1
|
Zhang P, Cai Y, Ma L, Chai J, Zhou Z. DNA barcoding of the genus Gampsocleis (Orthoptera, Tettigoniidae) from China. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22070. [PMID: 38288484 DOI: 10.1002/arch.22070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 02/01/2024]
Abstract
DNA barcoding is a useful addition to the traditional morphology-based taxonomy. A ca. 650 bp fragment of the 5' end of mitochondrial cytochrome c oxidase subunit I (hereafter COI-5P) DNA barcoding was sued as a practical tool for Gampsocleis species identification. DNA barcodes from 889 specimens belonging to 8 putative Gampsocleis species was analyzed, including 687 newly generated DNA barcodes. These barcode sequences were clustered/grouped into Operational Taxonomic Units (OTUs) using the criteria of five algorithms, namely Barcode Index Number (BIN) System, Assemble Species by Automatic Partitioning (ASAP), a Java program uses an explicit, determinate algorithm to define Molecular Operational Taxonomic Unit (jMOTU), Generalized Mixed Yule Coalescent (GMYC), and Bayesian implementation of the Poisson Tree Processes model (bPTP). The Taxon ID Tree grouped sequences of morphospecies and almost all MOTUs in distinct nonoverlapping clusters. Both long- and short-winged Gampsocleis species are reciprocally monophyletic in the Taxon ID Tree. In BOLD, 889 barcode sequences are assigned to 17 BINs. The algorithms ASAP, jMOTU, bPTP and GMYC clustered the barcode sequences into 6, 13, 10, and 23 MOTUs, respectively. BIN, ASAP, and bPTP algorithm placed three long-winged species, G. sedakovii, G. sinensis and G. ussuriensis within the same MOTU. All species delimitation algorithms split two short-winged species,G. fletcheri and G. gratiosa into at least two MOTUs each, except for ASAP algorithm. More detailed molecular and morphological integrative studies are required to clarify the status of these MOTUs in the future.
Collapse
Affiliation(s)
- Pu Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Yuting Cai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Lan Ma
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Jinyan Chai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
2
|
Zhao Y, Wang H, Huang H, Zhou Z. A DNA barcode library for katydids, cave crickets, and leaf-rolling crickets (Tettigoniidae, Rhaphidophoridae and Gryllacrididae) from Zhejiang Province, China. Zookeys 2022; 1123:147-171. [PMID: 36762040 PMCID: PMC9836636 DOI: 10.3897/zookeys.1123.86704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
Barcode libraries are generally assembled with two main objectives in mind: specimen identification and species discovery/delimitation. In this study, the standard COI barcode region was sequenced from 681 specimens belonging to katydids (Tettigoniidae), cave crickets (Rhaphidophoridae), and leaf-rolling crickets (Gryllacrididae) from Zhejiang Province, China. Of these, four COI-5P sequences were excluded from subsequent analyses because they were likely NUMTs (nuclear mitochondrial pseudogenes). The final dataset consisted of 677 barcode sequences representing 90 putative species-level taxa. Automated cluster delineation using the Barcode of Life Data System (BOLD) revealed 118 BINs (Barcodes Index Numbers). Among these 90 species-level taxa, 68 corresponded with morphospecies, while the remaining 22 were identified based on reverse taxonomy using BIN assignment. Thirteen of these morphospecies were represented by a single barcode (so-called singletons), and each of 19 morphospecies were split into more than one BIN. The consensus delimitation scheme yielded 55 Molecular Operational Taxonomic Units (MOTUs). Only four morphospecies (I max > DNN) failed to be recovered as monophyletic clades (i.e., Elimaeaterminalis, Phyllomimusklapperichi, Sinochloraszechwanensis and Xizicushowardi), so it is speculated that these may be species complexes. Therefore, the diversity of katydids, cave crickets, and leaf-rolling crickets in Zhejiang Province is probably slightly higher than what current taxonomy would suggest.
Collapse
Affiliation(s)
- Yizheng Zhao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| | - Hui Wang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| | - Huimin Huang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| | - Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| |
Collapse
|
3
|
Yan G, Lan Y, Sun J, Xu T, Wei T, Qian PY. Comparative transcriptomic analysis of in situ and onboard fixed deep-sea limpets reveals sample preparation-related differences. iScience 2022; 25:104092. [PMID: 35402864 PMCID: PMC8983377 DOI: 10.1016/j.isci.2022.104092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Precise gene expression reflects the molecular response of deep-sea organisms to their harsh living environments. However, changes in environmental factors during lifting samples from the deep sea to a research vessel can also affect gene expression. By using the transcriptomic approach, we compared the gene expression profiles of the onboard fixed with the in situ fixed samples of the deep-sea limpet Bathyacmaea lactea. Our results revealed that the concomitant stress during conventional deep-sea sampling without RNA in situ fixation greatly influenced the gene expression. Various biological activities, such as cell and tissue structure, lysosomal activity, fluid balance, and unsaturated fatty acid metabolism, were perturbed, suggesting that the sampling stress has exerted systemic impacts on the life of the limpets. These findings clearly illustrate that deep-sea samples without RNA in situ fixation can easily lead to biased results in gene expression analysis, which requires to be appropriately addressed in future studies.
Collapse
Affiliation(s)
- Guoyong Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tong Wei
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Corresponding author
| |
Collapse
|
4
|
Xiao R, Guo Y, Zhang M, Pan W, Wang JJ. Stronger network connectivity with lower diversity of soil fungal community was presented in coastal marshes after sixteen years of freshwater restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140623. [PMID: 32693270 DOI: 10.1016/j.scitotenv.2020.140623] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Freshwater input for salt marsh restoration in the Yellow River Delta induced Phragmites australis expansion and thus may cause shifts of soil fungi from halophilic to desalination-adapted species for increased litter decomposition. In this study, soil fungal communities of restored and natural salt marshes were determined to reveal further details of shift in soil fungal community and its probable prediction for salt marsh restoration. Our results showed a stronger network within Ascomycota (e.g. Sordariales, Aspergillus, Hypocreales and Cladosporium herbarum) in restored marshes, but with a lower diversity of halophilic taxa (e.g. Chytridiomycota and Nematoda) in comparison with natural salt marshes. Contrarily, the occurrence of Chytridiomycota, Ichthyosporea and Discicristoidea in the soil fungal networks of the natural salt marsh emphasized the importance of salt tolerant species at the land-sea transition zone. The Sordariales was dominant and had a strong correlation with other fungal species and aggregate associated soil organic carbon (SOC), which probably contributed to SOC accumulation in restored marshes. But the reduced halophilic species specific to salt marsh elucidated that the formation of monospecific stands of P. australis along with the freshwater input induced desalination to the saline habitats changed the native patterns of vegetation and soil organisms. As the buffer between terrestrial and marine systems, a single habitat type such as dense monocultures of P. australis must be avoided and diverse saltmarsh habitats across a salinity gradient should be reserved. In this way, the diversity and specificity of coastal halophytes and related microorganisms could be maintained and thus might confer benefits in balancing various functions of the salt marsh ecosystem and preserving the system's elasticity and resistance to stress.
Collapse
Affiliation(s)
- Rong Xiao
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China.
| | - Yutong Guo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Mingxiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenbin Pan
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Jian Jim Wang
- School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
5
|
Li C, Jiang S, Schneider K, Jin J, Lin H, Wang J, Elmer KR, Zhao J. Cryptic species in White Cloud Mountain minnow, Tanichthys albonubes: Taxonomic and conservation implications. Mol Phylogenet Evol 2020; 153:106950. [PMID: 32889137 DOI: 10.1016/j.ympev.2020.106950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Cryptic species describe two or more species that had mistakenly been considered to be a single species, a phenomenon that has been found throughout the tree of life. Recognizing cryptic species is key to estimating the real biodiversity of the world and understanding evolutionary processes. Molecular methods present an unprecedented opportunity for biologists to question whether morphologically similar populations are actually cryptic species. The minnow Tanichthys albonubes is a critically endangered freshwater fish and was classified as a second-class state-protected animal in China. Previous studies have revealed highly divergent lineages with similar morphological characters in this species. Herein, we tested for cryptic species across the ranges of all known wild populations of this minnow. Using multilocus molecular (one mitochondrial gene, two nuclear genes and 13 microsatellite loci) and morphological data for 230 individuals from eight populations, we found deep genetic divergence among these populations with subtle morphological disparity. Morphological examination found variance among these populations in the number of branched anal-fin rays. Based on genetic data, we inferred eight monophyletic groups that were well supported by haplotype network and population clustering analyses. Species delimitation methods suggested eight putative species in the T. albonubes complex. Molecular dating suggested that these cryptic species diverged in the period from the Pliocene to the Pleistocene. Based on these findings, we propose the existence of seven cryptic species in the T. albonubes complex. Our results highlight the need for a taxonomic revision of Tanichthys. What is more, the conservation status of and conservation strategies for the T. albonubes complex should be reassessed as soon as possible.
Collapse
Affiliation(s)
- Chao Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Shuying Jiang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kevin Schneider
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Jinjin Jin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hungdu Lin
- The Affiliated School of National Tainan First Senior High School, Tainan, Taiwan
| | - Junjie Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Jun Zhao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
6
|
Finding Evolutionary Processes Hidden in Cryptic Species. Trends Ecol Evol 2018; 33:153-163. [DOI: 10.1016/j.tree.2017.11.007] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
|
7
|
Mevenkamp L, Brown A, Hauton C, Kordas A, Thatje S, Vanreusel A. Hydrostatic pressure and temperature affect the tolerance of the free-living marine nematode Halomonhystera disjuncta to acute copper exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:178-183. [PMID: 28963926 DOI: 10.1016/j.aquatox.2017.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Potential deep-sea mineral extraction poses new challenges for ecotoxicological research since little is known about effects of abiotic conditions present in the deep sea on the toxicity of heavy metals. Due to the difficulty of collecting and maintaining deep-sea organisms alive, a first step would be to understand the effects of high hydrostatic pressure and low temperatures on heavy metal toxicity using shallow-water relatives of deep-sea species. Here, we present the results of acute copper toxicity tests on the free-living shallow-water marine nematode Halomonhystera disjuncta, which has close phylogenetic and ecological links to the bathyal species Halomonhystera hermesi. Copper toxicity was assessed using a semi-liquid gellan gum medium at two levels of hydrostatic pressure (0.1MPa and 10MPa) and temperature (10°C and 20°C) in a fully crossed design. Mortality of nematodes in each treatment was assessed at 4 time intervals (24 and 48h for all experiments and additionally 72 and 96h for experiments run at 10°C). LC50 values ranged between 0.561 and 1.864mg Cu2+L-1 and showed a decreasing trend with incubation time. Exposure to high hydrostatic pressure significantly increased sensitivity of nematodes to copper, whereas lower temperature resulted in an apparently increased copper tolerance, possibly as a result of a slower metabolism under low temperatures. These results indicate that hydrostatic pressure and temperature significantly affect metal toxicity and therefore need to be considered in toxicity assessments for deep-sea species. Any application of pollution limits derived from studies of shallow-water species to the deep-sea mining context must be done cautiously, with consideration of the effects of both stressors.
Collapse
Affiliation(s)
- Lisa Mevenkamp
- Marine Biology Research Group, Ghent University, Krijgslaan 281 - S8, 9000 Ghent, Belgium.
| | - Alastair Brown
- University of Southampton, Ocean and Earth Science, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Chris Hauton
- University of Southampton, Ocean and Earth Science, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Anna Kordas
- Marine Biology Research Group, Ghent University, Krijgslaan 281 - S8, 9000 Ghent, Belgium
| | - Sven Thatje
- University of Southampton, Ocean and Earth Science, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Ann Vanreusel
- Marine Biology Research Group, Ghent University, Krijgslaan 281 - S8, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Lee MR, Canales-Aguirre CB, Nuñez D, Pérez K, Hernández CE, Brante A. The identification of sympatric cryptic free-living nematode species in the Antarctic intertidal. PLoS One 2017; 12:e0186140. [PMID: 28982192 PMCID: PMC5629031 DOI: 10.1371/journal.pone.0186140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022] Open
Abstract
The diversity of free-living nematodes in the beaches of two Antarctic islands, King George and Deception islands was investigated. We used morphological and molecular (LSU, and two fragments of SSU sequences) approaches to evaluate 236 nematodes. Specimens were assigned to at least genera using morphology and were assessed for the presence of cryptic speciation. The following genera were identified: Halomonhystera, Litoditis, Enoploides, Chromadorita, Theristus, Oncholaimus, Viscosia, Gammanema, Bathylaimus, Choanolaimus, and Paracanthonchus; along with specimens from the families Anticomidae and Linhomoeidae. Cryptic speciation was identified within the genera Halomonhystera and Litoditis. All of the cryptic species identified live sympatrically. The two cryptic species of Halomonhystera exhibited no significant morphological differences. However, Litoditis species 2 was significantly larger than Litoditis species 1. The utility of molecular data in confirming the identifications of some of the morphologically more challenging families of nematodes was demonstrated. In terms of which molecular sequences to use for the identification of free-living nematodes, the SSU sequences were more variable than the LSU sequences, and thus provided more resolution in the identification of cryptic speciation. Finally, despite the considerable amount of time and effort required to put together genetic and morphological data, the resulting advance in our understanding of diversity and ecology of free-living marine nematodes, makes that effort worthwhile.
Collapse
Affiliation(s)
- Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| | | | - Daniela Nuñez
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Karla Pérez
- Departamento de Ecología, Universidad Católica de la Santísima de Concepción, Concepción, Chile
| | - Crisitan E. Hernández
- Laboratorio de Ecología Evolutiva and Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Antonio Brante
- Departamento de Ecología, Universidad Católica de la Santísima de Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima de Concepción, Concepción, Chile
| |
Collapse
|
9
|
Wang J, Hua L, Chen J, Zhang J, Bai X, Gao B, Li C, Shi Z, Sheng W, Gao Y, Xing B. Identification and characterization of long non-coding RNAs in subcutaneous adipose tissue from castrated and intact full-sib pair Huainan male pigs. BMC Genomics 2017; 18:542. [PMID: 28724410 PMCID: PMC5518130 DOI: 10.1186/s12864-017-3907-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) regulate adipose tissue metabolism, however, their function on testosterone deficiency related obesity in humans is less understood. For this research, intact and castrated male pigs are the best model animal because of their similar proportional organ sizes, cardiovascular systems and metabolic features. Results We identified lncRNAs in subcutaneous adipose tissue by deep RNA-sequencing using the intact and castrated Huainan male pigs. The results showed that castration reduced serum testosterone but increased body fatness-related traits (serum triglyceride levels, backfat thickness, intramuscular fat content, and adipocyte size). Meanwhile, 343 lncRNAs from subcutaneous adipose tissue were identified, including 223 intergenic lncRNAs (lincRNAs), 68 anti-sense lncRNAs, and 52 intronic lncRNAs. It was predicted that there were 416 recognition sites for C/EBPα in the 303 lncRNA promoter region, and 13 adipogenesis-promoting miRNAs and five adipogenesis-depressing miRNAs target these lncRNAs. Eighteen lncRNAs, including nine up- and nine down-regulated had more than 2-fold differential expression between the castrated and intact male pigs (q-value < 0.05). Functional analysis indicated that these 18 lncRNAs and their target genes were involved in fatty acid, insulin, and the adipocytokine signaling pathway. We further analyzed the features of a conserved mouse lncRNA gene ENSMUST00000189966 and found it mainly expressed in the cell nucleus and target the Nuclear Receptor Subfamily 2 Group F Member 2 (NR2F2) gene. In 3 T3-L1 cells, differentiation down-regulated their expression, but dihydrotestosterone (DHT) significantly up-regulated their expression in a concentration-dependent manner (P < 0.05). Conclusions These results suggested that lncRNAs and their target genes might participated in the castration-induced fat deposition and provide a new therapeutic target for combatting testosterone deficiency-related obesity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3907-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Liushuai Hua
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Junfeng Chen
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Jiaqing Zhang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Xianxiao Bai
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Binwen Gao
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Congjun Li
- United States Department of Agriculture-Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, MD, 20705, USA
| | - Zhihai Shi
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Weidong Sheng
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Yuan Gao
- Xinxian Bureau of Animal Husbandry, Xinxian, 465550, Beijing, People's Republic of China
| | - Baosong Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
10
|
Lemaire B, Karchner SI, Goldstone JV, Lamb DC, Drazen JC, Rees JF, Hahn ME, Stegeman JJ. Molecular adaptation to high pressure in cytochrome P450 1A and aryl hydrocarbon receptor systems of the deep-sea fish Coryphaenoides armatus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:155-165. [PMID: 28694077 DOI: 10.1016/j.bbapap.2017.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/19/2023]
Abstract
Limited knowledge of the molecular evolution of deep-sea fish proteomes so far suggests that a few widespread residue substitutions in cytosolic proteins binding hydrophilic ligands contribute to resistance to the effects of high hydrostatic pressure (HP). Structure-function studies with additional protein systems, including membrane bound proteins, are essential to provide a more general picture of adaptation in these extremophiles. We explored molecular features of HP adaptation in proteins binding hydrophobic ligands, either in lipid bilayers (cytochrome P450 1A - CYP1A) or in the cytosol (the aryl hydrocarbon receptor - AHR), and their partners P450 oxidoreductase (POR) and AHR nuclear translocator (ARNT), respectively. Cloning studies identified the full-length coding sequence of AHR, CYP1A and POR, and a partial sequence of ARNT from Coryphaenoides armatus, an abyssal gadiform fish thriving down to 5000m depth. Inferred protein sequences were aligned with many non-deep-sea homologs to identify unique amino acid substitutions of possible relevance in HP adaptation. Positionally unique substitutions of various physicochemical properties were found in all four proteins, usually at sites of strong-to-absolute residue conservation. Some were in domains deemed important for protein-protein interaction or ligand binding. In addition, some involved removal or addition of beta-branched residues; local modifications of beta-branched residue patterns could be important to HP adaptation. In silico predictions further suggested that some unique substitutions might substantially modulate the flexibility of the polypeptide segment in which they are found. Repetitive motifs unique to the abyssal fish AHR were predicted to be rich in glycosylation sites, suggesting that post-translational changes could be involved in adaptation as well. Recombinant CYP1A and AHR showed functional properties (spectral characteristics, catalytic activity and ligand binding) that demonstrate proper folding at 1atm, indicating that they could be used as deep-sea fish protein models to further evaluate protein function under pressure. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone".
Collapse
Affiliation(s)
- Benjamin Lemaire
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - David C Lamb
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Jeffrey C Drazen
- Department of Oceanography, University of Hawaii, Honolulu, HI 96822, USA
| | - Jean François Rees
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
11
|
Zhang Y, Sun J, Chen C, Watanabe HK, Feng D, Zhang Y, Chiu JM, Qian PY, Qiu JW. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species. Sci Rep 2017; 7:46205. [PMID: 28397791 PMCID: PMC5387418 DOI: 10.1038/srep46205] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/10/2017] [Indexed: 12/31/2022] Open
Abstract
Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.).
Collapse
Affiliation(s)
- Yanjie Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Jin Sun
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Chong Chen
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hiromi K. Watanabe
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Dong Feng
- CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, P. R. China
| | - Yu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Jill M.Y. Chiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Pei-Yuan Qian
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| |
Collapse
|