1
|
Li DD, Liang L, He HD, Yi TC, Jin DC. Phylogenomics offers new insights into the classification of Phytoseiidae (Acari: Mesostigmata). Mol Phylogenet Evol 2025; 209:108348. [PMID: 40274244 DOI: 10.1016/j.ympev.2025.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/09/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Phytoseiid mites are significant natural predators of harmful mites and constitute one of the largest groups within Gamasina (Acari: Mesostigmata). The currently accepted classification divides the Phytoseiidae family into three subfamilies, primarily based on the pattern of their dorsal setae. However, the phylogenetic relationships among these subfamilies remain unresolved. To address this issue, we sampled forty representative species from the three subfamilies. Using a specific Arachnida reference dataset (orthodb10, n = 2,934), we mined thousands of universal single-copy orthologs from whole-genome sequencing data. We then constructed four amino-acid matrices, taking into account evolutionary rates and the degree of violation of the molecular clock (DVMC). Phylogenetic trees were reconstructed using both concatenated and multispecies coalescent (MSC) analyses. Based on maximum likelihood and Bayesian inference, the majority of the phylogenetic trees supported the hypothesis (P2) of Phytoseiinae + (Typhlodrominae + (Galendromus + Amblyseiinae)). However, when using slowly evolving and non-clock-like genes, the MSC trees supported an alternative hypothesis (P1) of Typhlodrominae + (Phytoseiinae + (Galendromus + Amblyseiinae)). Additional analyses, including model fitness, topology tests, and morphological comparisons, favored the hypothesis P2. Our findings indicate that Typhlodrominae is not monophyletic, and Galendromus and Amblyseiinae are sister groups. Based on these results, we recommend that Galendromus be separated from Typhlodrominae and elevated to a fourth subfamily.
Collapse
Affiliation(s)
- Dong-Dong Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025 Guizhou, China
| | - Lang Liang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025 Guizhou, China
| | - Hu-Die He
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025 Guizhou, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025 Guizhou, China.
| | - Dao-Chao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025 Guizhou, China.
| |
Collapse
|
2
|
Islam MSU, Shing P, Ahmed M, Zohra FT, Rownaq A, Paul SK, Rahman SM, Sarkar MAR. Genome-wide identification and characterization of NCED gene family in soybean (Glycine max L.) and their expression profiles in response to various abiotic stress treatments. PLoS One 2025; 20:e0319952. [PMID: 40131870 PMCID: PMC11936224 DOI: 10.1371/journal.pone.0319952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
The NCED (9-cis-epoxy carotenoid dioxygenase) enzyme regulates the biosynthesis of abscisic acid (ABA), which is responsible for plant growth, development, and response to various environmental challenges. However, no genome-wide identification, characterization, functional regulatory element analysis, and expression profiles in response to different abiotic stresses of the NCED gene family have yet to be investigated in an economically important legume plant species, soybean (Glycine max L.). Through comprehensive analysis, 16 NCED genes (named GmNCED1 to GmNCED16) belonging to the RPE65 domain were identified in the soybean genome and found to be unequally distributed over 9 distinct chromosomes. The distinct intron-exon structures of GmNCED genes were categorized into six groups and shared a close relationship with the grapevine. Segmental gene duplication events and the purifying selection process were evident in GmNCED genes, according to evolutionary studies. Cis-acting regulatory element analysis revealed that GmNCED genes were largely associated with light response as well as stress response. ERF, MYB, bZIP, and LBD emerged as the major transcription factors in GmNCED genes. The protein-protein interactions demonstrated the close relationship between GmNCED and Arabidopsis thaliana proteins, while micro-RNA analysis revealed the involvement of GmNCED genes in plant growth and development as well as in the regulation of abiotic stress. The expression profiles of GmNCED2, GmNCED11, and GmNCED12 provided evidence of their engagement in dehydration and sodium salt stress, whereas GmNCED14 and GmNCED15 were up-regulated in drought stress. Moreover, the up-regulation of GmNCED13 and GmNCED14 genes in heat tolerant germinated seed stages at high temperature delta region. More specifically, GmNCED14 might be used as a novel candidate gene under drought stress, and influencing seed germination at high temperature. Overall, this study identified the crucial role of GmNCED in conferring resistance against abiotic stress such as dehydration, salt, and drought, and also uncovering the detailed regulatory mechanism of ABA biosynthesis during seed germination.
Collapse
Affiliation(s)
- Md Shohel Ul Islam
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Pollob Shing
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mahin Ahmed
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Amina Rownaq
- Institute of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Suronjeet Kumar Paul
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shaikh Mizanur Rahman
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
3
|
Paul SK, Islam MSU, Akter N, Zohra FT, Rashid SB, Ahmed MS, Rahman SM, Sarkar MAR. Genome-wide identification and characterization of FORMIN gene family in cotton (Gossypium hirsutum L.) and their expression profiles in response to multiple abiotic stress treatments. PLoS One 2025; 20:e0319176. [PMID: 40029892 PMCID: PMC11875364 DOI: 10.1371/journal.pone.0319176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
FORMIN proteins distinguished by FH2 domain, are conserved throughout evolution and widely distributed in eukaryotic organisms. These proteins interact with various signaling molecules and cytoskeletal proteins, playing crucial roles in both biotic and abiotic stress responses. However, the functions of FORMINs in cotton (Gossypium hirsutum L.) remain uncovered. In this study, 46 FORMIN genes in G. hirsutum (referred to as GhFH) were systematically identified. The gene structures, conserved domains, and motifs of these GhFH genes were thoroughly explored. Phylogenetic and structural analysis classified these 46 GhFH genes into five distinct groups. In silico subcellular localization, prediction suggested that GhFH genes are distributed across various cellular compartments, including the nucleus, extracellular space, cytoplasm, mitochondria, cytoskeleton, plasma membrane, endoplasmic reticulum, and chloroplasts. Evolutionary and functional diversification analyses, based on on-synonymous (Ka) and synonymous (Ks) ratios and gene duplication events, indicated that GhFH genes have evolved under purifying selection. The analysis of cis-acting elements suggested that GhFH genes may be involved in plant growth, hormone regulation, light response, and stress response. Results from transcriptional factors TFs and gene ontology analysis indicate that FORMIN proteins regulate cell wall structure and cytoskeleton dynamics by reacting to hormone signals associated with environmental stress. Additionally, 45 putative ghr-miRNAs were identified from 32 families targeting 33 GhFH genes. Expression analysis revealed that GhFH1, GhFH10, GhFH20, GhFH24, and GhFH30 exhibited the highest levels of expression under red, blue, and white light conditions. Further, GhFH9, GhFH20, and GhFH30 displayed higher expression levels under heat stress, while GhFH20 and GhFH30 showed increased expression under salt stress compared to controls. The result suggests that GhFH20 and GhFH30 genes could play significant roles in the development of G. hirsutum under heat and salt stresses. Overall these findings enhance our understanding of the biological functions of the cotton FORMIN family, offering prospects for developing stress-resistant cotton varieties through manipulation of GhFH gene expression.
Collapse
Affiliation(s)
- Suronjeet Kumar Paul
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Nasrin Akter
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shuraya Beente Rashid
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Shakil Ahmed
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
4
|
Song N, Wang MM, Huang WC, Wu ZY, Shao R, Yin XM. Phylogeny and evolution of hemipteran insects based on expanded genomic and transcriptomic data. BMC Biol 2024; 22:190. [PMID: 39218865 PMCID: PMC11367992 DOI: 10.1186/s12915-024-01991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Hemiptera is the fifth species-rich order of insects and the most species-rich order of hemimetabolous insects, including numerous insect species that are of agricultural or medical significance. Despite much effort and recent advance in inferring the Hemiptera phylogeny, some high-level relationships among superfamilies remain controversial. RESULTS We sequenced the genomes of 64 hemipteran species from 15 superfamilies and the transcriptomes of two additional scale insect species, integrating them with existing genomic and transcriptomic data to conduct a comprehensive phylogenetic analysis of Hemiptera. Our datasets comprise an average of 1625 nuclear loci of 315 species across 27 superfamilies of Hemiptera. Our analyses supported Cicadoidea and Cercopoidea as sister groups, with Membracoidea typically positioned as the sister to Cicadoidea + Cercopoidea. In most analyses, Aleyrodoidea was recovered as the sister group of all other Sternorrhyncha. A sister-group relationship was supported between Coccoidea and Aphidoidea + Phylloxeroidea. These relationships were further supported by four-cluster likelihood mapping analyses across diverse datasets. Our ancestral state reconstruction indicates phytophagy as the primary feeding strategy for Hemiptera as a whole. However, predation likely represents an ancestral state for Heteroptera, with several phytophagous lineages having evolved from predatory ancestors. Certain lineages, like Lygaeoidea, have undergone a reversal transition from phytophagy to predation. Our divergence time estimation placed the diversification of hemipterans to be between 60 and 150 million years ago. CONCLUSIONS By expanding phylogenomic taxon sampling, we clarified the superfamily relationships within the infraorder Cicadomorpha. Our phylogenetic analyses supported the sister-group relationship between the superfamilies Cicadoidea and Cercopoidea, and the superfamily Membracoidea as the sister to Cicadoidea + Cercopoidea. Our divergence time estimation supported the close association of hemipteran diversification with the evolutionary success and adaptive radiation of angiosperms during the Cretaceous period.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, Henan Agricultural University, Zhengzhou, Henan, China
- Centre for Bioinnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, QLD, Australia
| | - Miao-Miao Wang
- College of Plant Protection, Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wei-Chao Huang
- Hangzhou Xiaoshan Airport Customs, Hangzhou, Zhejiang, China
| | - Zhi-Yi Wu
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, Zhejiang, China
| | - Renfu Shao
- Centre for Bioinnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, QLD, Australia.
| | - Xin-Ming Yin
- College of Plant Protection, Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Cho A, Lax G, Keeling PJ. Phylogenomic analyses of ochrophytes (stramenopiles) with an emphasis on neglected lineages. Mol Phylogenet Evol 2024; 198:108120. [PMID: 38852907 DOI: 10.1016/j.ympev.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Ochrophyta is a photosynthetic lineage that crowns the phylogenetic tree of stramenopiles, one of the major eukaryotic supergroups. Due to their ecological impact as a major primary producer, ochrophytes are relatively well-studied compared to the rest of the stramenopiles, yet their evolutionary relationships remain poorly understood. This is in part due to a number of missing lineages in large-scale multigene analyses, and an apparently rapid radiation leading to many short internodes between ochrophyte subgroups in the tree. These short internodes are also found across deep-branching lineages of stramenopiles with limited phylogenetic signal, leaving many relationships controversial overall. We have addressed this issue with other deep-branching stramenopiles recently, and now examine whether contentious relationships within the ochrophytes may be resolved with the help of filling in missing lineages in an updated phylogenomic dataset of ochrophytes, along with exploring various gene filtering criteria to identify the most phylogenetically informative genes. We generated ten new transcriptomes from various culture collections and a single-cell isolation from an environmental sample, added these to an existing phylogenomic dataset, and examined the effects of selecting genes with high phylogenetic signal or low phylogenetic noise. For some previously contentious relationships, we find a variety of analyses and gene filtering criteria consistently unite previously unstable groupings with strong statistical support. For example, we recovered a robust grouping of Eustigmatophyceae with Raphidophyceae-Phaeophyceae-Xanthophyceae while Olisthodiscophyceae formed a sister-lineage to Pinguiophyceae. Selecting genes with high phylogenetic signal or data quality recovered more stable topologies. Overall, we find that adding under-represented groups across different lineages is still crucial in resolving phylogenetic relationships, and discrete gene properties affect lineages of stramenopiles differently. This is something which may be explored to further our understanding of the molecular evolution of stramenopiles.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
6
|
Gallone B, Kuyper TW, Nuytinck J. The genus Cortinarius should not (yet) be split. IMA Fungus 2024; 15:24. [PMID: 39138570 PMCID: PMC11321212 DOI: 10.1186/s43008-024-00159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
The genus Cortinarius (Agaricales, Basidiomycota) is one of the most species-rich fungal genera, with thousands of species reported. Cortinarius species are important ectomycorrhizal fungi and form associations with many vascular plants globally. Until recently Cortinarius was the single genus of the family Cortinariaceae, despite several attempts to provide a workable, lower-rank hierarchical structure based on subgenera and sections. The first phylogenomic study for this group elevated the old genus Cortinarius to family level and the family was split into ten genera, of which seven were described as new. Here, by careful re-examination of the recently published phylogenomic dataset, we detected extensive gene-tree/species-tree conflicts using both concatenation and multispecies coalescent approaches. Our analyses demonstrate that the Cortinarius phylogeny remains unresolved and the resulting phylogenomic hypotheses suffer from very short and unsupported branches in the backbone. We can confirm monophyly of only four out of ten suggested new genera, leaving uncertain the relationships between each other and the general branching order. Thorough exploration of the tree space demonstrated that the topology on which Cortinarius revised classification relies on does not represent the best phylogenetic hypothesis and should not be used as constrained topology to include additional species. For this reason, we argue that based on available evidence the genus Cortinarius should not (yet) be split. Moreover, considering that phylogenetic uncertainty translates to taxonomic uncertainty, we advise for careful evaluation of phylogenomic datasets before proposing radical taxonomic and nomenclatural changes.
Collapse
Affiliation(s)
- Brigida Gallone
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands.
| | - Thomas W Kuyper
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Soil Biology Group, Wageningen University, 6700 AA, Wageningen, The Netherlands
| | - Jorinde Nuytinck
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
7
|
Frost LA, Bedoya AM, Lagomarsino LP. Artifactual Orthologs and the Need for Diligent Data Exploration in Complex Phylogenomic Datasets: A Museomic Case Study from the Andean Flora. Syst Biol 2024; 73:308-322. [PMID: 38170162 DOI: 10.1093/sysbio/syad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
The Andes mountains of western South America are a globally important biodiversity hotspot, yet there is a paucity of resolved phylogenies for plant clades from this region. Filling an important gap in our understanding of the World's richest flora, we present the first phylogeny of Freziera (Pentaphylacaceae), an Andean-centered, cloud forest radiation. Our dataset was obtained via hybrid-enriched target sequence capture of Angiosperms353 universal loci for 50 of the ca. 75 spp., obtained almost entirely from herbarium specimens. We identify high phylogenomic complexity in Freziera, including the presence of data artifacts. Via by-eye observation of gene trees, detailed examination of warnings from recently improved assembly pipelines, and gene tree filtering, we identified that artifactual orthologs (i.e., the presence of only one copy of a multicopy gene due to differential assembly) were an important source of gene tree heterogeneity that had a negative impact on phylogenetic inference and support. These artifactual orthologs may be common in plant phylogenomic datasets, where multiple instances of genome duplication are common. After accounting for artifactual orthologs as source of gene tree error, we identified a significant, but nonspecific signal of introgression using Patterson's D and f4 statistics. Despite phylogenomic complexity, we were able to resolve Freziera into 9 well-supported subclades whose evolution has been shaped by multiple evolutionary processes, including incomplete lineage sorting, historical gene flow, and gene duplication. Our results highlight the complexities of plant phylogenomics, which are heightened in Andean radiations, and show the impact of filtering data processing artifacts and standard filtering approaches on phylogenetic inference.
Collapse
Affiliation(s)
- Laura A Frost
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Life Science Annex Building A257, Baton Rouge, LA 70803, USA
- Biology Department, University of South Alabama, 5871 USA N Dr, Mobile, AL 36688, USA
| | - Ana M Bedoya
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Life Science Annex Building A257, Baton Rouge, LA 70803, USA
| | - Laura P Lagomarsino
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Life Science Annex Building A257, Baton Rouge, LA 70803, USA
| |
Collapse
|
8
|
Wang S, Wang W, Chen J, Wan H, Zhao H, Liu X, Dai X, Zeng C, Xu D. Comprehensive Identification and Expression Profiling of Epidermal Pattern Factor ( EPF) Gene Family in Oilseed Rape ( Brassica napus L.) under Salt Stress. Genes (Basel) 2024; 15:912. [PMID: 39062691 PMCID: PMC11275378 DOI: 10.3390/genes15070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Rapeseed is a crucial oil crop globally, and in recent years, abiotic stress has increasingly affected its growth, development, yield, and quality. Salt stress is a significant abiotic factor that restricts crop production. The EPF gene family is vital in managing salt stress by controlling stomatal development and opening, which reduces water loss and increases plant salt tolerance. To explore the features of the EPF gene family in Brassica napus and their expression under salt stress, this study utilized Arabidopsis EPF protein sequences as seed sequences, including their PF17181 and PF16851 domains. A total of 27 members of the EPF gene family were detected within the rapeseed genome. The study examined the physicochemical properties, gene structure, phylogenetic relationships, and collinearity of BnEPFs. Through transcriptomes, we employed the qPCR method to determine the relative expression levels of BnEPF genes potentially associated with rapeseed stress resistance under both non-salt and salt stress conditions. Subsequently, we assessed their influence on rapeseed plants subjected to salt stress. During salt stress conditions, all BnEPF genes displayed a downregulation trend, indicating their potential impact on stomatal development and signal transduction pathways, consequently improving rapeseed's resistance to salt stress. The study findings establish a basis for exploring the roles of BnEPFs and offer candidate genes for breeding stress-resistant varieties and enhancing the yield in rapeseed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Danyun Xu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan 430056, China; (S.W.); (W.W.); (J.C.); (H.W.); (H.Z.); (X.L.); (X.D.); (C.Z.)
| |
Collapse
|
9
|
Church SH, Mah JL, Dunn CW. Integrating phylogenies into single-cell RNA sequencing analysis allows comparisons across species, genes, and cells. PLoS Biol 2024; 22:e3002633. [PMID: 38787797 PMCID: PMC11125556 DOI: 10.1371/journal.pbio.3002633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
Comparisons of single-cell RNA sequencing (scRNA-seq) data across species can reveal links between cellular gene expression and the evolution of cell functions, features, and phenotypes. These comparisons evoke evolutionary histories, as depicted by phylogenetic trees, that define relationships between species, genes, and cells. This Essay considers each of these in turn, laying out challenges and solutions derived from a phylogenetic comparative approach and relating these solutions to previously proposed methods for the pairwise alignment of cellular dimensional maps. This Essay contends that species trees, gene trees, cell phylogenies, and cell lineages can all be reconciled as descriptions of the same concept-the tree of cellular life. By integrating phylogenetic approaches into scRNA-seq analyses, challenges for building informed comparisons across species can be overcome, and hypotheses about gene and cell evolution can be robustly tested.
Collapse
Affiliation(s)
- Samuel H. Church
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jasmine L. Mah
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Casey W. Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
10
|
Steenwyk JL, Li Y, Zhou X, Shen XX, Rokas A. Incongruence in the phylogenomics era. Nat Rev Genet 2023; 24:834-850. [PMID: 37369847 PMCID: PMC11499941 DOI: 10.1038/s41576-023-00620-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Genome-scale data and the development of novel statistical phylogenetic approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved many of its branches. However, incongruence - the inference of conflicting evolutionary histories - remains pervasive in phylogenomic data, hampering our ability to reconstruct and interpret the tree of life. Biological factors, such as incomplete lineage sorting, horizontal gene transfer, hybridization, introgression, recombination and convergent molecular evolution, can lead to gene phylogenies that differ from the species tree. In addition, analytical factors, including stochastic, systematic and treatment errors, can drive incongruence. Here, we review these factors, discuss methodological advances to identify and handle incongruence, and highlight avenues for future research.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
11
|
Comte A, Tricou T, Tannier E, Joseph J, Siberchicot A, Penel S, Allio R, Delsuc F, Dray S, de Vienne DM. PhylteR: Efficient Identification of Outlier Sequences in Phylogenomic Datasets. Mol Biol Evol 2023; 40:msad234. [PMID: 37879113 PMCID: PMC10655845 DOI: 10.1093/molbev/msad234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
In phylogenomics, incongruences between gene trees, resulting from both artifactual and biological reasons, can decrease the signal-to-noise ratio and complicate species tree inference. The amount of data handled today in classical phylogenomic analyses precludes manual error detection and removal. However, a simple and efficient way to automate the identification of outliers from a collection of gene trees is still missing. Here, we present PhylteR, a method that allows rapid and accurate detection of outlier sequences in phylogenomic datasets, i.e. species from individual gene trees that do not follow the general trend. PhylteR relies on DISTATIS, an extension of multidimensional scaling to 3 dimensions to compare multiple distance matrices at once. In PhylteR, these distance matrices extracted from individual gene phylogenies represent evolutionary distances between species according to each gene. On simulated datasets, we show that PhylteR identifies outliers with more sensitivity and precision than a comparable existing method. We also show that PhylteR is not sensitive to ILS-induced incongruences, which is a desirable feature. On a biological dataset of 14,463 genes for 53 species previously assembled for Carnivora phylogenomics, we show (i) that PhylteR identifies as outliers sequences that can be considered as such by other means, and (ii) that the removal of these sequences improves the concordance between the gene trees and the species tree. Thanks to the generation of numerous graphical outputs, PhylteR also allows for the rapid and easy visual characterization of the dataset at hand, thus aiding in the precise identification of errors. PhylteR is distributed as an R package on CRAN and as containerized versions (docker and singularity).
Collapse
Affiliation(s)
- Aurore Comte
- French Institute of Bioinformatics (IFB)—South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
- IRD, CIRAD, INRAE, Institut Agro, PHIM Plant Health Institute, Montpellier University, Montpellier, France
| | - Théo Tricou
- Université de Lyon, Université Lyon 1, UMR CNRS 5558 Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - Eric Tannier
- Université de Lyon, Université Lyon 1, UMR CNRS 5558 Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
- Centre de Recherches Inria de Lyon, Villeurbanne, France
| | - Julien Joseph
- Université de Lyon, Université Lyon 1, UMR CNRS 5558 Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - Aurélie Siberchicot
- Université de Lyon, Université Lyon 1, UMR CNRS 5558 Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - Simon Penel
- Université de Lyon, Université Lyon 1, UMR CNRS 5558 Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - Rémi Allio
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | | | - Stéphane Dray
- Université de Lyon, Université Lyon 1, UMR CNRS 5558 Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - Damien M de Vienne
- Université de Lyon, Université Lyon 1, UMR CNRS 5558 Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| |
Collapse
|
12
|
Sarkar MAR, Sarkar S, Islam MSU, Zohra FT, Rahman SM. A genome‑wide approach to the systematic and comprehensive analysis of LIM gene family in sorghum (Sorghum bicolor L.). Genomics Inform 2023; 21:e36. [PMID: 37813632 PMCID: PMC10584642 DOI: 10.5808/gi.23007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023] Open
Abstract
The LIM domain-containing proteins are dominantly found in plants and play a significant role in various biological processes such as gene transcription as well as actin cytoskeletal organization. Nevertheless, genome-wide identification as well as functional analysis of the LIM gene family have not yet been reported in the economically important plant sorghum (Sorghum bicolor L.). Therefore, we conducted an in silico identification and characterization of LIM genes in S. bicolor genome using integrated bioinformatics approaches. Based on phylogenetic tree analysis and conserved domain, we identified five LIM genes in S. bicolor (SbLIM) genome corresponding to Arabidopsis LIM (AtLIM) genes. The conserved domain, motif as well as gene structure analyses of the SbLIM gene family showed the similarity within the SbLIM and AtLIM members. The gene ontology (GO) enrichment study revealed that the candidate LIM genes are directly involved in cytoskeletal organization and various other important biological as well as molecular pathways. Some important families of regulating transcription factors such as ERF, MYB, WRKY, NAC, bZIP, C2H2, Dof, and G2-like were detected by analyzing their interaction network with identified SbLIM genes. The cis-acting regulatory elements related to predicted SbLIM genes were identified as responsive to light, hormones, stress, and other functions. The present study will provide valuable useful information about LIM genes in sorghum which would pave the way for the future study of functional pathways of candidate SbLIM genes as well as their regulatory factors in wet-lab experiments.
Collapse
Affiliation(s)
- Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Salim Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
13
|
Bernot JP, Owen CL, Wolfe JM, Meland K, Olesen J, Crandall KA. Major Revisions in Pancrustacean Phylogeny and Evidence of Sensitivity to Taxon Sampling. Mol Biol Evol 2023; 40:msad175. [PMID: 37552897 PMCID: PMC10414812 DOI: 10.1093/molbev/msad175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023] Open
Abstract
The clade Pancrustacea, comprising crustaceans and hexapods, is the most diverse group of animals on earth, containing over 80% of animal species and half of animal biomass. It has been the subject of several recent phylogenomic analyses, yet relationships within Pancrustacea show a notable lack of stability. Here, the phylogeny is estimated with expanded taxon sampling, particularly of malacostracans. We show small changes in taxon sampling have large impacts on phylogenetic estimation. By analyzing identical orthologs between two slightly different taxon sets, we show that the differences in the resulting topologies are due primarily to the effects of taxon sampling on the phylogenetic reconstruction method. We compare trees resulting from our phylogenomic analyses with those from the literature to explore the large tree space of pancrustacean phylogenetic hypotheses and find that statistical topology tests reject the previously published trees in favor of the maximum likelihood trees produced here. Our results reject several clades including Caridoida, Eucarida, Multicrustacea, Vericrustacea, and Syncarida. Notably, we find Copepoda nested within Allotriocarida with high support and recover a novel relationship between decapods, euphausiids, and syncarids that we refer to as the Syneucarida. With denser taxon sampling, we find Stomatopoda sister to this latter clade, which we collectively name Stomatocarida, dividing Malacostraca into three clades: Leptostraca, Peracarida, and Stomatocarida. A new Bayesian divergence time estimation is conducted using 13 vetted fossils. We review our results in the context of other pancrustacean phylogenetic hypotheses and highlight 15 key taxa to sample in future studies.
Collapse
Affiliation(s)
- James P Bernot
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Christopher L Owen
- Systematic Entomology Laboratory, USDA-ARS, ℅ National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kenneth Meland
- Department of Biology, University of Bergen, Bergen, Norway
| | - Jørgen Olesen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Keith A Crandall
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
14
|
Wang L, Wei J, Shi X, Qian W, Mehmood J, Yin Y, Jia H. Identification of the Light-Harvesting Chlorophyll a/b Binding Protein Gene Family in Peach ( Prunus persica L.) and Their Expression under Drought Stress. Genes (Basel) 2023; 14:1475. [PMID: 37510379 PMCID: PMC10378835 DOI: 10.3390/genes14071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
In higher plants, light-harvesting chlorophyll a/b binding (Lhc) proteins play a vital role in photosynthetic processes and are widely involved in the regulation of plant growth, development, and response to abiotic stress. However, the Lhc gene family has not been well identified in peaches (Prunus persica L.). In this study, 19 PpLhc genes were identified in the peach genome database, which were unevenly distributed on all chromosomes. Phylogenetic analysis demonstrated that PpLhc proteins could be divided into three major subfamilies, each of whose members had different exon-intron structures but shared similar conserved motifs. A total of 17 different kinds of cis-regulatory elements were identified in the promoter regions of all PpLhc genes, which could be classified into three categories: plant growth and development, stress response, and phytohormone response. In addition, transcriptomic data analysis and RT-qPCR results revealed that the expression profiles of some PpLhc genes changed under drought treatment, suggesting the crucial roles of Lhc genes in the regulation of plant tolerance to drought stress. Taken together, these findings will provide valuable information for future functional studies of PpLhc genes, especially in response to drought stress.
Collapse
Affiliation(s)
- Li Wang
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xingyun Shi
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Weihong Qian
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Jan Mehmood
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yiming Yin
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Huijuan Jia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Redmond AK, Casey D, Gundappa MK, Macqueen DJ, McLysaght A. Independent rediploidization masks shared whole genome duplication in the sturgeon-paddlefish ancestor. Nat Commun 2023; 14:2879. [PMID: 37208359 DOI: 10.1038/s41467-023-38714-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/12/2023] [Indexed: 05/21/2023] Open
Abstract
Whole genome duplication (WGD) is a dramatic evolutionary event generating many new genes and which may play a role in survival through mass extinctions. Paddlefish and sturgeon are sister lineages that both show genomic evidence for ancient WGD. Until now this has been interpreted as two independent WGD events due to a preponderance of duplicate genes with independent histories. Here we show that although there is indeed a plurality of apparently independent gene duplications, these derive from a shared genome duplication event occurring well over 200 million years ago, likely close to the Permian-Triassic mass extinction period. This was followed by a prolonged process of reversion to stable diploid inheritance (rediploidization), that may have promoted survival during the Triassic-Jurassic mass extinction. We show that the sharing of this WGD is masked by the fact that paddlefish and sturgeon lineage divergence occurred before rediploidization had proceeded even half-way. Thus, for most genes the resolution to diploidy was lineage-specific. Because genes are only truly duplicated once diploid inheritance is established, the paddlefish and sturgeon genomes are thus a mosaic of shared and non-shared gene duplications resulting from a shared genome duplication event.
Collapse
Affiliation(s)
- Anthony K Redmond
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Dearbhaile Casey
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Aoife McLysaght
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
16
|
McCarthy CGP, Mulhair PO, Siu-Ting K, Creevey CJ, O’Connell MJ. Improving Orthologous Signal and Model Fit in Datasets Addressing the Root of the Animal Phylogeny. Mol Biol Evol 2023; 40:6989790. [PMID: 36649189 PMCID: PMC9848061 DOI: 10.1093/molbev/msac276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
There is conflicting evidence as to whether Porifera (sponges) or Ctenophora (comb jellies) comprise the root of the animal phylogeny. Support for either a Porifera-sister or Ctenophore-sister tree has been extensively examined in the context of model selection, taxon sampling, and outgroup selection. The influence of dataset construction is comparatively understudied. We re-examine five animal phylogeny datasets that have supported either root hypothesis using an approach designed to enrich orthologous signal in phylogenomic datasets. We find that many component orthogroups in animal datasets fail to recover major lineages as monophyletic with the exception of Ctenophora, regardless of the supported root. Enriching these datasets to retain orthogroups recovering ≥3 major lineages reduces dataset size by up to 50% while retaining underlying phylogenetic information and taxon sampling. Site-heterogeneous phylogenomic analysis of these enriched datasets recovers both Porifera-sister and Ctenophora-sister positions, even with additional constraints on outgroup sampling. Two datasets which previously supported Ctenophora-sister support Porifera-sister upon enrichment. All enriched datasets display improved model fitness under posterior predictive analysis. While not conclusively rooting animals at either Porifera or Ctenophora, we do see an increase in signal for Porifera-sister and a decrease in signal for Ctenophore-sister when data are filtered for orthologous signal. Our results indicate that dataset size and construction as well as model fit influence animal root inference.
Collapse
Affiliation(s)
| | | | - Karen Siu-Ting
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | | |
Collapse
|
17
|
Mulhair PO, McCarthy CGP, Siu-Ting K, Creevey CJ, O'Connell MJ. Filtering artifactual signal increases support for Xenacoelomorpha and Ambulacraria sister relationship in the animal tree of life. Curr Biol 2022; 32:5180-5188.e3. [PMID: 36356574 DOI: 10.1016/j.cub.2022.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/09/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022]
Abstract
Conflicting studies place a group of bilaterian invertebrates containing xenoturbellids and acoelomorphs, the Xenacoelomorpha, as either the primary emerging bilaterian phylum1,2,3,4,5,6 or within Deuterostomia, sister to Ambulacraria.7,8,9,10,11 Although their placement as sister to the rest of Bilateria supports relatively simple morphology in the ancestral bilaterian, their alternative placement within Deuterostomia suggests a morphologically complex ancestral bilaterian along with extensive loss of major phenotypic traits in the Xenacoelomorpha. Recent studies have questioned whether Deuterostomia should be considered monophyletic at all.10,12,13 Hidden paralogy and poor phylogenetic signal present a major challenge for reconstructing species phylogenies.14,15,16,17,18 Here, we assess whether these issues have contributed to the conflict over the placement of Xenacoelomorpha. We reanalyzed published datasets, enriching for orthogroups whose gene trees support well-resolved clans elsewhere in the animal tree.16 We find that most genes in previously published datasets violate incontestable clans, suggesting that hidden paralogy and low phylogenetic signal affect the ability to reconstruct branching patterns at deep nodes in the animal tree. We demonstrate that removing orthogroups that cannot recapitulate incontestable relationships alters the final topology that is inferred, while simultaneously improving the fit of the model to the data. We discover increased, but ultimately not conclusive, support for the existence of Xenambulacraria in our set of filtered orthogroups. At a time when we are progressing toward sequencing all life on the planet, we argue that long-standing contentious issues in the tree of life will be resolved using smaller amounts of better quality data that can be modeled adequately.19.
Collapse
Affiliation(s)
- Peter O Mulhair
- Computational and Molecular Evolutionary Biology Research Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Charley G P McCarthy
- Computational and Molecular Evolutionary Biology Research Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Karen Siu-Ting
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Research Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
18
|
Steenwyk JL, Goltz DC, Buida TJ, Li Y, Shen XX, Rokas A. OrthoSNAP: A tree splitting and pruning algorithm for retrieving single-copy orthologs from gene family trees. PLoS Biol 2022; 20:e3001827. [PMID: 36228036 PMCID: PMC9595520 DOI: 10.1371/journal.pbio.3001827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 10/25/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Molecular evolution studies, such as phylogenomic studies and genome-wide surveys of selection, often rely on gene families of single-copy orthologs (SC-OGs). Large gene families with multiple homologs in 1 or more species-a phenomenon observed among several important families of genes such as transporters and transcription factors-are often ignored because identifying and retrieving SC-OGs nested within them is challenging. To address this issue and increase the number of markers used in molecular evolution studies, we developed OrthoSNAP, a software that uses a phylogenetic framework to simultaneously split gene families into SC-OGs and prune species-specific inparalogs. We term SC-OGs identified by OrthoSNAP as SNAP-OGs because they are identified using a splitting and pruning procedure analogous to snapping branches on a tree. From 415,129 orthologous groups of genes inferred across 7 eukaryotic phylogenomic datasets, we identified 9,821 SC-OGs; using OrthoSNAP on the remaining 405,308 orthologous groups of genes, we identified an additional 10,704 SNAP-OGs. Comparison of SNAP-OGs and SC-OGs revealed that their phylogenetic information content was similar, even in complex datasets that contain a whole-genome duplication, complex patterns of duplication and loss, transcriptome data where each gene typically has multiple transcripts, and contentious branches in the tree of life. OrthoSNAP is useful for increasing the number of markers used in molecular evolution data matrices, a critical step for robustly inferring and exploring the tree of life.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dayna C. Goltz
- Independent Researcher, Nashville, Tennessee, United States of America
| | - Thomas J. Buida
- Independent Researcher, Nashville, Tennessee, United States of America
| | - Yuanning Li
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xing-Xing Shen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| |
Collapse
|
19
|
Shi P, Jiang R, Li B, Wang D, Fang D, Yin M, Yin M, Gu M. Genome-Wide Analysis and Expression Profiles of the VOZ Gene Family in Quinoa ( Chenopodium quinoa). Genes (Basel) 2022; 13:1695. [PMID: 36292580 PMCID: PMC9601790 DOI: 10.3390/genes13101695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2023] Open
Abstract
Vascular plant one zinc-finger (VOZ) proteins are a plant-specific transcription factor family and play important roles in plant development and stress responses. However, little is known about the VOZ genes in quinoa. In the present study, a genome-wide investigation of the VOZ gene family in quinoa was performed, including gene structures, conserved motifs, phylogeny, and expression profiles. A total of four quinoa VOZ genes distributed on three chromosomes were identified. Based on phylogenetic analysis, CqVOZ1 and CqVOZ3 belong to subfamily II, and CqVOZ2 and CqVOZ4 belong to subfamily III. Furthermore, the VOZ transcription factors of quinoa and sugarbeet were more closely related than other species. Except for CqVOZ3, all the other three CqVOZs have four exons and four introns. Analysis of conserved motifs indicated that each CqVOZ member contained seven common motifs. Multiple sequence alignment showed that the CqVOZ genes were highly conserved with consensus sequences, which might be plausibly significant for the preservation of structural integrity of the family proteins. Tissue expression analysis revealed that four CqVOZ genes were highly expressed in inflorescence and relatively low in leaves and stems, suggesting that these genes had obvious tissue expression specificity. The expression profiles of the quinoa CqVOZs under various abiotic stresses demonstrated that these genes were differentially induced by cold stress, salt stress, and drought stress. The transcript level of CqVOZ1 and CqVOZ4 were down-regulated by salt stress and drought stress, while CqVOZ2 and CqVOZ3 were up-regulated by cold, salt, and drought stress, which could be used as abiotic stress resistance candidate genes. This study systematically identifies the CqVOZ genes at the genome-wide level, contributing to a better understanding of the quinoa VOZ transcription factor family and laying a foundation for further exploring the molecular mechanism of development and stress resistance of quinoa.
Collapse
Affiliation(s)
- Pibiao Shi
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Runzhi Jiang
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Bin Li
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Deling Wang
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Di Fang
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Min Yin
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Mingming Yin
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Minfeng Gu
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| |
Collapse
|
20
|
Lozano-Fernandez J. A Practical Guide to Design and Assess a Phylogenomic Study. Genome Biol Evol 2022; 14:evac129. [PMID: 35946263 PMCID: PMC9452790 DOI: 10.1093/gbe/evac129] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, molecular systematics has undergone a change of paradigm as high-throughput sequencing now makes it possible to reconstruct evolutionary relationships using genome-scale datasets. The advent of "big data" molecular phylogenetics provided a battery of new tools for biologists but simultaneously brought new methodological challenges. The increase in analytical complexity comes at the price of highly specific training in computational biology and molecular phylogenetics, resulting very often in a polarized accumulation of knowledge (technical on one side and biological on the other). Interpreting the robustness of genome-scale phylogenetic studies is not straightforward, particularly as new methodological developments have consistently shown that the general belief of "more genes, more robustness" often does not apply, and because there is a range of systematic errors that plague phylogenomic investigations. This is particularly problematic because phylogenomic studies are highly heterogeneous in their methodology, and best practices are often not clearly defined. The main aim of this article is to present what I consider as the ten most important points to take into consideration when planning a well-thought-out phylogenomic study and while evaluating the quality of published papers. The goal is to provide a practical step-by-step guide that can be easily followed by nonexperts and phylogenomic novices in order to assess the technical robustness of phylogenomic studies or improve the experimental design of a project.
Collapse
Affiliation(s)
- Jesus Lozano-Fernandez
- Department of Genetics, Microbiology and Statistics, Biodiversity Research Institute (IRBio), University of Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain
- Institute of Evolutionary Biology (CSIC – Universitat Pompeu Fabra), Passeig marítim de la Barcelona 37-49, 08003 Barcelona, Spain
| |
Collapse
|
21
|
Smith BT, Merwin J, Provost KL, Thom G, Brumfield RT, Ferreira M, Mauck Iii WM, Moyle RG, Wright T, Joseph L. Phylogenomic analysis of the parrots of the world distinguishes artifactual from biological sources of gene tree discordance. Syst Biol 2022; 72:228-241. [PMID: 35916751 DOI: 10.1093/sysbio/syac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 02/22/2022] [Accepted: 07/22/2022] [Indexed: 11/14/2022] Open
Abstract
Gene tree discordance is expected in phylogenomic trees and biological processes are often invoked to explain it. However, heterogeneous levels of phylogenetic signal among individuals within datasets may cause artifactual sources of topological discordance. We examined how the information content in tips and subclades impacts topological discordance in the parrots (Order: Psittaciformes), a diverse and highly threatened clade of nearly 400 species. Using ultraconserved elements from 96% of the clade's species-level diversity, we estimated concatenated and species trees for 382 ingroup taxa. We found that discordance among tree topologies was most common at nodes dating between the late Miocene and Pliocene, and often at the taxonomic level of genus. Accordingly, we used two metrics to characterize information content in tips and assess the degree to which conflict between trees was being driven by lower quality samples. Most instances of topological conflict and non-monophyletic genera in the species tree could be objectively identified using these metrics. For subclades still discordant after tip-based filtering, we used a machine learning approach to determine whether phylogenetic signal or noise was the more important predictor of metrics supporting the alternative topologies. We found that when signal favored one of the topologies, noise was the most important variable in poorly performing models that favored the alternative topology. In sum, we show that artifactual sources of gene tree discordance, which are likely a common phenomenon in many datasets, can be distinguished from biological sources by quantifying the information content in each tip and modeling which factors support each topology.
Collapse
Affiliation(s)
- Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Jon Merwin
- Department of Ornithology, Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA 19103, USA
| | - Kaiya L Provost
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Gregory Thom
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Robb T Brumfield
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mateus Ferreira
- Centro de Estudos da Biodiversidade, Universidade Federal de Roraima, Av. Cap. Ene Garcez, 2413, Boa Vista, RR, Brazil
| | - William M Mauck Iii
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Robert G Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, KS 66045, USA
| | - Timothy Wright
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Leo Joseph
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
22
|
Drábková M, Kocot KM, Halanych KM, Oakley TH, Moroz LL, Cannon JT, Kuris A, Garcia-Vedrenne AE, Pankey MS, Ellis EA, Varney R, Štefka J, Zrzavý J. Different phylogenomic methods support monophyly of enigmatic 'Mesozoa' (Dicyemida + Orthonectida, Lophotrochozoa). Proc Biol Sci 2022; 289:20220683. [PMID: 35858055 PMCID: PMC9257288 DOI: 10.1098/rspb.2022.0683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dicyemids and orthonectids were traditionally classified in a group called Mesozoa, but their placement in a single clade has been contested and their position(s) within Metazoa is uncertain. Here, we assembled a comprehensive matrix of Lophotrochozoa (Metazoa) and investigated the position of Dicyemida (= Rhombozoa) and Orthonectida, employing multiple phylogenomic approaches. We sequenced seven new transcriptomes and one draft genome from dicyemids (Dicyema, Dicyemennea) and two transcriptomes from orthonectids (Rhopalura). Using these and published data, we assembled and analysed contamination-filtered datasets with up to 987 genes. Our results recover Mesozoa monophyletic and as a close relative of Platyhelminthes or Gnathifera. Because of the tendency of the long-branch mesozoans to group with other long-branch taxa in our analyses, we explored the impact of approaches purported to help alleviate long-branch attraction (e.g. taxon removal, coalescent inference, gene targeting). None of these were able to break the association of Orthonectida with Dicyemida in the maximum-likelihood trees. Contrastingly, the Bayesian analysis and site-specific frequency model in maximum-likelihood did not recover a monophyletic Mesozoa (but only when using a specific 50 gene matrix). The classic hypothesis on monophyletic Mesozoa is possibly reborn and should be further tested.
Collapse
Affiliation(s)
- Marie Drábková
- Department of Parasitology, University of South Bohemia, České Budějovice 37005, Czech Republic,Laboratory of Molecular Ecology and Evolution, Institute of Parasitology, Biology Centre CAS, České Budějovice 37005, Czech Republic
| | - Kevin M. Kocot
- Department of Biological Sciences, The University of Alabama, Campus Box 870344, Tuscaloosa, AL 35487, USA
| | - Kenneth M. Halanych
- The Centre for Marine Science, University of North Carolina, Wilmington, 57000 Marvin K. Moss Lane, Wilmington, NC 28409, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Leonid L. Moroz
- Department of Neuroscience, and the Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | - Johanna T. Cannon
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Armand Kuris
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ana Elisa Garcia-Vedrenne
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - M. Sabrina Pankey
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Emily A. Ellis
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Rebecca Varney
- Department of Biological Sciences, The University of Alabama, Campus Box 870344, Tuscaloosa, AL 35487, USA,Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jan Štefka
- Department of Parasitology, University of South Bohemia, České Budějovice 37005, Czech Republic,Laboratory of Molecular Ecology and Evolution, Institute of Parasitology, Biology Centre CAS, České Budějovice 37005, Czech Republic
| | - Jan Zrzavý
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice 37005, Czech Republic
| |
Collapse
|
23
|
Owen CL, Marshall DC, Wade EJ, Meister R, Goemans G, Kunte K, Moulds M, Hill K, Villet M, Pham TH, Kortyna M, Lemmon EM, Lemmon AR, Simon C. Detecting and removing sample contamination in phylogenomic data: an example and its implications for Cicadidae phylogeny (Insecta: Hemiptera). Syst Biol 2022; 71:1504-1523. [PMID: 35708660 DOI: 10.1093/sysbio/syac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Contamination of a genetic sample with DNA from one or more non-target species is a continuing concern of molecular phylogenetic studies, both Sanger sequencing studies and Next-Generation Sequencing (NGS) studies. We developed an automated pipeline for identifying and excluding likely cross-contaminated loci based on detection of bimodal distributions of patristic distances across gene trees. When the contamination occurs between samples within a dataset, comparisons between a contaminated sample and its contaminant taxon will yield bimodal distributions with one peak close to zero patristic distance. This new method does not rely on a priori knowledge of taxon relatedness nor does it determine the causes(s) of the contamination. Exclusion of putatively contaminated loci from a dataset generated for the insect family Cicadidae showed that these sequences were affecting some topological patterns and branch supports, although the effects were sometimes subtle, with some contamination-influenced relationships exhibiting strong bootstrap support. Long tip branches and outlier values for one anchored phylogenomic pipeline statistic (AvgNHomologs) were correlated with the presence of contamination. While the AHE markers used here, which target hemipteroid taxa, proved effective in resolving deep and shallow level Cicadidae relationships in aggregate, individual markers contained inadequate phylogenetic signal, in part probably due to short length. The cleaned dataset, consisting of 429 loci, from 90 genera representing 44 of 56 current Cicadidae tribes, supported three of the four sampled Cicadidae subfamilies in concatenated-matrix maximum likelihood (ML) and multispecies coalescent-based species tree analyses, with the fourth subfamily weakly supported in the ML trees. No well-supported patterns from previous family-level Sanger sequencing studies of Cicadidae phylogeny were contradicted. One taxon (Aragualna plenalinea) did not fall with its current subfamily in the genetic tree, and this genus and its tribe Aragualnini is reclassified to Tibicininae following morphological re-examination. Only subtle differences were observed in trees after removal of loci for which divergent base frequencies were detected. Greater success may be achieved by increased taxon sampling and developing a probe set targeting a more recent common ancestor and longer loci. Searches for contamination are an essential step in phylogenomic analyses of all kinds and our pipeline is an effective solution.
Collapse
Affiliation(s)
- Christopher L Owen
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - David C Marshall
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Elizabeth J Wade
- Dept. of Natural Science and Mathematics, Curry College, Milton, MA 02186, USA
| | - Russ Meister
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Geert Goemans
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Max Moulds
- Australian Museum Research Institute, 1 William Street, Sydney N.S.W, Australia. 2010
| | - Kathy Hill
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - M Villet
- Dept. of Biology, Rhodes University, Grahamstown 6140, South Africa
| | - Thai-Hong Pham
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hue, Vietnam.,Vietnam National Museum of Nature and Graduate School of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Michelle Kortyna
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University 400 Dirac Science Library, Tallahassee, FL 32306, USA
| | - Chris Simon
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
24
|
Wei Y, Lu X, Bao J, Zhang C, Yan H, Li K, Gong M, Li S, Ma S. Identification and expression analysis of chlorophyll a/b binding protein gene family in grape ( Vitis vinifera). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1147-1158. [PMID: 35910436 PMCID: PMC9334500 DOI: 10.1007/s12298-022-01204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED In higher plants, light capture of chlorophyll a/b binding protein (Lhc) plays a crucial role in the plant's response to adverse environment. So far, the family has not been systematically identified in grapes. In this study, 20 VvLhcs were identified in the grape genome, which were distributed in 13 of 19 grape chromosomes and divided into 7 developing branches. The results of gene duplication analysis showed that 6 VvLhcs formed fragment duplication events, while there was no tandem duplication in VvLhcs. Exon-intron structure analysis showed that they had a wide number of exons. Protein conserved motif analysis showed that VvLhcs contained more similar motif structures in the same phylogenetic branch. The cis-acting elements in the VvLhcs promoter region mainly respond to light, plant hormones and abiotic stresses. In addition, qRT-PCR results showed that different proportions of salt stress and red-blue light affected the expression of VvLhcs and the expression patterns of genes in different grape varieties were different. The results for further study on different grape varieties in different combinations of red and blue light of the Lhc provide a theoretical basis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01204-5.
Collapse
Affiliation(s)
- Yunchun Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jinyu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Congcong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Haokai Yan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Kang Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Meishuang Gong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
- Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Shaoying Ma
- Basical Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
25
|
Steenwyk JL, Buida Iii TJ, Gonçalves C, Goltz DC, Morales G, Mead ME, LaBella AL, Chavez CM, Schmitz JE, Hadjifrangiskou M, Li Y, Rokas A. BioKIT: a versatile toolkit for processing and analyzing diverse types of sequence data. Genetics 2022; 221:6583183. [PMID: 35536198 PMCID: PMC9252278 DOI: 10.1093/genetics/iyac079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
Bioinformatic analysis-such as genome assembly quality assessment, alignment summary statistics, relative synonymous codon usage, file format conversion, and processing and analysis-is integrated into diverse disciplines in the biological sciences. Several command-line pieces of software have been developed to conduct some of these individual analyses, but unified toolkits that conduct all these analyses are lacking. To address this gap, we introduce BioKIT, a versatile command line toolkit that has, upon publication, 42 functions, several of which were community-sourced, that conduct routine and novel processing and analysis of genome assemblies, multiple sequence alignments, coding sequences, sequencing data, and more. To demonstrate the utility of BioKIT, we conducted a comprehensive examination of relative synonymous codon usage across 171 fungal genomes that use alternative genetic codes, showed that the novel metric of gene-wise relative synonymous codon usage can accurately estimate gene-wise codon optimization, evaluated the quality and characteristics of 901 eukaryotic genome assemblies, and calculated alignment summary statistics for 10 phylogenomic data matrices. BioKIT will be helpful in facilitating and streamlining sequence analysis workflows. BioKIT is freely available under the MIT license from GitHub (https://github.com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the Anaconda Cloud (https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). Documentation, user tutorials, and instructions for requesting new features are available online (https://jlsteenwyk.com/BioKIT).
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA.,Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Grace Morales
- Department of Pathology, Microbiology & Immunology, Center for Personalized Microbiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Christina M Chavez
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jonathan E Schmitz
- Department of Pathology, Microbiology & Immunology, Center for Personalized Microbiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maria Hadjifrangiskou
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA.,Department of Pathology, Microbiology & Immunology, Center for Personalized Microbiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
26
|
Ballesteros JA, Santibáñez-López CE, Baker CM, Benavides LR, Cunha TJ, Gainett G, Ontano AZ, Setton EVW, Arango CP, Gavish-Regev E, Harvey MS, Wheeler WC, Hormiga G, Giribet G, Sharma PP. Comprehensive species sampling and sophisticated algorithmic approaches refute the monophyly of Arachnida. Mol Biol Evol 2022; 39:6522129. [PMID: 35137183 PMCID: PMC8845124 DOI: 10.1093/molbev/msac021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Deciphering the evolutionary relationships of Chelicerata (arachnids, horseshoe crabs, and allied taxa) has proven notoriously difficult, due to their ancient rapid radiation and the incidence of elevated evolutionary rates in several lineages. Although conflicting hypotheses prevail in morphological and molecular data sets alike, the monophyly of Arachnida is nearly universally accepted, despite historical lack of support in molecular data sets. Some phylotranscriptomic analyses have recovered arachnid monophyly, but these did not sample all living orders, whereas analyses including all orders have failed to recover Arachnida. To understand this conflict, we assembled a data set of 506 high-quality genomes and transcriptomes, sampling all living orders of Chelicerata with high occupancy and rigorous approaches to orthology inference. Our analyses consistently recovered the nested placement of horseshoe crabs within a paraphyletic Arachnida. This result was insensitive to variation in evolutionary rates of genes, complexity of the substitution models, and alternative algorithmic approaches to species tree inference. Investigation of sources of systematic bias showed that genes and sites that recover arachnid monophyly are enriched in noise and exhibit low information content. To test the impact of morphological data, we generated a 514-taxon morphological data matrix of extant and fossil Chelicerata, analyzed in tandem with the molecular matrix. Combined analyses recovered the clade Merostomata (the marine orders Xiphosura, Eurypterida, and Chasmataspidida), but merostomates appeared nested within Arachnida. Our results suggest that morphological convergence resulting from adaptations to life in terrestrial habitats has driven the historical perception of arachnid monophyly, paralleling the history of numerous other invertebrate terrestrial groups.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biology, Western Connecticut State University, Danbury, CT, 06810, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Ligia R Benavides
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Tauana J Cunha
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Claudia P Arango
- Office for Research, Griffith University, Nathan, Queensland, 4111, Australia
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, 6106, Australia
- School of Biological Sciences, University of Western, Crawley, Western Australia, 6009, Australia; Australia
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
27
|
Atta CJ, Yuan H, Li C, Arcila D, Betancur-R R, Hughes LC, Ortí G, Tornabene L. Exon-capture data and locus screening provide new insights into the phylogeny of flatfishes (Pleuronectoidei). Mol Phylogenet Evol 2021; 166:107315. [PMID: 34537325 DOI: 10.1016/j.ympev.2021.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/12/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
There is an extensive collection of literature on the taxonomy and phylogenetics of flatfishes (Pleuronectiformes) that extends over two centuries, but consensus on many of their evolutionary relationships remains elusive. Phylogenetic uncertainty stems from highly divergent results derived from morphological and genetic characters, and between various molecular datasets. Deciphering relationships is complicated by rapid diversification early in the Pleuronectiformes tree and an abundance of studies that incompletely and inconsistently sample taxa and genetic markers. We present phylogenies based on a genome-wide dataset (4,434 nuclear markers via exon-capture) and wide taxon sampling (86 species spanning 12 of 16 families) of the largest flatfish suborder (Pleuronectoidei). Nine different subsets of the data and two tree construction approaches (eighteen phylogenies in total) are remarkably consistent with other recent molecular phylogenies, and show strong support for the monophyly of all families included except Pleuronectidae. Analyses resolved a novel phylogenetic hypothesis for the family Rhombosoleidae as being within the Pleuronectoidea rather than the Soleoidea, and failed to support the subfamily Hippoglossinae as a monophyletic group. Our results were corroborated with evidence from previous phylogenetic studies to outline regions of persistent phylogenetic uncertainty and identify groups in need of further phylogenetic inference.
Collapse
Affiliation(s)
- Calder J Atta
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, USA; Burke Museum of Natural History and Culture, Seattle, USA.
| | - Hao Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Chenhong Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Dahiana Arcila
- Sam Noble Oklahoma Museum of Natural History, The University of Oklahoma, Norman, OK 73072, USA; Department of Biology, The University of Oklahoma, Norman, OK 73072, USA
| | - Ricardo Betancur-R
- Sam Noble Oklahoma Museum of Natural History, The University of Oklahoma, Norman, OK 73072, USA; Department of Biology, The University of Oklahoma, Norman, OK 73072, USA
| | - Lily C Hughes
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA; National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Guillermo Ortí
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, USA; Burke Museum of Natural History and Culture, Seattle, USA
| |
Collapse
|
28
|
Mongiardino Koch N. Phylogenomic Subsampling and the Search for Phylogenetically Reliable Loci. Mol Biol Evol 2021; 38:4025-4038. [PMID: 33983409 DOI: 10.1101/2021.02.13.431075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
29
|
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
30
|
Walker JF, Smith SA, Hodel RGJ, Moyroud E. Concordance-based approaches for the inference of relationships and molecular rates with phylogenomic datasets. Syst Biol 2021; 71:943-958. [PMID: 34240209 DOI: 10.1093/sysbio/syab052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022] Open
Abstract
Gene tree conflict is common and finding methods to analyze and alleviate the negative effects that conflict has on species tree analysis is a crucial part of phylogenomics. This study aims to expand the discussion of inferring species trees and molecular branch lengths when conflict is present. Conflict is typically examined in two ways: inferring its prevalence, and inferring the influence of the individual genes (how strongly one gene supports any given topology compared to an alternative topology). Here, we examine a procedure for incorporating both conflict and the influence of genes in order to infer evolutionary relationships. All supported relationships in the gene trees are analyzed and the likelihood of the genes constrained to these relationships is summed to provide a likelihood for the relationship. Consensus tree assembly is conducted based on the sum of likelihoods for a given relationship and choosing relationships based on the most likely relationship assuming it does not conflict with a relationship that has a higher likelihood score. If it is not possible for all most likely relationships to be combined into a single bifurcating tree then multiple trees are produced and a consensus tree with a polytomy is created. This procedure allows for more influential genes to have greater influence on an inferred relationship, does not assume conflict has arisen from any one source, and does not force the dataset to produce a single bifurcating tree. Using this approach on three empirical datasets, we examine and discuss the relationship between influence and prevalence of gene tree conflict. We find that in one of the datasets, assembling a bifurcating consensus tree solely composed of the most likely relationships is impossible. To account for conflict in molecular rate analysis we also introduce a concordance-based approach to the summary and estimation of branch lengths suitable for downstream comparative analyses. We demonstrate through simulation that even under high levels of stochastic conflict, the mean and median of the concordant rates recapitulate the true molecular rate better than using a supermatrix approach. Using a large phylogenomic dataset, we examine rate heterogeneity across concordant genes with a focus on the branch subtending crown angiosperms. Notably, we find highly variable rates of evolution along the branch subtending crown angiosperms. The approaches outlined here have several limitations, but they also represent some alternative methods for harnessing the complexity of phylogenomic datasets and enrich our inferences of both species' relationships and evolutionary processes.
Collapse
Affiliation(s)
- Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607 U.S.A
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Richard G J Hodel
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
31
|
Doyle JJ. Defining coalescent genes: Theory meets practice in organelle phylogenomics. Syst Biol 2021; 71:476-489. [PMID: 34191012 DOI: 10.1093/sysbio/syab053] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
The species tree paradigm that dominates current molecular systematic practice infers species trees from collections of sequences under assumptions of the multispecies coalescent (MSC), i.e., that there is free recombination between the sequences and no (or very low) recombination within them. These coalescent genes (c-genes) are thus defined in an historical rather than molecular sense, and can in theory be as large as an entire genome or as small as a single nucleotide. A debate about how to define c-genes centers on the contention that nuclear gene sequences used in many coalescent analyses undergo too much recombination, such that their introns comprise multiple c-genes, violating a key assumption of the MSC. Recently a similar argument has been made for the genes of plastid (e.g., chloroplast) and mitochondrial genomes, which for the last 30 or more years have been considered to represent a single c-gene for the purposes of phylogeny reconstruction because they are non-recombining in a historical sense. Consequently, it has been suggested that these genomes should be analyzed using coalescent methods that treat their genes-over 70 protein-coding genes in the case of most plastid genomes (plastomes)-as independent estimates of species phylogeny, in contrast to the usual practice of concatenation, which is appropriate for generating gene trees. However, although recombination certainly occurs in the plastome, as has been recognized since the 1970's, it is unlikely to be phylogenetically relevant. This is because such historically effective recombination can only occur when plastomes with incongruent histories are brought together in the same plastid. However, plastids sort rapidly into different cell lineages and rarely fuse. Thus, because of plastid biology, the plastome is a more canonical c-gene than is the average multi-intron mammalian nuclear gene. The plastome should thus continue to be treated as a single estimate of the underlying species phylogeny, as should the mitochondrial genome. The implications of this long-held insight of molecular systematics for studies in the phylogenomic era are explored.
Collapse
Affiliation(s)
- Jeff J Doyle
- Plant Biology Section, Plant Breeding & Genetics Section, and L. H. Bailey Hortorium, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
32
|
Zhu X, Wang B, Wang X, Zhang C, Wei X. Genome-wide identification, characterization and expression analysis of the LIM transcription factor family in quinoa. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:787-800. [PMID: 33967462 PMCID: PMC8055757 DOI: 10.1007/s12298-021-00988-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Lim family members play an important role in the regulation of plant cell development and stress response. However, there are few studies on LIM family in quinoa. In this study, we identified nine LIMS (named cqlim01-cqlim09) from quinoa, which were divided into three subfamilies (α Lim1, γ lim2 and δ lim2) according to phylogeny. The differences in gene structure and motif composition among different subfamilies have been observed. In addition, we studied the repetitive events of the members of the family. The Ka/Ks (non synchronous substitution rate / synchronous substitution rate) ratio analysis showed that the repetitive CqLIMs probably experienced purifying selection pressure. Promoter analysis showed that the family genes contained a variety of hormones, stress and tissue-specific expression elements, and protein interactions showed that these genes had actin stabilizing effect. In addition, QRT PCR results showed that all CqLIM genes were positively regulated under three stresses (low temperature, salt and ABA). These results provide a theoretical basis of further study of LIM gene in quinoa. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00988-2.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xian Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Chaoyang Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
33
|
Arcila D, Hughes LC, Meléndez-Vazquez F, Baldwin CC, White W, Carpenter K, Williams JT, Santos MD, Pogonoski J, Miya M, Ortí G, Betancur-R R. Testing the utility of alternative metrics of branch support to address the ancient evolutionary radiation of tunas, stromateoids, and allies (Teleostei: Pelagiaria). Syst Biol 2021; 70:1123-1144. [PMID: 33783539 DOI: 10.1093/sysbio/syab018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/13/2021] [Indexed: 12/19/2022] Open
Abstract
The use of high-throughput sequencing technologies to produce genome-scale datasets was expected to settle some long-standing controversies across the Tree of Life, particularly in areas where short branches occur at deep timescales. Instead, these datasets have often yielded many well-supported but conflicting topologies, and highly variable gene-tree distributions. A variety of branch-support metrics beyond the nonparametric bootstrap are now available to assess how robust a phylogenetic hypothesis may be, as well as new methods to quantify gene-tree discordance. We applied multiple branch support metrics to an ancient group of marine fishes (Teleostei: Pelagiaria) whose interfamilial relationships have proven difficult to resolve due to a rapid accumulation of lineages very early in its history. We analyzed hundreds of loci including published UCE data and newly generated exonic data along with their flanking regions to represent all 16 extant families for more than 150 out of 284 valid species in the group. Branch support was lower for interfamilial relationships (except the SH-like aLRT and aBayes methods) regardless of the type of marker used. Several nodes that were highly supported with bootstrap had very low site and gene-tree concordance, revealing underlying conflict. Despite this conflict, we were able to identify four consistent interfamilial clades, each comprised of two or three families. Combining exons with their flanking regions also produced increased branch lengths in the deep branches of the pelagiarian tree. Our results demonstrate the limitations of employing current metrics of branch support and species-tree estimation when assessing the confidence of ancient evolutionary radiations and emphasize the necessity to embrace alternative measurements to explore phylogenetic uncertainty and discordance in phylogenomic datasets.
Collapse
Affiliation(s)
- Dahiana Arcila
- Department of Ichthyology, Sam Noble Oklahoma Museum of Natural History, Norman, Oklahoma, U.S.A.,Department of Biology, University of Oklahoma, Norman, Oklahoma, U.S.A
| | - Lily C Hughes
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, U.S.A.,Department of Organismal Biology and Anatomy, The University of Chicago, Illinois, Chicago, U.S.A.,Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | - Fernando Meléndez-Vazquez
- Department of Ichthyology, Sam Noble Oklahoma Museum of Natural History, Norman, Oklahoma, U.S.A.,Department of Biology, University of Oklahoma, Norman, Oklahoma, U.S.A
| | - Carole C Baldwin
- Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | - William White
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, Hobart, Tasmania, Australia
| | - Kent Carpenter
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, U.S.A
| | - Jeffrey T Williams
- Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | | | - John Pogonoski
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, Hobart, Tasmania, Australia
| | - Masaki Miya
- Natural History Museum and Institute, Chiba, Aoba-cho, Chuo-ku, Chiba, Japan
| | - Guillermo Ortí
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, U.S.A.,Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia, U.S.A
| | | |
Collapse
|
34
|
Takezaki N. Resolving the Early Divergence Pattern of Teleost Fish Using Genome-Scale Data. Genome Biol Evol 2021; 13:6178791. [PMID: 33739405 PMCID: PMC8103497 DOI: 10.1093/gbe/evab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Regarding the phylogenetic relationship of the three primary groups of teleost fishes, Osteoglossomorpha (bonytongues and others), Elopomorpha (eels and relatives), Clupeocephala (the remaining teleost fish), early morphological studies hypothesized the first divergence of Osteoglossomorpha, whereas the recent prevailing view is the first divergence of Elopomorpha. Molecular studies supported all the possible relationships of the three primary groups. This study analyzed genome-scale data from four previous studies: 1) 412 genes from 12 species, 2) 772 genes from 15 species, 3) 1,062 genes from 30 species, and 4) 491 UCE loci from 27 species. The effects of the species, loci, and models used on the constructed tree topologies were investigated. In the analyses of the data sets (1)–(3), although the first divergence of Clupeocephala that left the other two groups in a sister relationship was supported by concatenated sequences and gene trees of all the species and genes, the first divergence of Elopomorpha among the three groups was supported using species and/or genes with low divergence of sequence and amino-acid frequencies. This result corresponded to that of the UCE data set (4), whose sequence divergence was low, which supported the first divergence of Elopomorpha with high statistical significance. The increase in accuracy of the phylogenetic construction by using species and genes with low sequence divergence was predicted by a phylogenetic informativeness approach and confirmed by computer simulation. These results supported that Elopomorpha was the first basal group of teleost fish to have diverged, consistent with the prevailing view of recent morphological studies.
Collapse
Affiliation(s)
- Naoko Takezaki
- Life Science Research Center, Kagawa University, Mikicho, Kitagun, Kagawa, Japan
| |
Collapse
|
35
|
Steenwyk JL, Buida TJ, Labella AL, Li Y, Shen XX, Rokas A. PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data. Bioinformatics 2021; 37:2325-2331. [PMID: 33560364 PMCID: PMC8388027 DOI: 10.1093/bioinformatics/btab096] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Diverse disciplines in biology process and analyze multiple sequence alignments (MSAs) and phylogenetic trees to evaluate their information content, infer evolutionary events and processes, and predict gene function. However, automated processing of MSAs and trees remains a challenge due to the lack of a unified toolkit. To fill this gap, we introduce PhyKIT, a toolkit for the UNIX shell environment with 30 functions that process MSAs and trees, including but not limited to estimation of mutation rate, evaluation of sequence composition biases, calculation of the degree of violation of a molecular clock, and collapsing bipartitions (internal branches) with low support. RESULTS To demonstrate the utility of PhyKIT, we detail three use cases: (1) summarizing information content in MSAs and phylogenetic trees for diagnosing potential biases in sequence or tree data; (2) evaluating gene-gene covariation of evolutionary rates to identify functional relationships, including novel ones, among genes; and (3) identify lack of resolution events or polytomies in phylogenetic trees, which are suggestive of rapid radiation events or lack of data. We anticipate PhyKIT will be useful for processing, examining, and deriving biological meaning from increasingly large phylogenomic datasets. AVAILABILITY PhyKIT is freely available on GitHub (https://github.com/JLSteenwyk/PhyKIT), PyPi (https://pypi.org/project/phykit/), and the Anaconda Cloud (https://anaconda.org/JLSteenwyk/phykit) under the MIT license with extensive documentation and user tutorials (https://jlsteenwyk.com/PhyKIT). SUPPLEMENTARY INFORMATION Supplementary data are available on figshare (doi: 10.6084/m9.figshare.13118600) and are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Thomas J Buida
- 9 City Place #312, Nashville, TN, 37209, United States of America
| | - Abigail L Labella
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Xing-Xing Shen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| |
Collapse
|
36
|
Steenwyk JL, Buida TJ, Li Y, Shen XX, Rokas A. ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol 2020; 18:e3001007. [PMID: 33264284 PMCID: PMC7735675 DOI: 10.1371/journal.pbio.3001007] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/14/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Highly divergent sites in multiple sequence alignments (MSAs), which can stem from erroneous inference of homology and saturation of substitutions, are thought to negatively impact phylogenetic inference. Thus, several different trimming strategies have been developed for identifying and removing these sites prior to phylogenetic inference. However, a recent study reported that doing so can worsen inference, underscoring the need for alternative alignment trimming strategies. Here, we introduce ClipKIT, an alignment trimming software that, rather than identifying and removing putatively phylogenetically uninformative sites, instead aims to identify and retain parsimony-informative sites, which are known to be phylogenetically informative. To test the efficacy of ClipKIT, we examined the accuracy and support of phylogenies inferred from 14 different alignment trimming strategies, including those implemented in ClipKIT, across nearly 140,000 alignments from a broad sampling of evolutionary histories. Phylogenies inferred from ClipKIT-trimmed alignments are accurate, robust, and time saving. Furthermore, ClipKIT consistently outperformed other trimming methods across diverse datasets, suggesting that strategies based on identifying and retaining parsimony-informative sites provide a robust framework for alignment trimming.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- * E-mail: (JLS); (AR)
| | | | - Yuanning Li
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Xing-Xing Shen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- * E-mail: (JLS); (AR)
| |
Collapse
|
37
|
McCraney WT, Thacker CE, Alfaro ME. Supermatrix phylogeny resolves goby lineages and reveals unstable root of Gobiaria. Mol Phylogenet Evol 2020; 151:106862. [DOI: 10.1016/j.ympev.2020.106862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023]
|
38
|
Tasneem F, Shakoori FR, Ilyas M, Shahzad N, Potekhin A, Shakoori AR. Genetic diversity of Paramecium species on the basis of multiple loci analysis and ITS secondary structure models. J Cell Biochem 2020; 121:3837-3853. [PMID: 31692070 DOI: 10.1002/jcb.29546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/21/2019] [Indexed: 01/24/2023]
Abstract
Among ciliates, Paramecium has become a privileged model for the study of "species problem" particularly in the case of the "Paramecium aurelia complex" that has been intensely investigated. Despite extensive studies, the taxonomy of Paramecium is still challenging. The major problem is an uneven sampling of Paramecium with relatively few representatives of each species. To investigate species from the less discovered region (Pakistan), 10 isolates of Paramecium species including a standing-alone FT8 strain previously isolated by some of us were subjected to molecular characterization. Fragments of 18S recombinant DNA (rDNA), ITS1-5.8S-ITS2-5'LSU rDNA, cytochrome c oxidase subunit II, and hsp70 genes were used as molecular markers for phylogenetic analysis of particular isolates. The nucleotide sequences of polymerase chain reaction products of all markers were compared with the available sequences of relevant markers of other Paramecium species from GenBank. Phylogenetic trees based on all molecular markers showed that all the nine strains had a very close relationship with Paramecium primaurelia except for the FT8 strain. FT8 consistently showed its unique position in comparison to all other species in the phylogenetic trees. Available sequences of internal transcribed spacer 1 (ITS1) and ITS2 and some other ciliate sequences from GenBank were used for the construction of secondary models. Two highly conserved helices supported by compensatory base changes among all ciliates of ITS2 secondary structures were found similar to other eukaryotes. Therefore, the most conserved 120 to 180 base pairs regions were identified for their comparative studies. We found that out of the three helices in ITS1 structure, helix B was more conserved in Paramecium species. Despite various substitutions in the primary sequence, it was observed that secondary structures of ITS1 and ITS2 could be helpful in interpreting the phylogenetic relationships both at species as well as at generic level.
Collapse
Affiliation(s)
- Fareeda Tasneem
- Department of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| | - Farah R Shakoori
- Department of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| | - Muhammad Ilyas
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Abdul R Shakoori
- Department of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan.,School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| |
Collapse
|
39
|
Owen CL, Stern DB, Hilton SK, Crandall KA. Hemiptera phylogenomic resources: Tree‐based orthology prediction and conserved exon identification. Mol Ecol Resour 2020; 20:1346-1360. [DOI: 10.1111/1755-0998.13180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/02/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher L. Owen
- Computational Biology Institute George Washington University Washington DC USA
- Systematic Entomology Laboratory USDA‐ARS Beltsville MD USA
| | - David B. Stern
- Computational Biology Institute George Washington University Washington DC USA
- Department of Integrative Biology University of Wisconsin ‐ Madison Madison WI USA
| | - Sarah K. Hilton
- Computational Biology Institute George Washington University Washington DC USA
- Department of Genome Sciences University of Washington Washington DC USA
| | - Keith A. Crandall
- Computational Biology Institute George Washington University Washington DC USA
| |
Collapse
|
40
|
Shee ZQ, Frodin DG, Cámara-Leret R, Pokorny L. Reconstructing the Complex Evolutionary History of the Papuasian Schefflera Radiation Through Herbariomics. FRONTIERS IN PLANT SCIENCE 2020; 11:258. [PMID: 32265950 PMCID: PMC7099051 DOI: 10.3389/fpls.2020.00258] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/19/2020] [Indexed: 05/19/2023]
Abstract
With its large proportion of endemic taxa, complex geological past, and location at the confluence of the highly diverse Malesian and Australian floristic regions, Papuasia - the floristic region comprising the Bismarck Archipelago, New Guinea, and the Solomon Islands - represents an ideal natural experiment in plant biogeography. However, scattered knowledge of its flora and limited representation in herbaria have hindered our understanding of the drivers of its diversity. Focusing on the woody angiosperm genus Schefflera (Araliaceae), we ask whether its morphologically defined infrageneric groupings are monophyletic, when these lineages diverged, and where (within Papuasia or elsewhere) they diversified. To address these questions, we use a high-throughput sequencing approach (Hyb-Seq) which combines target capture (with an angiosperm-wide bait kit targeting 353 single-copy nuclear loci) and genome shotgun sequencing (which allows retrieval of regions in high-copy number, e.g., organellar DNA) of historical herbarium collections. To reconstruct the evolutionary history of the genus we reconstruct molecular phylogenies with Bayesian inference, maximum likelihood, and pseudo-coalescent approaches, and co-estimate divergence times and ancestral areas in a Bayesian framework. We find strong support for most infrageneric morphological groupings, as currently circumscribed, and we show the efficacy of the Angiosperms-353 probe kit in resolving both deep and shallow phylogenetic relationships. We infer a sequence of colonization to explain the present-day distribution of Schefflera in Papuasia: from the Sunda Shelf, Schefflera arrived to the Woodlark plate (present-day eastern New Guinea) in the late Oligocene (when most of New Guinea was submerged) and, subsequently (throughout the Miocene), it migrated westwards (to the Maoke and Bird's Head Plates and thereon) and further diversified, in agreement with previous reconstructions.
Collapse
Affiliation(s)
- Zhi Qiang Shee
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Singapore Botanic Gardens, Singapore, Singapore
| | | | - Rodrigo Cámara-Leret
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Madrid, Spain
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
| |
Collapse
|
41
|
Karin BR, Gamble T, Jackman TR. Optimizing Phylogenomics with Rapidly Evolving Long Exons: Comparison with Anchored Hybrid Enrichment and Ultraconserved Elements. Mol Biol Evol 2020; 37:904-922. [PMID: 31710677 PMCID: PMC7038749 DOI: 10.1093/molbev/msz263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups.
Collapse
Affiliation(s)
- Benjamin R Karin
- Department of Biology, Villanova University, Villanova, PA
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI
- Milwaukee Public Museum, Milwaukee, WI
- Bell Museum of Natural History, University of Minnesota, St. Paul, MN
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA
| |
Collapse
|
42
|
Mao Y, Hou S, Shi J, Economo EP. TREEasy: An automated workflow to infer gene trees, species trees, and phylogenetic networks from multilocus data. Mol Ecol Resour 2020; 20. [PMID: 32073732 DOI: 10.1111/1755-0998.13149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Multilocus genomic data sets can be used to infer a rich set of information about the evolutionary history of a lineage, including gene trees, species trees, and phylogenetic networks. However, user-friendly tools to run such integrated analyses are lacking, and workflows often require tedious reformatting and handling time to shepherd data through a series of individual programs. Here, we present a tool written in Python-TREEasy-that performs automated sequence alignment (with MAFFT), gene tree inference (with IQ-Tree), species inference from concatenated data (with IQ-Tree and RaxML-NG), species tree inference from gene trees (with ASTRAL, MP-EST, and STELLS2), and phylogenetic network inference (with SNaQ and PhyloNet). The tool only requires FASTA files and nine parameters as inputs. The tool can be run as command line or through a Graphical User Interface (GUI). As examples, we reproduced a recent analysis of staghorn coral evolution, and performed a new analysis on the evolution of the "WGD clade" of yeast. The latter revealed novel patterns that were not identified by previous analyses. TREEasy represents a reliable and simple tool to accelerate research in systematic biology (https://github.com/MaoYafei/TREEasy).
Collapse
Affiliation(s)
- Yafei Mao
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Siqing Hou
- Cognitive Neurorobotics Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Junfeng Shi
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
43
|
Li G, Figueiró HV, Eizirik E, Murphy WJ. Recombination-Aware Phylogenomics Reveals the Structured Genomic Landscape of Hybridizing Cat Species. Mol Biol Evol 2020; 36:2111-2126. [PMID: 31198971 PMCID: PMC6759079 DOI: 10.1093/molbev/msz139] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current phylogenomic approaches implicitly assume that the predominant phylogenetic signal within a genome reflects the true evolutionary history of organisms, without assessing the confounding effects of postspeciation gene flow that can produce a mosaic of phylogenetic signals that interact with recombinational variation. Here, we tested the validity of this assumption with a phylogenomic analysis of 27 species of the cat family, assessing local effects of recombination rate on species tree inference and divergence time estimation across their genomes. We found that the prevailing phylogenetic signal within the autosomes is not always representative of the most probable speciation history, due to ancient hybridization throughout felid evolution. Instead, phylogenetic signal was concentrated within regions of low recombination, and notably enriched within large X chromosome recombination cold spots that exhibited recurrent patterns of strong genetic differentiation and selective sweeps across mammalian orders. By contrast, regions of high recombination were enriched for signatures of ancient gene flow, and these sequences inflated crown-lineage divergence times by ∼40%. We conclude that existing phylogenomic approaches to infer the Tree of Life may be highly misleading without considering the genomic architecture of phylogenetic signal relative to recombination rate and its interplay with historical hybridization.
Collapse
Affiliation(s)
- Gang Li
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Henrique V Figueiró
- PUCRS, Escola de Ciências, Laboratory of Genomics and Molecular Biology, Porto Alegre, Brazil.,INCT-EECBio, Brazil
| | - Eduardo Eizirik
- PUCRS, Escola de Ciências, Laboratory of Genomics and Molecular Biology, Porto Alegre, Brazil.,INCT-EECBio, Brazil
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| |
Collapse
|
44
|
Walker JF, Walker-Hale N, Vargas OM, Larson DA, Stull GW. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 2019; 7:e7747. [PMID: 31579615 PMCID: PMC6764362 DOI: 10.7717/peerj.7747] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/25/2019] [Indexed: 11/20/2022] Open
Abstract
Evolutionary relationships among plants have been inferred primarily using chloroplast data. To date, no study has comprehensively examined the plastome for gene tree conflict. Using a broad sampling of angiosperm plastomes, we characterize gene tree conflict among plastid genes at various time scales and explore correlates to conflict (e.g., evolutionary rate, gene length, molecule type). We uncover notable gene tree conflict against a backdrop of largely uninformative genes. We find alignment length and tree length are strong predictors of concordance, and that nucleotides outperform amino acids. Of the most commonly used markers, matK, greatly outperforms rbcL; however, the rarely used gene rpoC2 is the top-performing gene in every analysis. We find that rpoC2 reconstructs angiosperm phylogeny as well as the entire concatenated set of protein-coding chloroplast genes. Our results suggest that longer genes are superior for phylogeny reconstruction. The alleviation of some conflict through the use of nucleotides suggests that stochastic and systematic error is likely the root of most of the observed conflict, but further research on biological conflict within plastome is warranted given documented cases of heteroplasmic recombination. We suggest that researchers should filter genes for topological concordance when performing downstream comparative analyses on phylogenetic data, even when using chloroplast genomes.
Collapse
Affiliation(s)
- Joseph F. Walker
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Oscar M. Vargas
- University of California, Santa Cruz, Santa Cruz, United States of America
| | - Drew A. Larson
- University of Michigan—Ann Arbor, Ann Arbor, MI, United States of America
| | - Gregory W. Stull
- Department of Botany, Smithsonian Institution, Washington, United States of America
| |
Collapse
|
45
|
Ely ZA, Moon JM, Sliwoski GR, Sangha AK, Shen XX, Labella AL, Meiler J, Capra JA, Rokas A. The Impact of Natural Selection on the Evolution and Function of Placentally Expressed Galectins. Genome Biol Evol 2019; 11:2574-2592. [PMID: 31504490 PMCID: PMC6751361 DOI: 10.1093/gbe/evz183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 01/03/2023] Open
Abstract
Immunity genes have repeatedly experienced natural selection during mammalian evolution. Galectins are carbohydrate-binding proteins that regulate diverse immune responses, including maternal-fetal immune tolerance in placental pregnancy. Seven human galectins, four conserved across vertebrates and three specific to primates, are involved in placental development. To comprehensively study the molecular evolution of these galectins, both across mammals and within humans, we conducted a series of between- and within-species evolutionary analyses. By examining patterns of sequence evolution between species, we found that primate-specific galectins showed uniformly high substitution rates, whereas two of the four other galectins experienced accelerated evolution in primates. By examining human population genomic variation, we found that galectin genes and variants, including variants previously linked to immune diseases, showed signatures of recent positive selection in specific human populations. By examining one nonsynonymous variant in Galectin-8 previously associated with autoimmune diseases, we further discovered that it is tightly linked to three other nonsynonymous variants; surprisingly, the global frequency of this four-variant haplotype is ∼50%. To begin understanding the impact of this major haplotype on Galectin-8 protein structure, we modeled its 3D protein structure and found that it differed substantially from the reference protein structure. These results suggest that placentally expressed galectins experienced both ancient and more recent selection in a lineage- and population-specific manner. Furthermore, our discovery that the major Galectin-8 haplotype is structurally distinct from and more commonly found than the reference haplotype illustrates the significance of understanding the evolutionary processes that sculpted variants associated with human genetic disease.
Collapse
Affiliation(s)
- Zackery A Ely
- Department of Biological Sciences, Vanderbilt University
| | - Jiyun M Moon
- Department of Biological Sciences, Vanderbilt University
| | | | - Amandeep K Sangha
- Department of Chemistry, Vanderbilt University
- Center for Structural Biology, Vanderbilt University
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University
| | | | - Jens Meiler
- Department of Chemistry, Vanderbilt University
- Center for Structural Biology, Vanderbilt University
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University
- Department of Biomedical Informatics, Vanderbilt University School of Medicine
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University
- Department of Biomedical Informatics, Vanderbilt University School of Medicine
| |
Collapse
|
46
|
A Robust Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the Genera Aspergillus and Penicillium. mBio 2019; 10:mBio.00925-19. [PMID: 31289177 PMCID: PMC6747717 DOI: 10.1128/mbio.00925-19] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Understanding the evolution of traits across technologically and medically significant fungi requires a robust phylogeny. Even though species in the Aspergillus and Penicillium genera (family Aspergillaceae, class Eurotiomycetes) are some of the most significant technologically and medically relevant fungi, we still lack a genome-scale phylogeny of the lineage or knowledge of the parts of the phylogeny that exhibit conflict among analyses. Here, we used a phylogenomic approach to infer evolutionary relationships among 81 genomes that span the diversity of Aspergillus and Penicillium species, to identify conflicts in the phylogeny, and to determine the likely underlying factors of the observed conflicts. Using a data matrix comprised of 1,668 genes, we found that while most branches of the phylogeny of the Aspergillaceae are robustly supported and recovered irrespective of method of analysis, a few exhibit various degrees of conflict among our analyses. Further examination of the observed conflict revealed that it largely stems from incomplete lineage sorting and hybridization or introgression. Our analyses provide a robust and comprehensive evolutionary genomic roadmap for this important lineage, which will facilitate the examination of the diverse technologically and medically relevant traits of these fungi in an evolutionary context. The filamentous fungal family Aspergillaceae contains >1,000 known species, mostly in the genera Aspergillus and Penicillium. Several species are used in the food, biotechnology, and drug industries (e.g., Aspergillus oryzae and Penicillium camemberti), while others are dangerous human and plant pathogens (e.g., Aspergillus fumigatus and Penicillium digitatum). To infer a robust phylogeny and pinpoint poorly resolved branches and their likely underlying contributors, we used 81 genomes spanning the diversity of Aspergillus and Penicillium to construct a 1,668-gene data matrix. Phylogenies of the nucleotide and amino acid versions of this full data matrix as well as of several additional data matrices were generated using three different maximum likelihood schemes (i.e., gene-partitioned, unpartitioned, and coalescence) and using both site-homogenous and site-heterogeneous models (total of 64 species-level phylogenies). Examination of the topological agreement among these phylogenies and measures of internode certainty identified 11/78 (14.1%) bipartitions that were incongruent and pinpointed the likely underlying contributing factors, which included incomplete lineage sorting, hidden paralogy, hybridization or introgression, and reconstruction artifacts associated with poor taxon sampling. Relaxed molecular clock analyses suggest that Aspergillaceae likely originated in the lower Cretaceous and that the Aspergillus and Penicillium genera originated in the upper Cretaceous. Our results shed light on the ongoing debate on Aspergillus systematics and taxonomy and provide a robust evolutionary and temporal framework for comparative genomic analyses in Aspergillaceae. More broadly, our approach provides a general template for phylogenomic identification of resolved and contentious branches in densely genome-sequenced lineages across the tree of life.
Collapse
|
47
|
Genome-Wide Analysis of LIM Family Genes in Foxtail Millet ( Setaria italica L.) and Characterization of the Role of SiWLIM2b in Drought Tolerance. Int J Mol Sci 2019; 20:ijms20061303. [PMID: 30875867 PMCID: PMC6470693 DOI: 10.3390/ijms20061303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
LIM proteins have been found to play important roles in many life activities, including the regulation of gene expression, construction of the cytoskeleton, signal transduction and metabolic regulation. Because of their important roles in many aspects of plant development, LIM genes have been studied in many plant species. However, the LIM gene family has not yet been characterized in foxtail millet. In this study, we analyzed the whole genome of foxtail millet and identified 10 LIM genes. All LIM gene promoters contain MYB and MYC cis-acting elements that are related to drought stress. Based on the presence of multiple abiotic stress-related cis-elements in the promoter of SiWLIM2b, we chose this gene for further study. We analyzed SiWLIM2b expression under abiotic stress and hormone treatments using qRT-PCR. We found that SiWLIM2b was induced by various abiotic stresses and hormones. Under drought conditions, transgenic rice of SiWLIM2b-overexpression had a higher survival rate, higher relative water content and less cell damage than wild type (WT) rice. These results indicate that overexpression of the foxtail millet SiWLIM2b gene enhances drought tolerance in transgenic rice, and the SiWLIM2b gene can potentially be used for molecular breeding of crops with increased resistance to abiotic stress.
Collapse
|
48
|
Zhou X, Shen XX, Hittinger CT, Rokas A. Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets. Mol Biol Evol 2019; 35:486-503. [PMID: 29177474 PMCID: PMC5850867 DOI: 10.1093/molbev/msx302] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses.
Collapse
Affiliation(s)
- Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, P.R. China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
49
|
Walker JF, Walker-Hale N, Vargas OM, Larson DA, Stull GW. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 2019. [PMID: 31579615 DOI: 10.1101/512079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Evolutionary relationships among plants have been inferred primarily using chloroplast data. To date, no study has comprehensively examined the plastome for gene tree conflict. Using a broad sampling of angiosperm plastomes, we characterize gene tree conflict among plastid genes at various time scales and explore correlates to conflict (e.g., evolutionary rate, gene length, molecule type). We uncover notable gene tree conflict against a backdrop of largely uninformative genes. We find alignment length and tree length are strong predictors of concordance, and that nucleotides outperform amino acids. Of the most commonly used markers, matK, greatly outperforms rbcL; however, the rarely used gene rpoC2 is the top-performing gene in every analysis. We find that rpoC2 reconstructs angiosperm phylogeny as well as the entire concatenated set of protein-coding chloroplast genes. Our results suggest that longer genes are superior for phylogeny reconstruction. The alleviation of some conflict through the use of nucleotides suggests that stochastic and systematic error is likely the root of most of the observed conflict, but further research on biological conflict within plastome is warranted given documented cases of heteroplasmic recombination. We suggest that researchers should filter genes for topological concordance when performing downstream comparative analyses on phylogenetic data, even when using chloroplast genomes.
Collapse
Affiliation(s)
- Joseph F Walker
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Oscar M Vargas
- University of California, Santa Cruz, Santa Cruz, United States of America
| | - Drew A Larson
- University of Michigan-Ann Arbor, Ann Arbor, MI, United States of America
| | - Gregory W Stull
- Department of Botany, Smithsonian Institution, Washington, United States of America
| |
Collapse
|
50
|
Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, Wisecaver JH, Wang M, Doering DT, Boudouris JT, Schneider RM, Langdon QK, Ohkuma M, Endoh R, Takashima M, Manabe RI, Čadež N, Libkind D, Rosa CA, DeVirgilio J, Hulfachor AB, Groenewald M, Kurtzman CP, Hittinger CT, Rokas A. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell 2018; 175:1533-1545.e20. [PMID: 30415838 DOI: 10.1016/j.cell.2018.10.023] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/12/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022]
Abstract
Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A Opulente
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Kelly V Buh
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Max A B Haase
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biochemistry, Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Mingshuang Wang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Drew T Doering
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James T Boudouris
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel M Schneider
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Quinn K Langdon
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Rikiya Endoh
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ri-Ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center For Life Science Technologies, Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Neža Čadež
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, 8400 Bariloche, Argentina
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, CP 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Jeremy DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|