransposons Gradually Mirror Promoter Mutations of the 5S rRNA Genes. Mol Biol Evol 2024; 41:msae010. [PMID: 38262464 PMCID: PMC10853983 DOI: 10.1093/molbev/msae010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
The 5S rRNA genes are among the most conserved nucleotide sequences across all species. Similar to the 5S preservation we observe the occurrence of 5S-related nonautonomous retrotransposons, so-called Cassandras. Cassandras harbor highly conserved 5S rDNA-related sequences within their long terminal repeats, advantageously providing them with the 5S internal promoter. However, the dynamics of Cassandra retrotransposon evolution in the context of 5S rRNA gene sequence information and structural arrangement are still unclear, especially: (1) do we observe repeated or gradual domestication of the highly conserved 5S promoter by Cassandras and (2) do changes in 5S organization such as in the linked 35S-5S rDNA arrangements impact Cassandra evolution? Here, we show evidence for gradual co-evolution of Cassandra sequences with their corresponding 5S rDNAs. To follow the impact of 5S rDNA variability on Cassandra TEs, we investigate the Asteraceae family where highly variable 5S rDNAs, including 5S promoter shifts and both linked and separated 35S-5S rDNA arrangements have been reported. Cassandras within the Asteraceae mirror 5S rDNA promoter mutations of their host genome, likely as an adaptation to the host's specific 5S transcription factors and hence compensating for evolutionary changes in the 5S rDNA sequence. Changes in the 5S rDNA sequence and in Cassandras seem uncorrelated with linked/separated rDNA arrangements. We place all these observations into the context of angiosperm 5S rDNA-Cassandra evolution, discuss Cassandra's origin hypotheses (single or multiple) and Cassandra's possible impact on rDNA and plant genome organization, giving new insights into the interplay of ribosomal genes and transposable elements.
Collapse
Affiliation(s)
- Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC-MCNB), 08038 Barcelona, Catalonia, Spain
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, 8010 Graz, Austria
| |
Collapse
|
3
|
Guo Y, Liu J, Wang X, Li Y, Hou X, Du J. Distribution, expression and methylation analysis of positively selected genes provides insights into the evolution in Brassica rapa. PLoS One 2021; 16:e0256120. [PMID: 34624037 PMCID: PMC8500406 DOI: 10.1371/journal.pone.0256120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022] Open
Abstract
It is believed that positive selection is one of the major evolutionary forces underlying organism phenotypic diversification. Nevertheless, the characteristics of positively selected genes (PSGs), have not been well investigated. In this study, we performed a genome-wide analysis of orthologous genes between Brassica rapa (B. rapa) and Brassica oleracea (B. oleracea), and identified 468 putative PSGs. Our data show that, (1) PSGs are enriched in plant hormone signal transduction pathway and the transcription factor family; (2) PSGs are significantly lower expressed than randomly selected non-PSGs; (3) PSGs with tissue specificity are significantly higher expressed in the callus and reproductive tissues (flower and silique) than in vegetable tissues (root, stem and leaf); (4) the proportion of PSGs is positively correlated with the number of retained triplication gene copies, but the expression level of PSGs decay with the increasing of triplication gene copies; (5) the CG and CHG methylation levels of PSGs are significantly higher in introns and UTRs than in the promoter and exon regions; (6) the percent of transposable element is in proportion to the methylation level, and DNA methylation (especially in the CG content) has the tendency to reduce the expression of PSGs. This study provides insights into the characteristics, evolution, function, expression and methylation of PSGs in B. rapa.
Collapse
Affiliation(s)
- Yue Guo
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People’s Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jing Liu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingna Wang
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jianchang Du
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail:
| |
Collapse
|
4
|
Maiwald S, Weber B, Seibt KM, Schmidt T, Heitkam T. The Cassandra retrotransposon landscape in sugar beet (Beta vulgaris) and related Amaranthaceae: recombination and re-shuffling lead to a high structural variability. ANNALS OF BOTANY 2021; 127:91-109. [PMID: 33009553 PMCID: PMC7750724 DOI: 10.1093/aob/mcaa176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Plant genomes contain many retrotransposons and their derivatives, which are subject to rapid sequence turnover. As non-autonomous retrotransposons do not encode any proteins, they experience reduced selective constraints leading to their diversification into multiple families, usually limited to a few closely related species. In contrast, the non-coding Cassandra terminal repeat retrotransposons in miniature (TRIMs) are widespread in many plants. Their hallmark is a conserved 5S rDNA-derived promoter in their long terminal repeats (LTRs). As sugar beet (Beta vulgaris) has a well-described LTR retrotransposon landscape, we aim to characterize TRIMs in beet and related genomes. METHODS We identified Cassandra retrotransposons in the sugar beet reference genome and characterized their structural relationships. Genomic organization, chromosomal localization, and distribution of Cassandra-TRIMs across the Amaranthaceae were verified by Southern and fluorescent in situ hybridization. KEY RESULTS All 638 Cassandra sequences in the sugar beet genome contain conserved LTRs and thus constitute a single family. Nevertheless, variable internal regions required a subdivision into two Cassandra subfamilies within B. vulgaris. The related Chenopodium quinoa harbours a third subfamily. These subfamilies vary in their distribution within Amaranthaceae genomes, their insertion times and the degree of silencing by small RNAs. Cassandra retrotransposons gave rise to many structural variants, such as solo LTRs or tandemly arranged Cassandra retrotransposons. These Cassandra derivatives point to an interplay of template switch and recombination processes - mechanisms that likely caused Cassandra's subfamily formation and diversification. CONCLUSIONS We traced the evolution of Cassandra in the Amaranthaceae and detected a considerable variability within the short internal regions, whereas the LTRs are strongly conserved in sequence and length. Presumably these hallmarks make Cassandra a prime target for unequal recombination, resulting in the observed structural diversity, an example of the impact of LTR-mediated evolutionary mechanisms on the host genome.
Collapse
Affiliation(s)
- Sophie Maiwald
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kathrin M Seibt
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Tony Heitkam
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
The unusual dRemp retrotransposon is abundant, highly mutagenic, and mobilized only in the second pollen mitosis of some maize lines. Proc Natl Acad Sci U S A 2020; 117:18091-18098. [PMID: 32661148 DOI: 10.1073/pnas.2010234117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The frequent mutations recovered recently from the pollen of select maize lines resulted from the meiotic mobilization of specific low-copy number long-terminal repeat (LTR) retrotransposons, which differ among lines. Mutations that arise at male meiosis produce kernels with concordant mutant phenotypes in both endosperm and embryo because the two sperms that participate in double fertilization are genetically identical. Those are in a majority. However, a small minority of kernels with a mutant endosperm carry a nonconcordant normal embryo, pointing to a postmeiotic or microgametophytic origin. In this study, we have identified the basis for those nonconcordant mutations. We find that all are produced by transposition of a defective LTR retrotransposon that we have termed dRemp (defective retroelement mobile in pollen). This element has several unique properties. Unlike the mutagenic LTR retrotransposons identified previously, dRemp is present in hundreds of copies in all sequenced lines. It seems to transpose only at the second pollen mitosis because all dRemp insertion mutants are nonconcordant yet recoverable in either the endosperm or the embryo. Although it does not move in most lines, dRemp is highly mobile in the Corn Belt inbred M14, identified earlier by breeders as being highly unstable. Lastly, it can be recovered in an array of structures, ranging from solo LTRs to tandem dRemp repeats containing several internal LTRs, suggestive of extensive recombination during retrotransposition. These results shed further light on the spontaneous mutation process and on the possible basis for inbred instability in maize.
Collapse
|
6
|
Kalendar R, Raskina O, Belyayev A, Schulman AH. Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants. Int J Mol Sci 2020; 21:ijms21082931. [PMID: 32331257 PMCID: PMC7215508 DOI: 10.3390/ijms21082931] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Retrotransposable elements are widely distributed and diverse in eukaryotes. Their copy number increases through reverse-transcription-mediated propagation, while they can be lost through recombinational processes, generating genomic rearrangements. We previously identified extensive structurally uniform retrotransposon groups in which no member contains the gag, pol, or env internal domains. Because of the lack of protein-coding capacity, these groups are non-autonomous in replication, even if transcriptionally active. The Cassandra element belongs to the non-autonomous group called terminal-repeat retrotransposons in miniature (TRIM). It carries 5S RNA sequences with conserved RNA polymerase (pol) III promoters and terminators in its long terminal repeats (LTRs). Here, we identified multiple extended tandem arrays of Cassandra retrotransposons within different plant species, including ferns. At least 12 copies of repeated LTRs (as the tandem unit) and internal domain (as a spacer), giving a pattern that resembles the cellular 5S rRNA genes, were identified. A cytogenetic analysis revealed the specific chromosomal pattern of the Cassandra retrotransposon with prominent clustering at and around 5S rDNA loci. The secondary structure of the Cassandra retroelement RNA is predicted to form super-loops, in which the two LTRs are complementary to each other and can initiate local recombination, leading to the tandem arrays of Cassandra elements. The array structures are conserved for Cassandra retroelements of different species. We speculate that recombination events similar to those of 5S rRNA genes may explain the wide variation in Cassandra copy number. Likewise, the organization of 5S rRNA gene sequences is very variable in flowering plants; part of what is taken for 5S gene copy variation may be variation in Cassandra number. The role of the Cassandra 5S sequences remains to be established.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27 (Latokartanonkaari 5), FI-00014 Helsinki, Finland
- RSE “National Center for Biotechnology”, Korgalzhyn Highway 13/5, Nur-Sultan 010000, Kazakhstan
- Correspondence: (R.K.); (A.H.S.)
| | - Olga Raskina
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel;
| | - Alexander Belyayev
- Laboratory of Molecular Cytogenetics and Karyology, Institute of Botany of the ASCR, Zámek 1, CZ-252 43 Průhonice, Czech Republic;
| | - Alan H. Schulman
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
- Correspondence: (R.K.); (A.H.S.)
| |
Collapse
|
7
|
Šatović E, Luchetti A, Pasantes JJ, García-Souto D, Cedilak A, Mantovani B, Plohl M. Terminal-Repeat Retrotransposons in Miniature (TRIMs) in bivalves. Sci Rep 2019; 9:19962. [PMID: 31882746 PMCID: PMC6934838 DOI: 10.1038/s41598-019-56502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Terminal repeat retrotransposons in miniature (TRIMs) are small non-autonomous LTR retrotransposons consisting of two terminal direct repeats surrounding a short internal domain. The detection and characterization of these elements has been mainly limited to plants. Here we present the first finding of a TRIM element in bivalves, and among the first known in the kingdom Animalia. Class Bivalvia has high ecological and commercial importance in marine ecosystems and aquaculture, and, in recent years, an increasing number of genomic studies has addressed to these organisms. We have identified biv-TRIM in several bivalve species: Donax trunculus, Ruditapes decussatus, R. philippinarum, Venerupis corrugata, Polititapes rhomboides, Venus verrucosa, Dosinia exoleta, Glycymeris glycymeris, Cerastoderma edule, Magallana gigas, Mytilus galloprovincialis. biv-TRIM has several characteristics typical for this group of elements, exhibiting different variations. In addition to canonically structured elements, solo-TDRs and tandem repeats were detected. The presence of this element in the genome of each species is <1%. The phylogenetic analysis showed a complex clustering pattern of biv-TRIM elements, and indicates the involvement of horizontal transfer in the spreading of this element.
Collapse
Affiliation(s)
- Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Juan J Pasantes
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
| | - Daniel García-Souto
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Andrea Cedilak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
8
|
Orozco-Arias S, Isaza G, Guyot R. Retrotransposons in Plant Genomes: Structure, Identification, and Classification through Bioinformatics and Machine Learning. Int J Mol Sci 2019; 20:E3837. [PMID: 31390781 PMCID: PMC6696364 DOI: 10.3390/ijms20153837] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 01/26/2023] Open
Abstract
Transposable elements (TEs) are genomic units able to move within the genome of virtually all organisms. Due to their natural repetitive numbers and their high structural diversity, the identification and classification of TEs remain a challenge in sequenced genomes. Although TEs were initially regarded as "junk DNA", it has been demonstrated that they play key roles in chromosome structures, gene expression, and regulation, as well as adaptation and evolution. A highly reliable annotation of these elements is, therefore, crucial to better understand genome functions and their evolution. To date, much bioinformatics software has been developed to address TE detection and classification processes, but many problematic aspects remain, such as the reliability, precision, and speed of the analyses. Machine learning and deep learning are algorithms that can make automatic predictions and decisions in a wide variety of scientific applications. They have been tested in bioinformatics and, more specifically for TEs, classification with encouraging results. In this review, we will discuss important aspects of TEs, such as their structure, importance in the evolution and architecture of the host, and their current classifications and nomenclatures. We will also address current methods and their limitations in identifying and classifying TEs.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales 170001, Colombia
- Department of Systems and Informatics, Universidad de Caldas, Manizales 170001, Colombia
| | - Gustavo Isaza
- Department of Systems and Informatics, Universidad de Caldas, Manizales 170001, Colombia
| | - Romain Guyot
- Department of Electronics and Automatization, Universidad Autónoma de Manizales, Manizales 170001, Colombia.
- Institut de Recherche pour le Développement, CIRAD, University Montpellier, 34000 Montpellier, France.
| |
Collapse
|
9
|
Jiang S, Wang X, Shi C, Luo J. Genome-Wide Identification and Analysis of High-Copy-Number LTR Retrotransposons in Asian Pears. Genes (Basel) 2019; 10:genes10020156. [PMID: 30781727 PMCID: PMC6409787 DOI: 10.3390/genes10020156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022] Open
Abstract
A large proportion of the genome of 'Suli' pear (Pyrus pyrifolia) contains long terminal repeat retrotransposons (LTR-RTs), which suggests that LTR-RTs have played important roles in the evolution of Pyrus. Further analysis of retrotransposons, particularly of high-copy-number LTR-RTs in different species, will provide new insights into the evolutionary history of Pyrus. A total of 4912 putative LTR-RTs classified into 198 subfamilies were identified in the 'Suli' pear genome. Six Asian pear accessions, including cultivars and wild species, were resequenced. The comparison of copy number for each LTR-RT subfamily was evaluated in Pyrus accessions, and data showed up to four-fold differences for some subfamilies. This contrast suggests different fates for retrotransposon families in the evolution of Pyrus. Fourteen high-copy-number subfamilies were identified in Asian pears, and more than 50% of the LTR-RTs in the genomes of all Pyrus accessions were from these 14 identified LTR-RT subfamilies. Their average insertion time was 3.42 million years ago, which suggests that these subfamilies were recently inserted into the genome. Many homologous and specific retrotransposon insertion sites were identified in oriental and occidental pears, suggesting that the duplication of retrotransposons has occurred throughout almost the entire origin and evolution of Pyrus species. The LTR-RTs show high heterogeneity, and their copy numbers vary in different Pyrus species. Thus, our findings suggest that LTR-RTs are an important source of genetic variation among Pyrus species.
Collapse
Affiliation(s)
- Shuang Jiang
- Forestry and Pomology Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Xiaoqing Wang
- Forestry and Pomology Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Chunhui Shi
- Forestry and Pomology Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Jun Luo
- Forestry and Pomology Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
10
|
Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, Osman M, Taheri S, Bakar MFA, Isa MNM, Noor YM. Contribution of transposable elements in the plant's genome. Gene 2018; 665:155-166. [PMID: 29684486 DOI: 10.1016/j.gene.2018.04.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed M Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | - David Rice
- Department of Molecular Biology & Biotecnology, University of Sheffield, United Kingdom
| | - M Y Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Osman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
11
|
Yin H, Wu X, Shi D, Chen Y, Qi K, Ma Z, Zhang S. TGTT and AACA: two transcriptionally active LTR retrotransposon subfamilies with a specific LTR structure and horizontal transfer in four Rosaceae species. Mob DNA 2017; 8:14. [PMID: 29093758 PMCID: PMC5659011 DOI: 10.1186/s13100-017-0098-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/18/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Long terminal repeat retrotransposons (LTR-RTs) are major components of plant genomes. Common LTR-RTs contain the palindromic dinucleotide 5'-'TG'-'CA'-3' motif at the ends. Thus, further analyses of non-canonical LTR-RTs with non-palindromic motifs will enhance our understanding of their structures and evolutionary history. RESULTS Here, we report two new LTR-RT subfamilies (TGTT and AACA) with atypical dinucleotide ends of 5'-'TG'-'TT'-3', and 5'-'AA'-'CA'-3' in pear, apple, peach and mei. In total, 91 intact LTR-RTs were identified and classified into four TGTT and four AACA families. A structural annotation analysis showed that the four TGTT families, together with AACA1 and AACA2, belong to the Copia-like superfamily, whereas AACA3 and AACA4 appeared to be TRIM elements. The average amplification time frames for the eight families ranged from 0.05 to 2.32 million years. Phylogenetics coupled with sequence analyses revealed that the TGTT1 elements of peach were horizontally transferred from apple. In addition, 32 elements from two TGTT and three AACA families had detectable transcriptional activation, and a qRT-PCR analysis indicated that their expression levels varied dramatically in different species, organs and stress treatments. CONCLUSIONS Two novel LTR-RT subfamilies that terminated with non-palindromic dinucleotides at the ends of their LTRs were identified in four Rosaceae species, and a deep analysis showed their recent activity, horizontal transfer and varied transcriptional levels in different species, organs and stress treatments. This work enhances our understanding of the structural variation and evolutionary history of LTR-RTs in plants and also provides a valuable resource for future investigations of LTR-RTs having specific structures in other species.
Collapse
Affiliation(s)
- Hao Yin
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiao Wu
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Dongqing Shi
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Chen
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zhengqiang Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Jiang S, Cai D, Sun Y, Teng Y. Isolation and characterization of putative functional long terminal repeat retrotransposons in the Pyrus genome. Mob DNA 2016; 7:1. [PMID: 26779288 PMCID: PMC4715297 DOI: 10.1186/s13100-016-0058-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 01/28/2023] Open
Abstract
Background Long terminal repeat (LTR)-retrotransposons constitute 42.4 % of the genome of the ‘Suli’ pear (Pyrus pyrifolia white pear group), implying that retrotransposons have played important roles in Pyrus evolution. Therefore, further analysis of retrotransposons will enhance our understanding of the evolutionary history of Pyrus. Results We identified 1836 LTR-retrotransposons in the ‘Suli’ pear genome, of which 440 LTR-retrotransposons were predicted to contain at least two of three gene models (gag, integrase and reverse transcriptase). Because these were most likely to be functional transposons, we focused our analyses on this set of 440. Most of the LTR-retrotransposons were estimated to have inserted into the genome less than 2.5 million years ago. Sequence analysis showed that the reverse transcriptase component of the identified LTR-retrotransposons was highly heterogeneous. Analyses of transcripts assembled from RNA-Seq databases of two cultivars of Pyrus species showed that LTR-retrotransposons were expressed in the buds and fruit of Pyrus. A total of 734 coding sequences in the ‘Suli’ genome were disrupted by the identified LTR-retrotransposons. Five high-copy-number LTR-retrotransposon families were identified in Pyrus. These families were rarely found in the genomes of Malus and Prunus, but were distributed extensively in Pyrus and abundance varied between species. Conclusions We identified potentially functional, full-length LTR-retrotransposons with three gene models in the ‘Suli’ genome. The analysis of RNA-seq data demonstrated that these retrotransposons are expressed in the organs of pears. The differential copy number of LTR-retrotransposon families between Pyrus species suggests that the transposition of retrotransposons is an important evolutionary force driving the genetic divergence of species within the genus. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0058-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Jiang
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058 China ; Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403 China
| | - Danying Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021 China
| | - Yongwang Sun
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058 China ; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, Zhejiang 310058 China ; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, Zhejiang 310058 China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058 China ; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, Zhejiang 310058 China ; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, Zhejiang 310058 China
| |
Collapse
|
13
|
Gao D, Li Y, Kim KD, Abernathy B, Jackson SA. Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes. Genome Biol 2016; 17:7. [PMID: 26781660 PMCID: PMC4717578 DOI: 10.1186/s13059-015-0867-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/29/2015] [Indexed: 12/05/2022] Open
Abstract
Background Terminal repeat retrotransposons in miniature (TRIMs) are a unique group of small long terminal repeat retrotransposons that are difficult to identify. Thus far, only a few TRIMs have been characterized in the euphyllophytes, and their evolutionary and biological significance as well as their transposition mechanisms are poorly understood. Results Using a combination of de novo and homology-based methods, we annotate TRIMs in 48 plant genome sequences, spanning land plants to algae. The TRIMs are grouped into 156 families including 145 that were previously undefined. Notably, we identify the first TRIMs in a lycophyte and non-vascular plants. The majority of the TRIM families are highly conserved and shared within and between plant families. Unlike other long terminal repeat retrotransposons, TRIMs are enriched in or near genes; they are also targeted by sRNAs between 21 and 24 nucleotides in length, and are frequently found in CG body-methylated genes. Importantly, we also identify putative autonomous retrotransposons and very recent transpositions of a TRIM element in Oryza sativa. Conclusions We perform the most comprehensive analysis of TRIM transposons thus far and report that TRIMs are ubiquitous across plant genomes. Our results show that TRIMs are more frequently associated with large and CG body-methylated genes that have undergone strong purifying selection. Our findings also indicate that TRIMs are likely derived from internal deletions of large long terminal repeat retrotransposons. Finally, our data and methodology are important resources for the characterization and evolutionary and genomic studies of long terminal repeat retrotransposons in other genomes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0867-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongying Gao
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.
| | - Yupeng Li
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Krupovic M, Shmakov S, Makarova KS, Forterre P, Koonin EV. Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity. Genome Biol Evol 2016; 8:375-86. [PMID: 26764427 PMCID: PMC4779613 DOI: 10.1093/gbe/evw006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2016] [Indexed: 12/12/2022] Open
Abstract
Casposons are a superfamily of putative self-synthesizing transposable elements that are predicted to employ a homolog of Cas1 protein as a recombinase and could have contributed to the origin of the CRISPR-Cas adaptive immunity systems in archaea and bacteria. Casposons remain uncharacterized experimentally, except for the recent demonstration of the integrase activity of the Cas1 homolog, and given their relative rarity in archaea and bacteria, original comparative genomic analysis has not provided direct indications of their mobility. Here, we report evidence of casposon mobility obtained by comparison of the genomes of 62 strains of the archaeon Methanosarcina mazei. In these genomes, casposons are variably inserted in three distinct sites indicative of multiple, recent gains, and losses. Some casposons are inserted into other mobile genetic elements that might provide vehicles for horizontal transfer of the casposons. Additionally, many M. mazei genomes contain previously undetected solo terminal inverted repeats that apparently are derived from casposons and could resemble intermediates in CRISPR evolution. We further demonstrate the sequence specificity of casposon insertion and note clear parallels with the adaptation mechanism of CRISPR-Cas. Finally, besides identifying additional representatives in each of the three originally defined families, we describe a new, fourth, family of casposons.
Collapse
Affiliation(s)
- Mart Krupovic
- Unité Biologie Moléculaire Du Gène Chez Les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France
| | - Sergey Shmakov
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Kira S Makarova
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| | - Patrick Forterre
- Unité Biologie Moléculaire Du Gène Chez Les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France
| | - Eugene V Koonin
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Šurbanovski N, Brilli M, Moser M, Si-Ammour A. A highly specific microRNA-mediated mechanism silences LTR retrotransposons of strawberry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:70-82. [PMID: 26611654 DOI: 10.1111/tpj.13090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
Small RNAs are involved in a plethora of functions in plant genomes. In general, transcriptional gene silencing is mediated by 24-nucleotide siRNAs and is required for maintaining transposable elements in a silenced state. However, microRNAs are not commonly associated with transposon silencing. In this study, we performed small RNA transcriptome and degradome analyses of the Rosaceae model plant Fragaria vesca (the woodland strawberry) at the genome-wide level, and identified miRNA families and their targets. We report a highly specific mechanism of LTR retrotransposon silencing mediated by an abundant, ubiquitously expressed miRNA (fve-miR1511) generated from a single locus. This miRNA specifically targets LTR retroelements, silencing them post-transcriptionally by perfectly pairing to the highly conserved primer binding site for methionyl initiator tRNA that is essential for reverse transcription. We investigated the possible origins of this miRNA, and present evidence that the pre-miR1511 hairpin structure probably derived from a locus coding for tRNA(iM) (et) through a single microinversion event. Our study shows that this miRNA targets retrotransposons specifically and constitutively, and contributes to features such as genome stability, size and architecture in a far more direct way than previously thought.
Collapse
Affiliation(s)
- Nada Šurbanovski
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| | - Matteo Brilli
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| | - Mirko Moser
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| | - Azeddine Si-Ammour
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| |
Collapse
|
16
|
Zhao D, Ferguson AA, Jiang N. What makes up plant genomes: The vanishing line between transposable elements and genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:366-80. [PMID: 26709091 DOI: 10.1016/j.bbagrm.2015.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023]
Abstract
The ultimate source of evolution is mutation. As the largest component in plant genomes, transposable elements (TEs) create numerous types of mutations that cannot be mimicked by other genetic mechanisms. When TEs insert into genomic sequences, they influence the expression of nearby genes as well as genes unlinked to the insertion. TEs can duplicate, mobilize, and recombine normal genes or gene fragments, with the potential to generate new genes or modify the structure of existing genes. TEs also donate their transposase coding regions for cellular functions in a process called TE domestication. Despite the host defense against TE activity, a subset of TEs survived and thrived through discreet selection of transposition activity, target site, element size, and the internal sequence. Finally, TEs have established strategies to reduce the efficacy of host defense system by increasing the cost of silencing TEs. This review discusses the recent progress in the area of plant TEs with a focus on the interaction between TEs and genes.
Collapse
Affiliation(s)
- Dongyan Zhao
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA
| | - Ann A Ferguson
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA.
| |
Collapse
|
17
|
Yin H, Du J, Wu J, Wei S, Xu Y, Tao S, Wu J, Zhang S. Genome-wide Annotation and Comparative Analysis of Long Terminal Repeat Retrotransposons between Pear Species of P. bretschneideri and P. Communis. Sci Rep 2015; 5:17644. [PMID: 26631625 PMCID: PMC4668562 DOI: 10.1038/srep17644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/03/2015] [Indexed: 12/02/2022] Open
Abstract
Recent sequencing of the Oriental pear (P. bretschneideri Rehd.) genome and the availability of the draft genome sequence of Occidental pear (P. communis L.), has provided a good opportunity to characterize the abundance, distribution, timing, and evolution of long terminal repeat retrotransposons (LTR-RTs) in these two important fruit plants. Here, a total of 7247 LTR-RTs, which can be classified into 148 families, have been identified in the assembled Oriental pear genome. Unlike in other plant genomes, approximately 90% of these elements were found to be randomly distributed along the pear chromosomes. Further analysis revealed that the amplification timeframe of elements varies dramatically in different families, super-families and lineages, and the Copia-like elements have highest activity in the recent 0.5 million years (Mys). The data also showed that two genomes evolved with similar evolutionary rates after their split from the common ancestor ~0.77–1.66 million years ago (Mya). Overall, the data provided here will be a valuable resource for further investigating the impact of transposable elements on gene structure, expression, and epigenetic modification in the pear genomes.
Collapse
Affiliation(s)
- Hao Yin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jianchang Du
- Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shuwei Wei
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yingxiu Xu
- Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Shutian Tao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
18
|
Cheng C, Tarutani Y, Miyao A, Ito T, Yamazaki M, Sakai H, Fukai E, Hirochika H. Loss of function mutations in the rice chromomethylase OsCMT3a cause a burst of transposition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:1069-1081. [PMID: 26243209 DOI: 10.1111/tpj.12952] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Methylation patterns of plants are unique as, in addition to the methylation at CG dinucleotides that occurs in mammals, methylation also occurs at non-CG sites. Genes are methylated at CG sites, but transposable elements (TEs) are methylated at both CG and non-CG sites. The role of non-CG methylation in transcriptional silencing of TEs is being extensively studied at this time, but only very rare transpositions have been reported when non-CG methylation machineries have been compromised. To understand the role of non-CG methylation in TE suppression and in plant development, we characterized rice mutants with changes in the chromomethylase gene, OsCMT3a. oscmt3a mutants exhibited a dramatic decrease in CHG methylation, changes in the expression of some genes and TEs, and pleiotropic developmental abnormalities. Genome resequencing identified eight TE families mobilized in oscmt3a during normal propagation. These TEs included tissue culture-activated copia retrotransposons Tos17 and Tos19 (Lullaby), a pericentromeric clustered high-copy-number non-autonomous gypsy retrotransposon Dasheng, two copia retrotransposons Osr4 and Osr13, a hAT-tip100 transposon DaiZ, a MITE transposon mPing, and a LINE element LINE1-6_OS. We confirmed the transposition of these TEs by polymerase chain reaction (PCR) and/or Southern blot analysis, and showed that transposition was dependent on the oscmt3a mutation. These results demonstrated that OsCMT3a-mediated non-CG DNA methylation plays a critical role in development and in the suppression of a wide spectrum of TEs. These in planta mobile TEs are important for studying the interaction between TEs and the host genome, and for rice functional genomics.
Collapse
Affiliation(s)
- Chaoyang Cheng
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yoshiaki Tarutani
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Akio Miyao
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Tasuku Ito
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Muneo Yamazaki
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroaki Sakai
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Eigo Fukai
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hirohiko Hirochika
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
19
|
The Wukong Terminal-Repeat Retrotransposon in Miniature (TRIM) Elements in Diverse Maize Germplasm. G3-GENES GENOMES GENETICS 2015; 5:1585-92. [PMID: 26019188 PMCID: PMC4528315 DOI: 10.1534/g3.115.018317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
TRIMs (terminal-repeat retrotransposons in miniature), which are characterized by their small size, have been discovered in all investigated vascular plants and even in animals. Here, we identified a highly conservative TRIM family referred to as Wukong elements in the maize genome. The Wukong family shows a distinct pattern of tandem arrangement in the maize genome suggesting a high rate of unequal crossing over. Estimation of insertion times implies a burst of retrotransposition activity of the Wukong family after the allotetraploidization of maize. Using next-generation sequencing data, we detected 87 new Wukong insertions in parents of the maize NAM population relative to the B73 reference genome and found abundant insertion polymorphism of Wukong elements in 75 re-sequenced maize lines, including teosinte, landraces, and improved lines. These results suggest that Wukong elements possessed a persistent retrotransposition activity throughout maize evolution. Moreover, the phylogenetic relationships among 76 maize inbreds and their relatives based on insertion polymorphisms of Wukong elements should provide us with reliable molecular markers for biodiversity and genetics studies.
Collapse
|