1
|
Yan XH, Pei SC, Yen HC, Blanchard A, Sirand-Pugnet P, Baby V, Gasparich GE, Kuo CH. Delineating bacterial genera based on gene content analysis: a case study of the Mycoplasmatales-Entomoplasmatales clade within the class Mollicutes. Microb Genom 2024; 10:001321. [PMID: 39546405 PMCID: PMC11567158 DOI: 10.1099/mgen.0.001321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Genome-based analysis allows for large-scale classification of diverse bacteria and has been widely adopted for delineating species. Unfortunately, for higher taxonomic ranks such as genus, establishing a generally accepted approach based on genome analysis is challenging. While core-genome phylogenies depict the evolutionary relationships among species, determining the correspondence between clades and genera may not be straightforward. For genotypic divergence, the percentage of conserved proteins and genome-wide average amino acid identity are commonly used, but often do not provide a clear threshold for classification. In this work, we investigated the utility of global comparisons and data visualization in identifying clusters of species based on their overall gene content and rationalized that such patterns can be integrated with phylogeny and other information such as phenotypes for improving taxonomy. As a proof of concept, we selected 177 representative genome sequences from the Mycoplasmatales-Entomoplasmatales clade within the class Mollicutes for a case study. We found that the clustering patterns corresponded to the current understanding of these organisms, namely the split into three above-genus groups: Hominis, Pneumoniae and Spiroplasma-Entomoplasmataceae-Mycoides. However, at the genus level, several important issues were found. For example, recent taxonomic revisions that split the Hominis group into three genera and Entomoplasmataceae into five genera are problematic, as those newly described or emended genera lack clear differentiations in gene content from one another. Moreover, several cases of misclassification were identified. These findings demonstrated the utility of this approach and its potential application to other bacteria.
Collapse
Affiliation(s)
- Xiao-Hua Yan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan, ROC
| | - Shen-Chian Pei
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan, ROC
| | - Hsi-Ching Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan, ROC
| | - Alain Blanchard
- INRAE, BFP, UMR 1332, Université de Bordeaux, 33140 Villenave d'Ornon, France
| | | | - Vincent Baby
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Montreal, Quebec J2S 2M2, Canada
| | - Gail E. Gasparich
- Office of Provost and Senior Vice President for Academic Affairs, Millersville University, Millersville, PA 17551, USA
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan, ROC
| |
Collapse
|
2
|
Arai H, Inoue MN, Kageyama D. Male-killing mechanisms vary between Spiroplasma species. Front Microbiol 2022; 13:1075199. [PMID: 36519169 PMCID: PMC9742256 DOI: 10.3389/fmicb.2022.1075199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 03/11/2024] Open
Abstract
Male-killing, a male-specific death of arthropod hosts during development, is induced by Spiroplasma (Mollicutes) endosymbionts of the Citri-Poulsonii and the Ixodetis groups, which are phylogenetically distant groups. Spiroplasma poulsonii induces male-killing in Drosophila melanogaster (Diptera) using the Spaid toxin that harbors ankyrin repeats, whereas little is known about the origin and mechanisms of male-killing induced by Spiroplasma ixodetis. Here, we analyzed the genome and the biological characteristics of a male-killing S. ixodetis strain sHm in the moth Homona magnanima (Tortricidae, Lepidoptera). Strain sHm harbored a 2.1 Mb chromosome and two potential plasmids encoding Type IV effectors, putatively involved in virulence and host-symbiont interactions. Moreover, sHm did not harbor the spaid gene but harbored 10 ankyrin genes that were homologous to those in other S. ixodetis strains. In contrast to the predominant existence of S. poulsonii in hemolymph, our quantitative PCR assays revealed a systemic distribution of strain sHm in H. magnanima, with particularly high titers in Malpighian tubules but low titers in hemolymph. Furthermore, transinfection assays confirmed that strain sHm can infect cultured cells derived from distantly related insects, namely Aedes albopictus (Diptera) and Bombyx mori (Lepidoptera). These results suggest different origins and characteristics of S. ixodetis- and S. poulsonii-induced male-killing.
Collapse
Affiliation(s)
- Hiroshi Arai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Maki N. Inoue
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
3
|
Liu P, Li Y, Ye Y, Chen J, Li R, Zhang Q, Li Y, Wang W, Meng Q, Ou J, Yang Z, Sun W, Gu W. The genome and antigen proteome analysis of Spiroplasma mirum. Front Microbiol 2022; 13:996938. [PMID: 36406404 PMCID: PMC9666726 DOI: 10.3389/fmicb.2022.996938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023] Open
Abstract
Spiroplasma mirum, small motile wall-less bacteria, was originally isolated from a rabbit tick and had the ability to infect newborn mice and caused cataracts. In this study, the whole genome and antigen proteins of S. mirum were comparative analyzed and investigated. Glycolysis, pentose phosphate pathway, arginine metabolism, nucleotide biosynthesis, and citrate fermentation were found in S. mirum, while trichloroacetic acid, fatty acids metabolism, phospholipid biosynthesis, terpenoid biosynthesis, lactose-specific PTS, and cofactors synthesis were completely absent. The Sec systems of S. mirum consist of SecA, SecE, SecDF, SecG, SecY, and YidC. Signal peptidase II was identified in S. mirum, but no signal peptidase I. The relative gene order in S. mirum is largely conserved. Genome analysis of available species in Mollicutes revealed that they shared only 84 proteins. S. mirum genome has 381 pseudogenes, accounting for 31.6% of total protein-coding genes. This is the evidence that spiroplasma genome is under an ongoing genome reduction. Immunoproteomics, a new scientific technique combining proteomics and immunological analytical methods, provided the direction of our research on S. mirum. We identified 49 proteins and 11 proteins (9 proteins in common) in S. mirum by anti-S. mirum serum and negative serum, respectively. Forty proteins in S. mirum were identified in relation to the virulence. All these proteins may play key roles in the pathogeny and can be used in the future for diagnoses and prevention.
Collapse
Affiliation(s)
- Peng Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Yuxin Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Youyuan Ye
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Jiaxin Chen
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Rong Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Qinyi Zhang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Yuan Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Wen Wang
- Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Qingguo Meng
- Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Jingyu Ou
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Zhujun Yang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Wei Sun
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Wei Gu
- Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Kakizawa S, Hosokawa T, Oguchi K, Miyakoshi K, Fukatsu T. Spiroplasma as facultative bacterial symbionts of stinkbugs. Front Microbiol 2022; 13:1044771. [PMID: 36353457 PMCID: PMC9638005 DOI: 10.3389/fmicb.2022.1044771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Many insects are associated with facultative symbiotic bacteria, and their infection prevalence provides an important clue to understand the biological impact of such microbial associates. Here we surveyed diverse stinkbugs representing 13 families, 69 genera, 97 species and 468 individuals for Spiroplasma infection. Diagnostic PCR detection revealed that 4 families (30.8%), 7 genera (10.1%), 11 species (11.3%) and 21 individuals (4.5%) were Spiroplasma positive. All the 21 stinkbug samples with Spiroplasma infection were subjected to PCR amplification and sequencing of Spiroplasma’s 16S rRNA gene. Molecular phylogenetic analysis uncovered that the stinkbug-associated Spiroplasma symbionts were placed in three distinct clades in the Spiroplasmataceae, highlighting multiple evolutionary origins of the stinkbug-Spiroplasma associations. The Spiroplasma phylogeny did not reflect the host stinkbug phylogeny, indicating the absence of host-symbiont co-speciation. On the other hand, the Spiroplasma symbionts associated with the same stinkbug family tended to be related to each other, suggesting the possibility of certain levels of host-symbiont specificity and/or ecological symbiont sharing. Amplicon sequencing analysis targeting bacterial 16S rRNA gene, FISH visualization of the symbiotic bacteria, and rearing experiments of the host stinkbugs uncovered that the Spiroplasma symbionts are generally much less abundant in comparison with the primary gut symbiotic bacteria, localized to various tissues and organs at relatively low densities, and vertically transmitted to the offspring. On the basis of these results, we conclude that the Spiroplasma symbionts are, in general, facultative bacterial associates of low infection prevalence that are not essential but rather commensalistic for the host stinkbugs, like the Spiroplasma symbionts of fruit flies and aphids, although their impact on the host phenotypes should be evaluated in future studies.
Collapse
Affiliation(s)
- Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- *Correspondence: Shigeyuki Kakizawa, ; Takema Fukatsu,
| | - Takahiro Hosokawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Kohei Oguchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Misaki Marine Biological Station (MMBS), School of Science, The University of Tokyo, Miura, Japan
| | - Kaori Miyakoshi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Shigeyuki Kakizawa, ; Takema Fukatsu,
| |
Collapse
|
5
|
Molecular Detection and Differentiation of Arthropod, Fungal, Protozoan, Bacterial and Viral Pathogens of Honeybees. Vet Sci 2022; 9:vetsci9050221. [PMID: 35622749 PMCID: PMC9145064 DOI: 10.3390/vetsci9050221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The honeybee Apis mellifera is highly appreciated worldwide because of its products, but also as it is a pollinator of crops and wild plants. The beehive is vulnerable to infections due to arthropods, fungi, protozoa, bacteria and/or viruses that manage to by-pass the individual and social immune mechanisms of bees. Due to the close proximity of bees in the beehive and their foraging habits, infections easily spread within and between beehives. Moreover, international trade of bees has caused the global spread of infections, several of which result in significant losses for apiculture. Only in a few cases can infections be diagnosed with the naked eye, by direct observation of the pathogen in the case of some arthropods, or by pathogen-associated distinctive traits. Development of molecular methods based on the amplification and analysis of one or more genes or genomic segments has brought significant progress to the study of bee pathogens, allowing for: (i) the precise and sensitive identification of the infectious agent; (ii) the analysis of co-infections; (iii) the description of novel species; (iv) associations between geno- and pheno-types and (v) population structure studies. Sequencing of bee pathogen genomes has allowed for the identification of new molecular targets and the development of specific genotypification strategies.
Collapse
|
6
|
Genome mosaicism in field strains of Mycoplasma bovis as footprints of in-host horizontal chromosomal transfer. Appl Environ Microbiol 2021; 88:e0166121. [PMID: 34669423 DOI: 10.1128/aem.01661-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer was long thought to be marginal in Mollicutes, but the capacity of some of these wall-less bacteria to exchange large chromosomal regions has been recently documented. Mycoplasma chromosomal transfer (MCT) is an unconventional mechanism that relies on the presence of a functional integrative conjugative element (ICE) in at least one partner and involves the horizontal acquisition of small and large chromosomal fragments from any part of the donor genome, which results in progenies composed of an infinitive variety of mosaic genomes. The present study focuses on Mycoplasma bovis, an important pathogen of cattle responsible for major economic losses worldwide. By combining phylogenetic tree reconstructions and detailed comparative genome analyses of 36 isolates collected in Spain (2016-2018) we confirmed the mosaic nature of 16 field isolates and mapped chromosomal transfers exchanged between their hypothetical ancestors. This study provides evidence that MCT can take place in the field, most likely during co-infections by multiple strains. Because mobile genetic elements (MGEs) are classical contributors of genome plasticity, the presence of phages, insertion sequences (ISs) and ICEs was also investigated. Data revealed that these elements are widespread within the M. bovis species and evidenced classical horizontal transfer of phages and ICEs in addition to MCT. These events contribute to wide-genome diversity and reorganization within this species and may have a tremendous impact on diagnostic and disease control. IMPORTANCE Mycoplasma bovis is a major pathogen of cattle with significant detrimental economic and animal welfare on cattle rearing worldwide. Understanding the evolution and the adaptative potential of pathogenic mycoplasma species in the natural host is essential to combating them. In this study, we documented the occurrence of mycoplasma chromosomal transfer, an atypical mechanism of horizontal gene transfer, in field isolates of M. bovis that provide new insights into the evolution of this pathogenic species in their natural host. Despite these events are expected to occur at low frequency, their impact is accountable for genome-wide variety and reorganization within M. bovis species, which may compromise both diagnostic and disease control.
Collapse
|
7
|
Chernova OA, Chernov VM, Mouzykantov AA, Baranova NB, Edelstein IA, Aminov RI. Antimicrobial drug resistance mechanisms among Mollicutes. Int J Antimicrob Agents 2020; 57:106253. [PMID: 33264670 DOI: 10.1016/j.ijantimicag.2020.106253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 07/08/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
Representatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations. Despite limited biosynthetic capabilities, they are highly adaptable and capable of surviving under various stress and extreme conditions, including antimicrobial selective pressure. This review describes current understanding of antibiotic resistance (ABR) mechanisms in Mollicutes. Protective mechanisms in these bacteria include point mutations, which may include non-target genes, and unique gene exchange mechanisms, contributing to transfer of ABR genes. Better understanding of the mechanisms of emergence and dissemination of ABR in Mollicutes is crucial to control these hypermutable bacteria and prevent the occurrence of highly ABR strains.
Collapse
Affiliation(s)
- Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Natalya B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Inna A Edelstein
- Smolensk State Medical University, Ministry of Health of Russian Federation, Smolensk, Russian Federation
| | - Rustam I Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
8
|
The complex phylogenetic relationships of a 4mC/6mA DNA methyltransferase in prokaryotes. Mol Phylogenet Evol 2020; 149:106837. [PMID: 32304827 DOI: 10.1016/j.ympev.2020.106837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023]
Abstract
DNA methyltransferases are proteins that modify DNA via attachment of methyl groups to nucleobases and are ubiquitous across the bacterial, archaeal, and eukaryotic domains of life. Here, we investigated the complex evolutionary history of the large and consequential 4mC/6mA DNA methyltransferase protein family using phylogenetic reconstruction of amino acid sequences. We present a well-supported phylogeny of this family based on systematic sampling of taxa across superphyla of bacteria and archaea. We compared the phylogeny to a current representation of the species tree of life and found that the 4mC/6mA methyltransferase family has a strikingly complex evolutionary history that likely began sometime after the last universal common ancestor of life diverged into the bacterial and archaeal lineages and probably involved many horizontal gene transfers within and between domains. Despite the complexity of its evolutionary history, we inferred that only one significant shift in molecular evolutionary rate characterizes the diversification of this protein family.
Collapse
|
9
|
Ipoutcha T, Tsarmpopoulos I, Talenton V, Gaspin C, Moisan A, Walker CA, Brownlie J, Blanchard A, Thebault P, Sirand-Pugnet P. Multiple Origins and Specific Evolution of CRISPR/Cas9 Systems in Minimal Bacteria ( Mollicutes). Front Microbiol 2019; 10:2701. [PMID: 31824468 PMCID: PMC6882279 DOI: 10.3389/fmicb.2019.02701] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas systems provide adaptive defense mechanisms against invading nucleic acids in prokaryotes. Because of its interest as a genetic tool, the Type II CRISPR/Cas9 system from Streptococcus pyogenes has been extensively studied. It includes the Cas9 endonuclease that is dependent on a dual-guide RNA made of a tracrRNA and a crRNA. Target recognition relies on crRNA annealing and the presence of a protospacer adjacent motif (PAM). Mollicutes are currently the bacteria with the smallest genome in which CRISPR/Cas systems have been reported. Many of them are pathogenic to humans and animals (mycoplasmas and ureaplasmas) or plants (phytoplasmas and some spiroplasmas). A global survey was conducted to identify and compare CRISPR/Cas systems found in the genome of these minimal bacteria. Complete or degraded systems classified as Type II-A and less frequently as Type II-C were found in the genome of 21 out of 52 representative mollicutes species. Phylogenetic reconstructions predicted a common origin of all CRISPR/Cas systems of mycoplasmas and at least two origins were suggested for spiroplasmas systems. Cas9 in mollicutes were structurally related to the S. aureus Cas9 except the PI domain involved in the interaction with the PAM, suggesting various PAM might be recognized by Cas9 of different mollicutes. Structure of the predicted crRNA/tracrRNA hybrids was conserved and showed typical stem-loop structures pairing the Direct Repeat part of crRNAs with the 5' region of tracrRNAs. Most mollicutes crRNA/tracrRNAs showed G + C% significantly higher than the genome, suggesting a selective pressure for maintaining stability of these secondary structures. Examples of CRISPR spacers matching with mollicutes phages were found, including the textbook case of Mycoplasma cynos strain C142 having no prophage sequence but a CRISPR/Cas system with spacers targeting prophage sequences that were found in the genome of another M. cynos strain that is devoid of a CRISPR system. Despite their small genome size, mollicutes have maintained protective means against invading DNAs, including restriction/modification and CRISPR/Cas systems. The apparent lack of CRISPR/Cas systems in several groups of species including main pathogens of humans, ruminants, and plants suggests different evolutionary routes or a lower risk of phage infection in specific ecological niches.
Collapse
Affiliation(s)
- Thomas Ipoutcha
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Iason Tsarmpopoulos
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Vincent Talenton
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Christine Gaspin
- INRA, Mathématiques et Informatique Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Annick Moisan
- INRA, Mathématiques et Informatique Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Caray A Walker
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Joe Brownlie
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Alain Blanchard
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | | | - Pascal Sirand-Pugnet
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| |
Collapse
|
10
|
Yeoman CJ, Brutscher LM, Esen ÖC, Ibaoglu F, Fowler C, Eren AM, Wanner K, Weaver DK. Genome-resolved insights into a novel Spiroplasma symbiont of the Wheat Stem Sawfly ( Cephus cinctus). PeerJ 2019; 7:e7548. [PMID: 31523509 PMCID: PMC6716498 DOI: 10.7717/peerj.7548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Arthropods often have obligate relationships with symbiotic microbes, and recent investigations have demonstrated that such host-microbe relationships could be exploited to suppress natural populations of vector carrying mosquitos. Strategies that target the interplay between agricultural pests and their symbionts could decrease the burden caused by agricultural pests; however, the lack of comprehensive genomic insights into naturally occurring microbial symbionts presents a significant bottleneck. Here we employed amplicon surveys, genome-resolved metagenomics, and scanning electron microscopy to investigate symbionts of the wheat stem sawfly (Cephus cinctus), a major pest that causes an estimated $350 million dollars or more in wheat yield losses in the northwestern United States annually. Through 16S rRNA gene sequencing of two major haplotypes and life stages of wheat stem sawfly, we show a novel Spiroplasma species is ever-present and predominant, with phylogenomic analyses placing it as a member of the ixodetis clade of mollicutes. Using state-of-the-art metagenomic assembly and binning strategies we were able to reconstruct a 714 Kb, 72.7%-complete Spiroplasma genome, which represents just the second draft genome from the ixodetis clade of mollicutes. Functional annotation of the Spiroplasma genome indicated carbohydrate-metabolism involved PTS-mediated import of glucose and fructose followed by glycolysis to lactate, acetate, and propionoate. The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase. These results identify a previously undescribed symbiosis between wheat stem sawfly and a novel Spiroplasma sp., availing insight into their molecular relationship, and may yield new opportunities for microbially-mediated pest control strategies.
Collapse
Affiliation(s)
- Carl J Yeoman
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America
| | - Laura M Brutscher
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America.,Department of Microbiology & Immunology, Montana State University, Bozeman, MT, United States of America
| | - Özcan C Esen
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Furkan Ibaoglu
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America.,Department of Microbiology & Immunology, Montana State University, Bozeman, MT, United States of America
| | - Curtis Fowler
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, United States of America.,Marine Biological Laboratory, The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachuetts, United States of America
| | - Kevin Wanner
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, United States of America
| | - David K Weaver
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States of America
| |
Collapse
|
11
|
Ballinger MJ, Perlman SJ. The defensive Spiroplasma. CURRENT OPINION IN INSECT SCIENCE 2019; 32:36-41. [PMID: 31113629 DOI: 10.1016/j.cois.2018.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 05/06/2023]
Abstract
Defensive microbes are of great interest for their roles in arthropod health, disease transmission, and biocontrol efforts. Obligate bacterial passengers of arthropods, such as Spiroplasma, confer protection against the natural enemies of their hosts to improve their own fitness. Although known for less than a decade, Spiroplasma's defensive reach extends to diverse parasites, both microbial and multicellular. We provide an overview of known defensive phenotypes against nematodes, parasitoid wasps, and fungi, and highlight recent studies supporting the role of Spiroplasma-encoded ribosome-inactivating proteins in protection. With cellular features well-suited for life in the hemolymph, broad distribution among invertebrate hosts, and the capacity to repeatedly evolve vertical transmission, Spiroplasma may be uniquely equipped to form intimate, defensive associations to combat extracellular parasites. Along with insights into defensive mechanisms, recent significant advances have been made in male-killing - a phenotype with interesting evolutionary ties to defense. Finally, we look forward to an exciting decade using the genetic tools of Drosophila, and the rapidly-advancing tractability of Spiroplasma itself, to better understand mechanisms and evolution in defensive symbiosis.
Collapse
Affiliation(s)
- Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Steve J Perlman
- Department of Biology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
12
|
Faucher M, Nouvel LX, Dordet-Frisoni E, Sagné E, Baranowski E, Hygonenq MC, Marenda MS, Tardy F, Citti C. Mycoplasmas under experimental antimicrobial selection: The unpredicted contribution of horizontal chromosomal transfer. PLoS Genet 2019; 15:e1007910. [PMID: 30668569 PMCID: PMC6358093 DOI: 10.1371/journal.pgen.1007910] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/01/2019] [Accepted: 12/19/2018] [Indexed: 11/18/2022] Open
Abstract
Horizontal Gene Transfer was long thought to be marginal in Mycoplasma a large group of wall-less bacteria often portrayed as minimal cells because of their reduced genomes (ca. 0.5 to 2.0 Mb) and their limited metabolic pathways. This view was recently challenged by the discovery of conjugative exchanges of large chromosomal fragments that equally affected all parts of the chromosome via an unconventional mechanism, so that the whole mycoplasma genome is potentially mobile. By combining next generation sequencing to classical mating and evolutionary experiments, the current study further explored the contribution and impact of this phenomenon on mycoplasma evolution and adaptation using the fluoroquinolone enrofloxacin (Enro), for selective pressure and the ruminant pathogen Mycoplasma agalactiae, as a model organism. For this purpose, we generated isogenic lineages that displayed different combination of spontaneous mutations in Enro target genes (gyrA, gyrB, parC and parE) in association to gradual level of resistance to Enro. We then tested whether these mutations can be acquired by a susceptible population via conjugative chromosomal transfer knowing that, in our model organism, the 4 target genes are scattered in three distinct and distant loci. Our data show that under antibiotic selective pressure, the time scale of the mutational pathway leading to high-level of Enro resistance can be readily compressed into a single conjugative step, in which several EnroR alleles were transferred from resistant to susceptible mycoplasma cells. In addition to acting as an accelerator for antimicrobial dissemination, mycoplasma chromosomal transfer reshuffled genomes beyond expectations and created a mosaic of resistant sub-populations with unpredicted and unrelated features. Our findings provide insights into the process that may drive evolution and adaptability of several pathogenic Mycoplasma spp. via an unconventional conjugative mechanism.
Collapse
Affiliation(s)
- Marion Faucher
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
- UMR Mycoplasmoses of ruminants, ANSES, VetAgro Sup, University of Lyon, Lyon, France
| | | | | | - Eveline Sagné
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | | | | | - Marc-Serge Marenda
- Asia-Pacific Centre for Animal Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Florence Tardy
- UMR Mycoplasmoses of ruminants, ANSES, VetAgro Sup, University of Lyon, Lyon, France
| | - Christine Citti
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
- * E-mail: (LXN); (CC)
| |
Collapse
|
13
|
Sapountzis P, Zhukova M, Shik JZ, Schiott M, Boomsma JJ. Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants. eLife 2018; 7:e39209. [PMID: 30454555 PMCID: PMC6245734 DOI: 10.7554/elife.39209] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Mollicutes, a widespread class of bacteria associated with animals and plants, were recently identified as abundant abdominal endosymbionts in healthy workers of attine fungus-farming leaf-cutting ants. We obtained draft genomes of the two most common strains harbored by Panamanian fungus-growing ants. Reconstructions of their functional significance showed that they are independently acquired symbionts, most likely to decompose excess arginine consistent with the farmed fungal cultivars providing this nitrogen-rich amino-acid in variable quantities. Across the attine lineages, the relative abundances of the two Mollicutes strains are associated with the substrate types that foraging workers offer to fungus gardens. One of the symbionts is specific to the leaf-cutting ants and has special genomic machinery to catabolize citrate/glucose into acetate, which appears to deliver direct metabolic energy to the ant workers. Unlike other Mollicutes associated with insect hosts, both attine ant strains have complete phage-defense systems, underlining that they are actively maintained as mutualistic symbionts.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Mariya Zhukova
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jonathan Z Shik
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Morten Schiott
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
14
|
Díaz-Sánchez S, Hernández-Jarguín A, Torina A, de Mera IGF, Blanda V, Caracappa S, Gortazar C, de la Fuente J. Characterization of the bacterial microbiota in wild-caught Ixodes ventalloi. Ticks Tick Borne Dis 2018; 10:336-343. [PMID: 30482513 DOI: 10.1016/j.ttbdis.2018.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/10/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022]
Abstract
Exploring the microbial diversity of ticks is crucial to understand geographical dispersion and pathogen transmission. Tick microbes participate in many biological processes implicated in the acquisition, maintenance, and transmission of pathogens, and actively promote host phenotypic changes, and adaptation to new environments. The microbial community of Ixodes ventalloi still remains unexplored. In this study, the bacterial microbiota of wild-caught I. ventalloi was characterized using shotgun-metagenomic sequencing in samples from unfed adults collected during December 2013-January 2014 in two locations from Sicily, Italy. The microbiota identified in I. ventalloi was mainly composed of symbiotic, commensal, and environmental bacteria. Interestingly, we identified the genera Anaplasma and Borrelia as members of the microbiota of I. ventalloi. These results advance our information on I. ventalloi microbiota composition, with potential implications in tick-host adaptation, geographic expansion, and vector competence.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.
| | - Angélica Hernández-Jarguín
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Alessandra Torina
- Intituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi no3, 90129, Palermo, Italy
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Valeria Blanda
- Intituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi no3, 90129, Palermo, Italy
| | - Santo Caracappa
- Intituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi no3, 90129, Palermo, Italy
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
15
|
Tsai YM, Chang A, Kuo CH. Horizontal Gene Acquisitions Contributed to Genome Expansion in Insect-Symbiotic Spiroplasma clarkii. Genome Biol Evol 2018; 10:1526-1532. [PMID: 29860283 PMCID: PMC6007557 DOI: 10.1093/gbe/evy113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Genome reduction is a recurring theme of symbiont evolution. The genus Spiroplasma contains species that are mostly facultative insect symbionts. The typical genome sizes of those species within the Apis clade were estimated to be ∼1.0–1.4 Mb. Intriguingly, Spiroplasma clarkii was found to have a genome size that is >30% larger than the median of other species within the same clade. To investigate the molecular evolution events that led to the genome expansion of this bacterium, we determined its complete genome sequence and inferred the evolutionary origin of each protein-coding gene based on the phylogenetic distribution of homologs. Among the 1,346 annotated protein-coding genes, 641 were originated from within the Apis clade while 233 were putatively acquired from outside of the clade (including 91 high-confidence candidates). Additionally, 472 were specific to S. clarkii without homologs in the current database (i.e., the origins remained unknown). The acquisition of protein-coding genes, rather than mobile genetic elements, appeared to be a major contributing factor of genome expansion. Notably, >50% of the high-confidence acquired genes are related to carbohydrate transport and metabolism, suggesting that these acquired genes contributed to the expansion of both genome size and metabolic capability. The findings of this work provided an interesting case against the general evolutionary trend observed among symbiotic bacteria and further demonstrated the flexibility of Spiroplasma genomes. For future studies, investigation on the functional integration of these acquired genes, as well as the inference of their contribution to fitness could improve our knowledge of symbiont evolution.
Collapse
Affiliation(s)
- Yi-Ming Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - An Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Lo WS, Gasparich GE, Kuo CH. Convergent Evolution among Ruminant-Pathogenic Mycoplasma Involved Extensive Gene Content Changes. Genome Biol Evol 2018; 10:2130-2139. [PMID: 30102350 PMCID: PMC6117150 DOI: 10.1093/gbe/evy172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Convergent evolution, a process by which organisms evolved independently to have similar traits, provides opportunities to understand adaptation. The bacterial genus Mycoplasma contains multiple species that evolved independently to become ruminant pathogens, which represents an interesting study system for investigating the process. In this work, we determined the genome sequences of 11 Entomoplasma/Mesoplasma species. This new data set, together with the other available Mollicutes genomes, provided comprehensive taxon sampling for inferring the gene content evolution that led to the emergence of Mycoplasma Mycoides cluster. Our results indicated that the most recent common ancestor (MRCA) of the Mycoides-Entomoplasmataceae clade lost ∼15% of the core genes when it diverged from the Spiroplasma Apis clade. After this initial wave of genome reduction, relatively few gene gains or losses were inferred until the emergence of the Mycoides cluster. Compared with those Entomoplasmataceae lineages that maintained the association with insects, the MRCA of the Mycoides cluster experienced a second wave of gene losses, as well as acquiring >100 novel genes through horizontal gene transfer. These gene acquisitions involved many with the Mycoplasma Hominis/Pneumoniae lineages as the putative donors, suggesting that gene exchanges among these vertebrate symbionts with distinct phylogenetic affiliations may be important in the emergence of the Mycoides cluster. These findings demonstrated that the gene content of bacterial genomes could be exceedingly dynamic, even for those symbionts with highly reduced genomes. Moreover, the emergence of novel pathogens may involve extensive remodeling of gene content, rather than acquisition of few virulence genes.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany
| | | | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
Liu P, Du J, Zhang J, Wang J, Gu W, Wang W, Meng Q. The structural and proteomic analysis of Spiroplasma eriocheiris in response to colchicine. Sci Rep 2018; 8:8577. [PMID: 29872058 PMCID: PMC5988712 DOI: 10.1038/s41598-018-26614-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/23/2018] [Indexed: 11/18/2022] Open
Abstract
Spiroplasma eriocheiris, a pathogen that causes mass mortality of Chinese mitten crab Eriocheir sinensis, is a wall less bacteria and belongs to the Mollicutes. This study was designed to investigate the effects of colchicine on S. eriocheiris growth, cell morphology, and proteins expression. We found that in the presence of colchicine, the spiroplasma cells lost their helicity, and the length of the cells in the experimental group was longer than that of the control. With varying concentrations of the colchicine treatment, the total time to achieve a stationary phase of the spiroplasma was increased, and the cell population was decreased. The virulence ability of S. eriocheiris to E. sinensis was effectively reduced in the presence of colchicine. To expound the toxical mechanism of colchicine on S. eriocheiris, 208 differentially expressed proteins of S. eriocheiris were reliably quantified by iTRAQ analysis, including 77 up-regulated proteins and 131 down-regulated proteins. Especially, FtsY, putative Spiralin, and NADH oxidase were down-regulated. F0F1 ATP synthase subunit delta, ParB, DNABs, and NAD(FAD)-dependent dehydrogenase were up-regulated. A qRT-PCR was conducted to detect 7 expressed genes from the iTRAQ results during the incubation. The qRT-PCR results were consistent with the iTRAQ results. All of our results indicate that colchicine have a strong impact on the cell morphology and cellular metabolism of S. eriocheiris.
Collapse
Affiliation(s)
- Peng Liu
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.,Department of Biology, College of Pharmacy and Biological Sciences, University of South China, Hengyang, 421001, P.R. China.,Hunan Province cooperative innovation Center for Molecular Target New Drug Study, Hengyang, 421001, P.R. China
| | - Jie Du
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jia Zhang
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jian Wang
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Wen Wang
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
18
|
Lo WS, Kuo CH. Horizontal Acquisition and Transcriptional Integration of Novel Genes in Mosquito-Associated Spiroplasma. Genome Biol Evol 2018; 9:3246-3259. [PMID: 29177479 PMCID: PMC5726471 DOI: 10.1093/gbe/evx244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Genetic differentiation among symbiotic bacteria is important in shaping biodiversity. The genus Spiroplasma contains species occupying diverse niches and is a model system for symbiont evolution. Previous studies have established that two mosquito-associated species have diverged extensively in their carbohydrate metabolism genes despite having a close phylogenetic relationship. Notably, although the commensal Spiroplasma diminutum lacks identifiable pathogenicity factors, the pathogenic Spiroplasma taiwanense was found to have acquired a virulence factor glpO and its associated genes through horizontal transfer. However, it is unclear if these acquired genes have been integrated into the regulatory network. In this study, we inferred the gene content evolution in these bacteria, as well as examined their transcriptomes in response to glucose availability. The results indicated that both species have many more gene acquisitions from the Mycoides-Entomoplasmataceae clade, which contains several important pathogens of ruminants, than previously thought. Moreover, several acquired genes have higher expression levels than the vertically inherited homologs, indicating possible functional replacement. Finally, the virulence factor and its functionally linked genes in S. taiwanense were up-regulated in response to glucose starvation, suggesting that these acquired genes are under expression regulation and the pathogenicity may be a stress response. In summary, although differential gene losses are a major process for symbiont divergence, gene gains are critical in counteracting genome degradation and driving diversification among facultative symbionts.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
19
|
Tsai YM, Lo WS, Wu PS, Cho ST, Kuo CH. Complete Genome Sequence of Spiroplasma monobiae MQ-1 T (ATCC 33825), a Bacterium Isolated from the Vespid Wasp (Monobia quadridens). GENOME ANNOUNCEMENTS 2018; 6:e00347-18. [PMID: 29724836 PMCID: PMC5940939 DOI: 10.1128/genomea.00347-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 11/23/2022]
Abstract
Spiroplasma monobiae MQ-1T (ATCC 33825) was isolated from the hemolymph of an adult vespid wasp (Monobia quadridens) collected in Maryland. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species.
Collapse
Affiliation(s)
- Yi-Ming Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Shan Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Complete Genome Sequence of Spiroplasma floricola 23-6
T
(ATCC 29989), a Bacterium Isolated from a Tulip Tree (Liriodendron tulipifera L.). GENOME ANNOUNCEMENTS 2018; 6:6/16/e00302-18. [PMID: 29674553 PMCID: PMC5908944 DOI: 10.1128/genomea.00302-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spiroplasma floricola 23-6T (ATCC 29989) was isolated from the flower surface of a tulip tree (Liriodendron tulipifera L.). Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species.
Collapse
|
21
|
Lo WS, Huang YY, Kuo CH. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 2018; 40:855-874. [PMID: 28204477 PMCID: PMC5091035 DOI: 10.1093/femsre/fuw028] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2016] [Accepted: 07/10/2016] [Indexed: 02/07/2023] Open
Abstract
Symbiosis between organisms is an important driving force in evolution. Among the diverse relationships described, extensive progress has been made in insect–bacteria symbiosis, which improved our understanding of the genome evolution in host-associated bacteria. Particularly, investigations on several obligate mutualists have pushed the limits of what we know about the minimal genomes for sustaining cellular life. To bridge the gap between those obligate symbionts with extremely reduced genomes and their non-host-restricted ancestors, this review focuses on the recent progress in genome characterization of facultative insect symbionts. Notable cases representing various types and stages of host associations, including those from multiple genera in the family Enterobacteriaceae (class Gammaproteobacteria), Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), are discussed. Although several general patterns of genome reduction associated with the adoption of symbiotic relationships could be identified, extensive variation was found among these facultative symbionts. These findings are incorporated into the established conceptual frameworks to develop a more detailed evolutionary model for the discussion of possible trajectories. In summary, transitions from facultative to obligate symbiosis do not appear to be a universal one-way street; switches between hosts and lifestyles (e.g. commensalism, parasitism or mutualism) occur frequently and could be facilitated by horizontal gene transfer. This review synthesizes the recent progress in genome characterization of insect-symbiotic bacteria, the emphases include (i) patterns of genome organization, (ii) evolutionary models and trajectories, and (iii) comparisons between facultative and obligate symbionts.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
22
|
Brito PH, Chevreux B, Serra CR, Schyns G, Henriques AO, Pereira-Leal JB. Genetic Competence Drives Genome Diversity in Bacillus subtilis. Genome Biol Evol 2018; 10:108-124. [PMID: 29272410 PMCID: PMC5765554 DOI: 10.1093/gbe/evx270] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
Prokaryote genomes are the result of a dynamic flux of genes, with increases achieved via horizontal gene transfer and reductions occurring through gene loss. The ecological and selective forces that drive this genomic flexibility vary across species. Bacillus subtilis is a naturally competent bacterium that occupies various environments, including plant-associated, soil, and marine niches, and the gut of both invertebrates and vertebrates. Here, we quantify the genomic diversity of B. subtilis and infer the genome dynamics that explain the high genetic and phenotypic diversity observed. Phylogenomic and comparative genomic analyses of 42 B. subtilis genomes uncover a remarkable genome diversity that translates into a core genome of 1,659 genes and an asymptotic pangenome growth rate of 57 new genes per new genome added. This diversity is due to a large proportion of low-frequency genes that are acquired from closely related species. We find no gene-loss bias among wild isolates, which explains why the cloud genome, 43% of the species pangenome, represents only a small proportion of each genome. We show that B. subtilis can acquire xenologous copies of core genes that propagate laterally among strains within a niche. While not excluding the contributions of other mechanisms, our results strongly suggest a process of gene acquisition that is largely driven by competence, where the long-term maintenance of acquired genes depends on local and global fitness effects. This competence-driven genomic diversity provides B. subtilis with its generalist character, enabling it to occupy a wide range of ecological niches and cycle through them.
Collapse
Affiliation(s)
- Patrícia H Brito
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Portugal
| | - Bastien Chevreux
- DSM Nutritional Products, Ltd., 60 Westview street, Lexington MA, USA
| | - Cláudia R Serra
- Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - Ghislain Schyns
- DSM Nutritional Products, Ltd., 60 Westview street, Lexington MA, USA
| | | | - José B Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Ophiomics—Precision Medicine, Lisbon, Portugal
| |
Collapse
|
23
|
Chrostek E, Pelz-Stelinski K, Hurst GDD, Hughes GL. Horizontal Transmission of Intracellular Insect Symbionts via Plants. Front Microbiol 2017; 8:2237. [PMID: 29234308 PMCID: PMC5712413 DOI: 10.3389/fmicb.2017.02237] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/31/2017] [Indexed: 11/16/2022] Open
Abstract
Experimental evidence is accumulating that endosymbionts of phytophagous insects may transmit horizontally via plants. Intracellular symbionts known for manipulating insect reproduction and altering fitness (Rickettsia, Cardinium, Wolbachia, and bacterial parasite of the leafhopper Euscelidius variegatus) have been found to travel from infected insects into plants. Other insects, either of the same or different species can acquire the symbiont from the plant through feeding, and in some cases transfer it to their progeny. These reports prompt many questions regarding how intracellular insect symbionts are delivered to plants and how they affect them. Are symbionts passively transported along the insect-plant-insect path, or do they actively participate in the process? How widespread are these interactions? How does symbiont presence influence the plant? And what conditions are required for the new infection to establish in an insect? From an ecological, evolutionary, and applied perspective, this mode of horizontal transmission could have profound implications if occurring frequently enough or if new stable symbiont infections are established. Transmission of symbionts through plants likely represents an underappreciated means of infection, both in terms of symbiont epidemiology and the movement of symbionts to new host species.
Collapse
Affiliation(s)
- Ewa Chrostek
- Department of Vector Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kirsten Pelz-Stelinski
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - Gregory D. D. Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Grant L. Hughes
- Department of Pathology, Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Disease, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
24
|
Complete Genome Sequence of Spiroplasma corruscae EC-1
T
(DSM 19793), a Bacterium Isolated from a Lampyrid Beetle (Ellychnia corrusca). GENOME ANNOUNCEMENTS 2017; 5:5/37/e00964-17. [PMID: 28912320 PMCID: PMC5597761 DOI: 10.1128/genomea.00964-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spiroplasma corruscae EC-1T (DSM 19793) was isolated from the gut of a lampryid beetle (Ellychnia corrusca) collected in Beltsville, MD, USA, in 1983. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species.
Collapse
|
25
|
Liu Y, Xu Y, Li S, Xu X, Gao Q, Yuan M, Gu W, Wang W, Meng Q. Identification of proteome, antigen protein and antigen membrane protein from Spiroplasma eriocheiris. Lett Appl Microbiol 2017; 65:395-402. [PMID: 28763106 DOI: 10.1111/lam.12784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022]
Abstract
Spiroplasma eriocheiris, which causes tremor disease in Chinese mitten crab Eriocheir sinensis, has led to huge economic losses in aquaculture. Immunoproteomics, a new scientific technique combining proteomics and immunological analytical methods, provided the direction of our research on S. eriocheiris. The aim of our study was to identify the proteome, antigen proteins and antigen membrane proteins of S. eriocheiris. A total of 780 S. eriocheiris proteins were identified by the LC-MS/MS technique. Based on immunoproteomics, 51 proteins and 7 proteins in S. eriocheiris were identified by anti-S. eriocheiris serum and negative serum respectively (six proteins in common). Thus, 45 antigenic proteins in S. eriocheiris were identified; among them, molecular chaperone DnaK, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ATP synthase subunit beta and enolase can be considered as immunogenic proteins. Similarly, 32 membrane proteins and 6 membrane proteins were identified by anti-S. eriocheiris serum and negative serum respectively (two proteins in common). Thus, 30 antigenic membrane proteins in S. eriocheiris were identified; three of them have been reported as surface proteins including pyruvate kinase, enolase and GAPDH. All of these proteins may play key roles in the pathogeny and can be used in the future for diagnoses and prevention. SIGNIFICANCE AND IMPACT OF THE STUDY Spiroplasma eriocheiris is a novel pathogen causing the tremor disease in Chinese mitten crab Eriocheir sinensis. This is the first time LC-MS/MS was used to identify the proteome, antigen protein and antigen membrane protein of S. eriocheiris. The results can certainly provide valuable information towards the identification of virulent proteins or diagnosis of pathogenic mechanisms.
Collapse
Affiliation(s)
- Y Liu
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Y Xu
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - S Li
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - X Xu
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Q Gao
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - M Yuan
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - W Gu
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, China
| | - W Wang
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Q Meng
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, China
| |
Collapse
|
26
|
Lapadula WJ, Ayub MJ. Ribosome Inactivating Proteins from an evolutionary perspective. Toxicon 2017; 136:6-14. [PMID: 28651991 DOI: 10.1016/j.toxicon.2017.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023]
Abstract
Ribosome Inactivating Proteins (RIPs) are rRNA N-glycosidases that inhibit protein synthesis through the elimination of a single adenine residue from 28S rRNA. Many of these toxins have been characterized in depth from a biochemical and molecular point of view. In addition, their potential use in medicine as highly selective toxins is being explored. In contrast, the evolutionary history of RIP encoding genes has remained traditionally underexplored. In recent years, accumulation of large genomic data has fueled research on this issue and revealed unexpected information about the origin and evolution of RIP toxins. In this review we summarize the current evidence available on the occurrence of different evolutionary mechanisms (gene duplication and losses, horizontal gene transfer, synthesis de novo and domain combination) involved in the evolution of the RIP gene family. Finally, we propose a revised nomenclature for RIP genes based on their evolutionary history.
Collapse
Affiliation(s)
- Walter Jesús Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
27
|
Moses AS, Millar JA, Bonazzi M, Beare PA, Raghavan R. Horizontally Acquired Biosynthesis Genes Boost Coxiella burnetii's Physiology. Front Cell Infect Microbiol 2017; 7:174. [PMID: 28540258 PMCID: PMC5423948 DOI: 10.3389/fcimb.2017.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/21/2017] [Indexed: 01/21/2023] Open
Abstract
Coxiella burnetii, the etiologic agent of acute Q fever and chronic endocarditis, has a unique biphasic life cycle, which includes a metabolically active intracellular form that occupies a large lysosome-derived acidic vacuole. C. burnetii is the only bacterium known to thrive within such an hostile intracellular niche, and this ability is fundamental to its pathogenicity; however, very little is known about genes that facilitate Coxiella's intracellular growth. Recent studies indicate that C. burnetii evolved from a tick-associated ancestor and that the metabolic capabilities of C. burnetii are different from that of Coxiella-like bacteria found in ticks. Horizontally acquired genes that allow C. burnetii to infect and grow within mammalian cells likely facilitated the host shift; however, because of its obligate intracellular replication, C. burnetii would have lost most genes that have been rendered redundant due to the availability of metabolites within the host cell. Based on these observations, we reasoned that horizontally derived biosynthetic genes that have been retained in the reduced genome of C. burnetii are ideal candidates to begin to uncover its intracellular metabolic requirements. Our analyses identified a large number of putative foreign-origin genes in C. burnetii, including tRNAGlu2 that is potentially required for heme biosynthesis, and genes involved in the production of lipopolysaccharide—a virulence factor, and of critical metabolites such as fatty acids and biotin. In comparison to wild-type C. burnetii, a strain that lacks tRNAGlu2 exhibited reduced growth, indicating its importance to Coxiella's physiology. Additionally, by using chemical agents that block heme and biotin biosyntheses, we show that these pathways are promising targets for the development of new anti-Coxiella therapies.
Collapse
Affiliation(s)
- Abraham S Moses
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortland, OR, USA
| | - Jess A Millar
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortland, OR, USA
| | - Matteo Bonazzi
- Centre National de la Recherche Scientifique, Formation de Recherche en Évolution 3689, Centre d'Études d'Agents Pathogènes et Biotechnologies Pour la Santé, Université MontpellierMontpellier, France
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of HealthHamilton, MT, USA
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortland, OR, USA
| |
Collapse
|
28
|
Complete Genome Sequence of
Spiroplasma
sp. NBRC 100390. GENOME ANNOUNCEMENTS 2017; 5:5/10/e00008-17. [PMID: 28280009 PMCID: PMC5347229 DOI: 10.1128/genomea.00008-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spiroplasma sp. NBRC 100390 was initially described as a duplicate of S. atrichopogonis GNAT3597T (=ATCC BAA-520T) but later found to be different in the 16S rDNA sequences. Here, we report the complete genome sequence of this bacterium to establish its identity and to facilitate future investigation.
Collapse
|
29
|
Liu P, Zheng H, Meng Q, Terahara N, Gu W, Wang S, Zhao G, Nakane D, Wang W, Miyata M. Chemotaxis without Conventional Two-Component System, Based on Cell Polarity and Aerobic Conditions in Helicity-Switching Swimming of Spiroplasma eriocheiris. Front Microbiol 2017; 8:58. [PMID: 28217108 PMCID: PMC5289999 DOI: 10.3389/fmicb.2017.00058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Spiroplasma eriocheiris is a pathogen that causes mass mortality in Chinese mitten crab, Eriocheir sinensis. S. eriocheiris causes tremor disease and infects almost all of the artificial breeding crustaceans, resulting in disastrous effects on the aquaculture economy in China. S. eriocheiris is a wall-less helical bacterium, measuring 2.0 to 10.0 μm long, and can swim up to 5 μm per second in a viscous medium without flagella by switching the cell helicity at a kink traveling from the front to the tail. In this study, we showed that S. eriocheiris performs chemotaxis without the conventional two-component system, a system commonly found in bacterial chemotaxis. The chemotaxis of S. eriocheiris was observed more clearly when the cells were cultivated under anaerobic conditions. The cells were polarized as evidenced by a tip structure, swimming in the direction of the tip, and were shown to reverse their swimming direction in response to attractants. Triton X-100 treatment revealed the internal structure, a dumbbell-shaped core in the tip that is connected by a flat ribbon, which traces the shortest line in the helical cell shape from the tip to the other pole. Sixteen proteins were identified as the components of the internal structure by mass spectrometry, including Fibril protein and four types of MreB proteins.
Collapse
Affiliation(s)
- Peng Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal UniversityJiangsu, China; Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University Jiangsu, China
| | - Natsuho Terahara
- Department of Biology, Graduate School of Science, Osaka City University Osaka, Japan
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University Jiangsu, China
| | - Shengyue Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Guoping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Daisuke Nakane
- Department of Physics, Gakushuin University Tokyo, Japan
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University Jiangsu, China
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City UniversityOsaka, Japan
| |
Collapse
|
30
|
Abstract
Spiroplasma sp. TU-14 was isolated from a contaminated sample of Entomoplasma lucivorax PIPN-2T obtained from the International Organization for Mycoplasmology collection. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma spp.
Collapse
|
31
|
Complete Genome Sequence of Spiroplasma turonicum Tab4c
T
, a Bacterium Isolated from Horse Flies (
Haematopota
sp.). GENOME ANNOUNCEMENTS 2016; 4:4/5/e01010-16. [PMID: 27660788 PMCID: PMC5034139 DOI: 10.1128/genomea.01010-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spiroplasma turonicum Tab4cT was isolated from a horse fly (Haematopota sp.; probably Haematopota pluvialis) collected at Champchevrier, Indre-et-Loire, Touraine, France, in 1991. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma spp.
Collapse
|
32
|
Complete Genome Sequence of Spiroplasma helicoides TABS-2T (DSM 22551), a Bacterium Isolated from a Horsefly (Tabanus abactor). GENOME ANNOUNCEMENTS 2016; 4:4/5/e01201-16. [PMID: 27795290 PMCID: PMC5073277 DOI: 10.1128/genomea.01201-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Spiroplasma helicoides TABS-2T (DSM 22551) was isolated from the gut of a horsefly (Tabanus abactor) collected near Ardmore, Oklahoma, USA, in 1987. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species.
Collapse
|
33
|
Meng Q, Liu P, Wang J, Wang Y, Hou L, Gu W, Wang W. Systematic analysis of the lysine acetylome of the pathogenic bacterium Spiroplasma eriocheiris reveals acetylated proteins related to metabolism and helical structure. J Proteomics 2016; 148:159-69. [PMID: 27498276 DOI: 10.1016/j.jprot.2016.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Post-translational modifications such as acetylation are an essential regulatory mechanism of protein function. Spiroplasma eriocheiris, with no cell wall and a helical structure, is a novel pathogen of freshwater crustacean. There is no other evidence of acylation (such as succinylation and propionylation) except acetylation genes in S. eriocheiris concise genome. So the acetylation may play an important role in S. eriocheiris. Here, we conducted the first lysine acetylome in S. eriocheiris. We identified 2567 lysine acetylation sites in 555 proteins, which account for 44.69% of the total proteins in this bacterium. To date, this is the highest ratio of acetylated proteins that have been identified in bacteria. Fifteen types of acetylated peptide sequence motifs were revealed from the acetylome. Forty-five lysine-acetylated proteins showed homology with acetylated proteins previously identified from Escherichia coli, Vibrio parahemolyticus and Mycobacterium tuberculosis. Notably, most proteins in glycolysis and all proteins in the arginine deiminase system were acetylated. Meanwhile, the cell skeleton proteins (Fibril and Mrebs) were all acetylated the observed acetylation also played an important role in cell skeleton formation. The results imply previously unreported hidden layers of post-translational regulation in lysine acetylation that define the functional state of Spiroplasma. BIOLOGICAL SIGNIFICANCE This is the first time to analyze PTM of Spiroplasma. This is the highest ratio of acetylated proteins that have been identified in bacteria. S. eriocheiris lysine acetylome reveals acetylated proteins related to metabolism and helical structure. These data provide an important resource to elucidate the role of acetylation in Spiroplasma cellular physiology.
Collapse
Affiliation(s)
- Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Peng Liu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jian Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yinghui Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Libo Hou
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
34
|
Complete Genome Sequence of Spiroplasma cantharicola CC-1
T
(DSM 21588), a Bacterium Isolated from Soldier Beetle (
Cantharis carolinus
). GENOME ANNOUNCEMENTS 2015; 3:3/5/e01253-15. [PMID: 26494686 PMCID: PMC4616193 DOI: 10.1128/genomea.01253-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spiroplasma cantharicola CC-1T (DSM 21588) was isolated from the gut of a soldier beetle (Cantharis carolinus) collected in Maryland, USA. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology.
Collapse
|
35
|
Complete Genome Sequence of Spiroplasma litorale TN-1T (DSM 21781), a Bacterium Isolated from a Green-Eyed Horsefly (Tabanus nigrovittatus). GENOME ANNOUNCEMENTS 2015; 3:3/5/e01116-15. [PMID: 26430038 PMCID: PMC4591310 DOI: 10.1128/genomea.01116-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spiroplasma litorale TN-1T (DSM 21781) was isolated from the gut of a green-eyed horsefly (Tabanus nigrovittatus), collected at Ocracoke Island in North Carolina in 1983. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology.
Collapse
|