1
|
Bubán RZ, Tóth RB, Freytag C, Sramkó G, Barta Z, Nagy NA. The first complete mitochondrial genome of a Lethrus species (Coleoptera, Geotrupidae) with phylogenetic implications. Zookeys 2025; 1236:1-17. [PMID: 40322615 PMCID: PMC12046339 DOI: 10.3897/zookeys.1236.138465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/03/2025] [Indexed: 05/08/2025] Open
Abstract
The flightless beetle genus Lethrus Scopoli, 1777 (Geotrupidae, Scarabaeoidea) has a large distribution area throughout Eurasia and is characterized by many species, especially in Middle Asia. Despite this diversity and the potential importance as models for speciation, Lethrus species are underrepresented in molecular databases. To fill this gap, we report the complete mitochondrial genome of Lethrusscoparius obtained using third-generation sequencing technology. The circular mitogenome is 24,944 bp long and has a structure characteristic of coleopterans. It contains 37 genes, including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and an A+T-rich non-coding region, the control region between the 12S rRNA and tRNA-Ile (GAU). The phylogenetic analysis of the superfamily Scarabaeoidea placed L.scoparius in the monophyletic family Geotrupidae, which is related to the family Scarabaeidae. The assembled mitochondrial genome is a valuable new genomic resource in the genus Lethrus and contributes to a better understanding of the evolutionary history of the genus and the entire family Geotrupidae.
Collapse
Affiliation(s)
- Réka Zsófia Bubán
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, HungaryUniversity of DebrecenDebrecenHungary
| | - Renáta Bőkényné Tóth
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, HungaryUniversity of DebrecenDebrecenHungary
| | - Csongor Freytag
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, HungaryUniversity of DebrecenDebrecenHungary
| | - Gábor Sramkó
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, HungaryUniversity of DebrecenDebrecenHungary
| | - Zoltán Barta
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, HungaryUniversity of DebrecenDebrecenHungary
| | - Nikoletta Andrea Nagy
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, HungaryUniversity of DebrecenDebrecenHungary
| |
Collapse
|
2
|
Lea V, Uroš S, Jelena J, Sanja B, Biljana S, Mirko Đ. Toward the Development of the Trojan Female Technique in Pest Insects: Male-Specific Influence of Mitochondrial Haplotype on Reproductive Output in the Seed Beetle Acanthoscelides obtectus. Evol Appl 2024; 17:e70065. [PMID: 39726737 PMCID: PMC11671214 DOI: 10.1111/eva.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/23/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Biocontrol techniques that impair reproductive capacity of insect pests provide opportunities to control the dynamics of their populations while minimizing collateral damage to non-target species and the environment. The Trojan Female Technique, or TFT, is a method of the trans-generational fertility-based population control through the release of females that carry mitochondrial DNA mutations that negatively affect male, but not female, reproductive output. TFT is based on the evolutionary hypothesis that, due to maternal inheritance of mitochondria, mutations which are beneficial or neutral in females but harmful in males can accumulate in the mitochondrial genome without selection acting against them. Although TFT has been theoretically substantiated, empirical work to date has focused only on Drosophila melanogaster populations, while the existence of male-biased mutations and the TFT approach in economically important pest species remain unexplored. Here, we examined the sex-specific effects of three distinct and naturally occurring mitochondrial haplotypes (MG1a, MG1d, and MG3b) on several reproductive and life history traits in the seed beetle Acanthoscelides obtectus. Our results revealed that males harboring the MG3b mitotype exhibited lower early fecundity and fertility, while there were no effects on females or longevity in either sex. Our experiments provide support for the existence of the mitochondrial variant that specifically impairs male reproductive output in pest insects. These results can be harnessed to further develop TFT as a novel form of biocontrol with broad applicability to economic pests and disease vector insects.
Collapse
Affiliation(s)
- Vlajnić Lea
- Faculty of Biology, Institute of ZoologyUniversity of BelgradeBelgradeSerbia
| | - Savković Uroš
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”‐National Institute of the Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Jović Jelena
- Department of Plant PestsInstitute for Plant Protection and EnvironmentZemunSerbia
| | - Budečević Sanja
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”‐National Institute of the Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Stojković Biljana
- Faculty of Biology, Institute of ZoologyUniversity of BelgradeBelgradeSerbia
| | - Đorđević Mirko
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”‐National Institute of the Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
3
|
Mi Z, Su J, Yu L, Zhang T. Comparative mitochondrial genomics of Thelebolaceae in Antarctica: insights into their extremophilic adaptations and evolutionary dynamics. IMA Fungus 2024; 15:33. [PMID: 39478621 PMCID: PMC11523780 DOI: 10.1186/s43008-024-00164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Species of Antarctomyces and Thelebolus (Thelebolaceae), primarily found in Antarctic environments, exhibit psychrophilic adaptations, yet their mitochondrial genomes have not been extensively studied. Furthermore, few studies have compared the mitochondrial genomes of psychrophilic, psychrotrophic, and mesophilic fungi. After successful sequencing and assembly, this study annotated the mitochondrial genomes of Antarctomyces psychrotrophicus CPCC 401038 and Thelebolus microsporus CPCC 401041. We also performed a comparative analysis with the previously characterized mitochondrial genomes of psychrotrophic and mesophilic fungi. The analysis revealed that nad4L was the most conserved gene across the mitochondrial genomes, characterized by its synonymous and non-synonymous substitution rates (Ks and Ka), genetic distance, and GC content and skew within the protein-coding genes (PCGs). Additionally, the mitochondrial genomes of psychrophilic and psychrotrophic fungi showed a higher proportion of protein-coding regions and a lower GC content compared to those of mesophilic fungi, underscoring the genetic basis of cold adaptation. Phylogenetic analyses based on these mitochondrial genes also confirmed the phylogenetic relationships of Thelebolaceae in the class Leotiomycetes. These findings advance our understanding of the phylogenetic relationships and evolutionary dynamics within the family Thelebolaceae, highlighting how different environmental temperatures influence fungal mitochondrial genomic structure and adaptation.
Collapse
Affiliation(s)
- Zechen Mi
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jing Su
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
4
|
Asenjo A, Valois M, Zampaulo RDA, Molina M, Oliveira RRM, Oliveira G, Vasconcelos S. New taxonomic insights for Brazilian Syrbatus Reitter (Coleoptera: Staphylinidae: Pselaphinae), including three new species and their mitochondrial genomes. PeerJ 2024; 12:e17783. [PMID: 39148684 PMCID: PMC11326439 DOI: 10.7717/peerj.17783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/30/2024] [Indexed: 08/17/2024] Open
Abstract
Here we present a taxonomic treatment for the Brazilian species of Syrbatus (Reitter, 1882), including the description of three new species (Syrbatus moustache Asenjo & Valois sp. nov., Syrbatus obsidian Asenjo & Valois sp. nov. and Syrbatus superciliata Asenjo & Valois sp. nov.) from the Quadrilátero Ferrífero (Minas Gerais, Brazil). In addition, we designated lectotypes for the Brazilian species of species-group 2, Syrbatus centralis (Raffray, 1898), Syrbatus hetschkoi (Reitter, 1888), Syrbatus hiatusus (Reitter, 1888), Syrbatus transversalis (Raffray, 1898), and Syrbatus trinodulus (Schaufuss, 1887), besides recognizing the holotype for Syrbatus brevispinus (Reitter, 1882), Syrbatus bubalus (Raffray, 1898), and Syrbatus grouvellei (Raffray, 1898). The mitochondrial genomes (mitogenomes) of the three new species are presented, for which we present the phylogenetic placement among Staphylinidae with previously published data.
Collapse
Affiliation(s)
- Angélico Asenjo
- Instituto Tecnológico Vale, Belém, Pará, Brazil
- Department of Entomology, Natural History Museum, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | | | | | | | | | | |
Collapse
|
5
|
Xin F, Jiao W, Sun Y, Zhou Y, Zhang Z, Tong Y. The complete mitochondrial genome of Ceresium sinicum ornaticolle Pic, 1907 (Coleoptera: Cerambycidae). Mitochondrial DNA B Resour 2024; 9:758-761. [PMID: 38895510 PMCID: PMC11185081 DOI: 10.1080/23802359.2024.2361682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Ceresium sinicum ornaticolle Pic, 1907 (Coleoptera: Cerambycidae) is one of the main pests of pomegranate and citrus trees. In this study, we described the complete mitochondrial genome of C. sinicum ornaticolle. The total length of the mitochondrial genome was 15,817 bp, and the entire content of GC was 27.8%. The genome encoded 2 ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and 22 transfer RNA genes (tRNAs). The phylogenetic tree showed that C. sinicum ornaticolle was clustered with Allotraeus orientalis and Zoodes fulguratus. These results will provide the genetic information for understanding the genetic evolution of C. sinicum ornaticolle and the insights to control cerambycid pests.
Collapse
Affiliation(s)
- Feiyi Xin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenlong Jiao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiqi Sun
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyue Zhou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhimin Zhang
- Minhou County Forestry Bureau, Forest Disease and Pest Control Station, Fuzhou, China
| | - Yinghua Tong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Arnqvist G, Westerberg I, Galbraith J, Sayadi A, Scofield DG, Olsen RA, Immonen E, Bonath F, Ewels P, Suh A. A chromosome-level assembly of the seed beetle Callosobruchus maculatus genome with annotation of its repetitive elements. G3 (BETHESDA, MD.) 2024; 14:jkad266. [PMID: 38092066 PMCID: PMC10849321 DOI: 10.1093/g3journal/jkad266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 02/09/2024]
Abstract
Callosobruchus maculatus is a major agricultural pest of legume crops worldwide and an established model system in ecology and evolution. Yet, current molecular biological resources for this species are limited. Here, we employ Hi-C sequencing to generate a greatly improved genome assembly and we annotate its repetitive elements in a dedicated in-depth effort where we manually curate and classify the most abundant unclassified repeat subfamilies. We present a scaffolded chromosome-level assembly, which is 1.01 Gb in total length with 86% being contained within the 9 autosomes and the X chromosome. Repetitive sequences accounted for 70% of the total assembly. DNA transposons covered 18% of the genome, with the most abundant superfamily being Tc1-Mariner (9.75% of the genome). This new chromosome-level genome assembly of C. maculatus will enable future genetic and evolutionary studies not only of this important species but of beetles more generally.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
| | - Ivar Westerberg
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala SE75236, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE10691, Sweden
| | - James Galbraith
- School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK
| | - Ahmed Sayadi
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala SE75236, Sweden
| | - Douglas G Scofield
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
- Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala SE75236, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE10691, Sweden
| | - Elina Immonen
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
| | - Franziska Bonath
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm SE10691, Sweden
| | | | - Alexander Suh
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala SE75236, Sweden
| |
Collapse
|
7
|
Dial DT, Weglarz KM, Brunet BMT, Havill NP, von Dohlen CD, Burke GR. Whole-genome sequence of the Cooley spruce gall adelgid, Adelges cooleyi (Hemiptera: Sternorrhyncha: Adelgidae). G3 (BETHESDA, MD.) 2023; 14:jkad224. [PMID: 37766465 PMCID: PMC10755206 DOI: 10.1093/g3journal/jkad224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
The adelgids (Adelgidae) are a small family of sap-feeding insects, which, together with true aphids (Aphididae) and phylloxerans (Phylloxeridae), make up the infraorder Aphidomorpha. Some adelgid species are highly destructive to forest ecosystems such as Adelges tsugae, Adelges piceae, Adelges laricis, Pineus pini, and Pineus boerneri. Despite this, there are no high-quality genomic resources for adelgids, hindering advanced genomic analyses within Adelgidae and among Aphidomorpha. Here, we used PacBio continuous long-read and Illumina RNA-sequencing to construct a high-quality draft genome assembly for the Cooley spruce gall adelgid, Adelges cooleyi (Gillette), a gall-forming species endemic to North America. The assembled genome is 270.2 Mb in total size and has scaffold and contig N50 statistics of 14.87 and 7.18 Mb, respectively. There are 24,967 predicted coding sequences, and the assembly completeness is estimated at 98.1 and 99.6% with core BUSCO gene sets of Arthropoda and Hemiptera, respectively. Phylogenomic analysis using the A. cooleyi genome, 3 publicly available adelgid transcriptomes, 4 phylloxera transcriptomes, the Daktulosphaira vitifoliae (grape phylloxera) genome, 4 aphid genomes, and 2 outgroup coccoid genomes fully resolves adelgids and phylloxerans as sister taxa. The mitochondrial genome is 24 kb, among the largest in insects sampled to date, with 39.4% composed of noncoding regions. This genome assembly is currently the only genome-scale, annotated assembly for adelgids and will be a valuable resource for understanding the ecology and evolution of Aphidomorpha.
Collapse
Affiliation(s)
- Dustin T Dial
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | - Bryan M T Brunet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6
| | - Nathan P Havill
- USDA Forest Service, Northern Research Station, Hamden, CT 06514, USA
| | | | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Asenjo A, de Oliveira MPA, Oliveira RR, Pires ES, Valois M, Oliveira G, Vasconcelos S. The complete mitochondrial genome and description of a new cryptic Brazilian species of Metopiellus Raffray (Coleoptera: Staphylinidae: Pselaphinae). PeerJ 2023; 11:e15697. [PMID: 37525659 PMCID: PMC10387231 DOI: 10.7717/peerj.15697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Metopiellus Raffray, 1908 is a genus of South American rove beetles typically found in tropical humid forests. Here we describe a new cryptic species from Eastern Amazon, in northern Brazil, Metopiellus crypticus Asenjo sp. nov., and its major morphologic diagnostic features, which were photographed and illustrated. In addition, we bring the complete mitochondrial genome sequence of M. crypticus sp. nov., and its position within the phylogenetic context of the family, including previously available mitogenomes of Staphylinidae species.
Collapse
Affiliation(s)
| | | | - Renato R.M. Oliveira
- Instituto Tecnológico Vale, Belém, Pará, Brazil
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
9
|
Françoso E, Zuntini AR, Ricardo PC, Santos PKF, de Souza Araujo N, Silva JPN, Gonçalves LT, Brito R, Gloag R, Taylor BA, Harpur B, Oldroyd BP, Brown MJF, Arias MC. Rapid evolution, rearrangements and whole mitogenome duplication in the Australian stingless bees Tetragonula (Hymenoptera: Apidae): A steppingstone towards understanding mitochondrial function and evolution. Int J Biol Macromol 2023; 242:124568. [PMID: 37100315 DOI: 10.1016/j.ijbiomac.2023.124568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
The extreme conservation of mitochondrial genomes in metazoans poses a significant challenge to understanding mitogenome evolution. However, the presence of variation in gene order or genome structure, found in a small number of taxa, can provide unique insights into this evolution. Previous work on two stingless bees in the genus Tetragonula (T. carbonaria and T. hockingsi) revealed highly divergent CO1 regions between them and when compared to the bees from the same tribe (Meliponini), indicating rapid evolution. Using mtDNA isolation and Illumina sequencing, we elucidated the mitogenomes of both species. In both species, there has been a duplication of the whole mitogenome to give a total genome size of 30,666 bp in T. carbonaria; and 30,662 bp in T. hockingsi. These duplicated genomes present a circular structure with two identical and mirrored copies of all 13 protein coding genes and 22 tRNAs, with the exception of a few tRNAs that are present as single copies. In addition, the mitogenomes are characterized by rearrangements of two block of genes. We believe that rapid evolution is present in the whole Indo-Malay/Australasian group of Meliponini but is extraordinarily elevated in T. carbonaria and T. hockingsi, probably due to founder effect, low effective population size and the mitogenome duplication. All these features - rapid evolution, rearrangements, and duplication - deviate significantly from the vast majority of the mitogenomes described so far, making the mitogenomes of Tetragonula unique opportunities to address fundamental questions of mitogenome function and evolution.
Collapse
Affiliation(s)
- Elaine Françoso
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil.
| | | | - Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | | | - Natalia de Souza Araujo
- Unit of Evolutionary Biology & Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - João Paulo Naldi Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | | | | | - Rosalyn Gloag
- School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Benjamin A Taylor
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Brock Harpur
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Benjamin P Oldroyd
- School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
10
|
Szafranski P. New Dielis species and structural dichotomy of the mitochondrial cox2 gene in Scoliidae wasps. Sci Rep 2023; 13:1950. [PMID: 36732536 PMCID: PMC9895450 DOI: 10.1038/s41598-023-27806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Some mitochondrial protein-coding genes of protists and land plants have split over the course of evolution into complementary genes whose products can form heteromeric complexes that likely substitute for the undivided proteins. One of these genes, cox2, has also been found to have split in animals, specifically in Scoliidae wasps (Hymenoptera: Apocrita) of the genus Dielis (Campsomerini), while maintaining the conventional structure in related Scolia (Scoliini). Here, a hitherto unrecognized Nearctic species of Dielis, D. tejensis, is described based on its phenotype and mtDNA. The mitogenome of D. tejensis sp. nov. differs from that of the sympatric sibling species Dielis plumipes fossulana by the reduced size of the cox2-dividing insert, which, however, still constitutes the fifth part of the mtDNA; an enlarged nad2-trnW intergenic region; the presence of two trnKttt paralogues; and other features. Both species of Dielis have a unique insertion of a threonine in COXIIA, predicted to be involved in COXIIA-COXIIB docking, and substitutions of two hydrophobic residues with redox-active cysteines around the CuA centre in COXIIB. Importantly, the analysis of mtDNA from another Campsomerini genus, Megacampsomeris, shows that its cox2 gene is also split. The presented data highlight evolutionary processes taking place in hymenopteran mitogenomes that do not fall within the mainstream of animal mitochondrion evolution.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Yan L, Hou Z, Ma J, Wang H, Gao J, Zeng C, Chen Q, Yue B, Zhang X. Complete mitochondrial genome of Episymploce splendens (Blattodea: Ectobiidae): A large intergenic spacer and lacking of two tRNA genes. PLoS One 2022; 17:e0268064. [PMID: 35653382 PMCID: PMC9162313 DOI: 10.1371/journal.pone.0268064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
The complete mitochondrial genome of Episymploce splendens, 15,802 bp in length, was determined and annotated in this study. The mito-genome included 13 PCGs, 20 tRNAs and 2 rRNAs. Unlike most typical mito-genomes with conservative gene arrangement and exceptional economic organization, E. splendens mito-genome has two tRNAs (tRNA-Gln and tRNA-Met) absence and a long intergenic spacer sequence (93 bp) between tRNA-Val and srRNA, showing the diversified features of insect mito-genomes. This is the first report of the tRNAs deletion in blattarian mito-genomes and we supported the duplication/random loss model as the origin mechanism of the long intergenic spacer. Two Numts, Numt-1 (557 bp) and Numt-2 (975 bp) transferred to the nucleus at about 14.15 Ma to 22.34 Ma, and 19.19 Ma to 24.06 Ma respectively, were found in E. splendens. They can be used as molecular fossils in insect phylogenetic relationship inference. Our study provided useful data for further studies on the evolution of insect mito-genome.
Collapse
Affiliation(s)
- Lin Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenzhen Hou
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinnan Ma
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Gao
- Sichuan Key Laboratory of Medicinal Periplaneta Americana, Sichuan Gooddoctor Pharmaceutical Group, Chengdu, China
| | - Chenjuan Zeng
- Sichuan Key Laboratory of Medicinal Periplaneta Americana, Sichuan Gooddoctor Pharmaceutical Group, Chengdu, China
| | - Qin Chen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
12
|
The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa. Genes (Basel) 2021; 12:genes12122030. [PMID: 34946978 PMCID: PMC8700879 DOI: 10.3390/genes12122030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions.
Collapse
|
13
|
Ayivi SPG, Tong Y, Storey KB, Yu DN, Zhang JY. The Mitochondrial Genomes of 18 New Pleurosticti (Coleoptera: Scarabaeidae) Exhibit a Novel trnQ-NCR-trnI-trnM Gene Rearrangement and Clarify Phylogenetic Relationships of Subfamilies within Scarabaeidae. INSECTS 2021; 12:1025. [PMID: 34821825 PMCID: PMC8622766 DOI: 10.3390/insects12111025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022]
Abstract
The availability of next-generation sequencing (NGS) in recent years has facilitated a revolution in the availability of mitochondrial (mt) genome sequences. The mt genome is a powerful tool for comparative studies and resolving the phylogenetic relationships among insect lineages. The mt genomes of phytophagous scarabs of the subfamilies Cetoniinae and Dynastinae were under-represented in GenBank. Previous research found that the subfamily Rutelinae was recovered as a paraphyletic group because the few representatives of the subfamily Dynastinae clustered into Rutelinae, but the subfamily position of Dynastinae was still unclear. In the present study, we sequenced 18 mt genomes from Dynastinae and Cetoniinae using next-generation sequencing (NGS) to re-assess the phylogenetic relationships within Scarabaeidae. All sequenced mt genomes contained 37 sets of genes (13 protein-coding genes, 22 tRNAs, and two ribosomal RNAs), with one long control region, but the gene order was not the same between Cetoniinae and Dynastinae species. All mt genomes of Dynastinae species showed the same gene rearrangement of trnQ-NCR-trnI-trnM, whereas all mt genomes of Cetoniinae species showed the ancestral insect gene order of trnI-trnQ-trnM. Phylogenetic analyses (IQ-tree and MrBayes) were conducted using 13 protein-coding genes based on nucleotide and amino acid datasets. In the ML and BI trees, we recovered the monophyly of Rutelinae, Cetoniinae, Dynastinae, and Sericinae, and the non-monophyly of Melolonthinae. Cetoniinae was shown to be a sister clade to (Dynastinae + Rutelinae).
Collapse
Affiliation(s)
- Sam Pedro Galilee Ayivi
- Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (S.P.G.A.); (Y.T.)
| | - Yao Tong
- Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (S.P.G.A.); (Y.T.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada;
| | - Dan-Na Yu
- Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (S.P.G.A.); (Y.T.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (S.P.G.A.); (Y.T.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
14
|
Zhang S, Sekerka L, Liao C, Long C, Xu J, Dai X, Guo Q. The First Eight Mitogenomes of Leaf-Mining Dactylispa Beetles (Coleoptera: Chrysomelidae: Cassidinae) Shed New Light on Subgenus Relationships. INSECTS 2021; 12:insects12111005. [PMID: 34821805 PMCID: PMC8624545 DOI: 10.3390/insects12111005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
The taxonomic classification of Dactylispa, a large genus of leaf-mining beetles, is problematic because it is currently based on morphology alone. Here, the first eight mitochondrial genomes of Dactylispa species, which were used to construct the first molecular phylogenies of this genus, are reported. The lengths of the eight mitogenomes range from 17,189 bp to 20,363 bp. All of the mitochondrial genomes include 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and 1 A + T-rich region. According to the nonsynonymous/synonymous mutation ratio (Ka/Ks) of all PCGs, the highest and the lowest evolutionary rates were found for atp8 and cox1, respectively, which is a common phenomenon among animals. According to relative synonymous codon usage, UUA(L) has the highest frequency. With two Gonophorini species as the outgroup, mitogenome-based phylogenetic trees of the eight Dactylispa species were constructed using maximum likelihood (ML) and Bayesian inference (BI) methods based on the PCGs, tRNAs, and rRNAs. Two DNA-based phylogenomic inferences and one protein-based phylogenomic inference support the delimitation of the subgenera Dactylispa s. str. and Platypriella as proposed in the system of Chen et al. (1986). However, the subgenus Triplispa is not recovered as monophyletic. The placement of Triplispa species requires further verification and testing with more species. We also found that both adult body shape and host plant relationship might explain the subgeneric relationships among Dactylispa beetles to a certain degree.
Collapse
Affiliation(s)
- Shengdi Zhang
- Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (C.L.); (C.L.); (J.X.)
- National Navel-Orange Engineering Research Center, Ganzhou 341000, China
| | - Lukáš Sekerka
- Department of Entomology, National Museum, Natural History Museum, 1740 Cirkusová, Czech Republic;
| | - Chengqing Liao
- Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (C.L.); (C.L.); (J.X.)
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Chengpeng Long
- Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (C.L.); (C.L.); (J.X.)
- National Navel-Orange Engineering Research Center, Ganzhou 341000, China
| | - Jiasheng Xu
- Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (C.L.); (C.L.); (J.X.)
- National Navel-Orange Engineering Research Center, Ganzhou 341000, China
| | - Xiaohua Dai
- Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (C.L.); (C.L.); (J.X.)
- National Navel-Orange Engineering Research Center, Ganzhou 341000, China
- Correspondence: (X.D.); (Q.G.)
| | - Qingyun Guo
- Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (C.L.); (C.L.); (J.X.)
- National Navel-Orange Engineering Research Center, Ganzhou 341000, China
- Correspondence: (X.D.); (Q.G.)
| |
Collapse
|
15
|
Hu Z, Liu S, Xu Z, Liu S, Li T, Yu S, Zhao W. Comparison of
Aspergillus chevalieri
and related species in dark tea at different aspects: Morphology, enzyme activity and mitochondrial genome. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhi‐Yuan Hu
- College of Food Science and Technology Hunan Agricultural University Changsha China
- Hunan Provincial Key Lab of Dark Tea and Jin‐hua Hunan City University Yiyang China
| | - Su‐Chun Liu
- College of Food Science and Technology Hunan Agricultural University Changsha China
| | - Zheng‐Gang Xu
- Key Laboratory of National Forestry and Grassland Administration on Management of Western College of Forestry Northwest A & F University Yangling China
| | - Shi‐Quan Liu
- Hunan Provincial Key Lab of Dark Tea and Jin‐hua Hunan City University Yiyang China
| | - Tao‐Tao Li
- Hunan Provincial Key Lab of Dark Tea and Jin‐hua Hunan City University Yiyang China
| | - Song‐Lin Yu
- Hunan Provincial Key Lab of Dark Tea and Jin‐hua Hunan City University Yiyang China
| | - Wei‐Ping Zhao
- College of Business Hunan Agricultural University Changsha China
| |
Collapse
|
16
|
Toquenaga Y, Gagné T. The Evidential Statistics of Genetic Assembly: Bootstrapping a Reference Sequence. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.614374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The reference sequences play an essential role in genome assembly, like type specimens in taxonomy. Those references are also samples obtained at some time and location with a specific method. How can we evaluate or discriminate uncertainties of the reference itself and assembly methods? Here we bootstrapped 50 random read data sets from a small circular genome of a Escherichia coli bacteriophage, phiX174, and tried to reconstruct the reference with 14 free assembly programs. Nine out of 14 assembly programs were capable of circular genome reconstruction. Unicycler correctly reconstructed the reference for 44 out of 50 data sets, but each reconstructed contig of the failed six data sets had minor defects. The other assembly software could reconstruct the reference with minor defects. The defect regions differed among the assembly programs, and the defect locations were far from randomly distributed in the reference genome. All contigs of Trinity included one, but Minia had two perfect copies other than an imperfect reference copy. The centroid of contigs for assembly programs except Unicycler differed from the reference with 75bases at most. Nonmetric multidimensional scaling (NMDS) plots of the centroids indicated that even the reference sequence was located slightly off from the estimated location of the true reference. We propose that the combination of bootstrapping a reference, making consensus contigs as centroids in an edit distance, and NMDS plotting will provide an evidential statistic way of genetic assembly for non-fragmented base sequences.
Collapse
|
17
|
Filipović I, Hereward JP, Rašić G, Devine GJ, Furlong MJ, Etebari K. The complete mitochondrial genome sequence of Oryctes rhinoceros (Coleoptera: Scarabaeidae) based on long-read nanopore sequencing. PeerJ 2021; 9:e10552. [PMID: 33520439 PMCID: PMC7811291 DOI: 10.7717/peerj.10552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/21/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is a severe and invasive pest of coconut and other palms throughout Asia and the Pacific. The biocontrol agent, Oryctes rhinoceros nudivirus (OrNV), has successfully suppressed O. rhinoceros populations for decades but new CRB invasions started appearing after 2007. A single-SNP variant within the mitochondrial cox1 gene is used to distinguish the recently-invading CRB-G lineage from other haplotypes, but the lack of mitogenome sequence for this species hinders further development of a molecular toolset for biosecurity and management programmes against CRB. Here we report the complete circular sequence and annotation for CRB mitogenome, generated to support such efforts. METHODS Sequencing data were generated using long-read Nanopore technology from genomic DNA isolated from a CRB-G female. The mitogenome was assembled with Flye v.2.5, using the short-read Illumina sequences to remove homopolymers with Pilon, and annotated with MITOS. Independently-generated transcriptome data were used to assess the O. rhinoceros mitogenome annotation and transcription. The aligned sequences of 13 protein-coding genes (PCGs) (with degenerate third codon position) from O. rhinoceros, 13 other Scarabaeidae taxa and two outgroup taxa were used for the phylogenetic reconstruction with the Maximum likelihood (ML) approach in IQ-TREE and Bayesian (BI) approach in MrBayes. RESULTS The complete circular mitogenome of O. rhinoceros is 20,898 bp in length, with a gene content canonical for insects (13 PCGs, two rRNA genes, and 22 tRNA genes), as well as one structural variation (rearrangement of trnQ and trnI) and a long control region (6,204 bp). Transcription was detected across all 37 genes, and interestingly, within three domains in the control region. ML and BI phylogenies had the same topology, correctly grouping O. rhinoceros with one other Dynastinae taxon, and recovering the previously reported relationship among lineages in the Scarabaeidae. In silico PCR-RFLP analysis recovered the correct fragment set that is diagnostic for the CRB-G haplogroup. These results validate the high-quality of the O. rhinoceros mitogenome sequence and annotation.
Collapse
Affiliation(s)
- Igor Filipović
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - James P. Hereward
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
| | - Gordana Rašić
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gregor J. Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michael J. Furlong
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
| | - Kayvan Etebari
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
18
|
Narakusumo RP, Riedel A, Pons J. Mitochondrial genomes of twelve species of hyperdiverse Trigonopterus weevils. PeerJ 2020; 8:e10017. [PMID: 33083123 PMCID: PMC7566755 DOI: 10.7717/peerj.10017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial genomes of twelve species of Trigonopterus weevils are presented, ten of them complete. We describe their gene order and molecular features and test their potential for reconstructing the phylogeny of this hyperdiverse genus comprising > 1,000 species. The complete mitochondrial genomes examined herein ranged from 16,501 bp to 21,007 bp in length, with an average AT content of 64.2% to 69.7%. Composition frequencies and skews were generally lower across species for atp6, cox1-3, and cob genes, while atp8 and genes coded on the minus strand showed much higher divergence at both nucleotide and amino acid levels. Most variation within genes was found at the codon level with high variation at third codon sites across species, and with lesser degree at the coding strand level. Two large non-coding regions were found, CR1 (between rrnS and trnI genes) and CR2 (between trnI and trnQ), but both with large variability in length; this peculiar structure of the non-coding region may be a derived character of Curculionoidea. The nad1 and cob genes exhibited an unusually high interspecific length variation of up to 24 bp near the 3' end. This pattern was probably caused by a single evolutionary event since both genes are only separated by trnS2 and length variation is extremely rare in mitochondrial protein coding genes. We inferred phylogenetic trees using protein coding gene sequences implementing both maximum likelihood and Bayesian approaches, each for both nucleotide and amino acid sequences. While some clades could be retrieved from all reconstructions with high confidence, there were also a number of differences and relatively low support for some basal nodes. The best partition scheme of the 13 protein coding sequences obtained by IQTREE suggested that phylogenetic signal is more accurate by splitting sequence variation at the codon site level as well as coding strand, rather than at the gene level. This result corroborated the different patterns found in Trigonopterus regarding to A+T frequencies and AT and GC skews that also greatly diverge at the codon site and coding strand levels.
Collapse
Affiliation(s)
- Raden Pramesa Narakusumo
- State Museum of Natural History Karlsruhe, Karlsruhe, Germany.,Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | | | - Joan Pons
- Diversidad Animal y Microbiana, Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), Esporles, Balearic Islands, Spain
| |
Collapse
|
19
|
Immonen E, Berger D, Sayadi A, Liljestrand‐Rönn J, Arnqvist G. An experimental test of temperature-dependent selection on mitochondrial haplotypes in Callosobruchus maculatus seed beetles. Ecol Evol 2020; 10:11387-11398. [PMID: 33144972 PMCID: PMC7593184 DOI: 10.1002/ece3.6775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial DNA (mtDNA) consists of few but vital maternally inherited genes that interact closely with nuclear genes to produce cellular energy. How important mtDNA polymorphism is for adaptation is still unclear. The assumption in population genetic studies is often that segregating mtDNA variation is selectively neutral. This contrasts with empirical observations of mtDNA haplotypes affecting fitness-related traits and thermal sensitivity, and latitudinal clines in mtDNA haplotype frequencies. Here, we experimentally test whether ambient temperature affects selection on mtDNA variation, and whether such thermal effects are influenced by intergenomic epistasis due to interactions between mitochondrial and nuclear genes, using replicated experimental evolution in Callosobruchus maculatus seed beetle populations seeded with a mixture of different mtDNA haplotypes. We also test for sex-specific consequences of mtDNA evolution on reproductive success, given that mtDNA mutations can have sexually antagonistic fitness effects. Our results demonstrate natural selection on mtDNA haplotypes, with some support for thermal environment influencing mtDNA evolution through mitonuclear epistasis. The changes in male and female reproductive fitness were both aligned with changes in mtDNA haplotype frequencies, suggesting that natural selection on mtDNA is sexually concordant in stressful thermal environments. We discuss the implications of our findings for the evolution of mtDNA.
Collapse
Affiliation(s)
- Elina Immonen
- Department of Ecology and Evolution/Evolutionary BiologyUppsala UniversityUppsalaSweden
| | - David Berger
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| | - Ahmed Sayadi
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| | | | - Göran Arnqvist
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| |
Collapse
|
20
|
Wu M, Qian X, Qin M, Tu T, Zhang R. Characterization of the complete mitochondrial genome of Caryopemon giganteus Pic (Coleoptera: Chrysomelidae: Bruchinae). Mitochondrial DNA B Resour 2020; 5:929-931. [PMID: 33366814 PMCID: PMC7748735 DOI: 10.1080/23802359.2020.1719927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We sequenced, assembled, and annotated the complete mitochondrial genome of the seed beetle Caryopemon giganteus, which represents the first report in the tribe Caryopemini from the subfamily Bruchinae of Chrysomelidae. The circular mitochondrial genome of the species contains 15,727 bases, 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes, and a non-coding region. The GC content of the genome is 25.3%, which is higher than any other reported mitochondrial genomes within Bruchinae. The 16S ribosomal RNA gene and the 12S ribosomal RNA gene are 1284 and 835 bp in length, respectively. 12 PCGs started with the typical ATN codon, except for ND1 initiated with TTG. Five PCGs have the typical stop codon of TAA or TGA, while the remainder PCGs are terminated with incomplete stop codons (TA or T). The phylogenetic analysis based on a combination of 13 genes of the mitochondrial genomes of six species of Bruchinae and 23 species from other 10 subfamilies of Chrysomelidae recovered a generally well resolved and strongly supported tree topology, which shows that C. giganteus has the basalmost position in Bruchinae.
Collapse
Affiliation(s)
- Mingsong Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Ming Qin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Runzhi Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Song H, Donthu RK, Hall R, Hon L, Weber E, Badger JH, Giordano R. Description of soybean aphid (Aphis glycines Matsumura) mitochondrial genome and comparative mitogenomics of Aphididae (Hemiptera: Sternorrhyncha). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103208. [PMID: 31422150 DOI: 10.1016/j.ibmb.2019.103208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/26/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The complete mitochondrial genome of the soybean aphid (Aphis glycines Matsumura), a major agricultural pest in the world, is described for the first time, which consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, as well as a large repeat region between tRNA-Glu and tRNA-Phe, and an AT-rich control region. The 17,954 bp mtgenome is the largest reported from the family Aphididae, and its gene order follows the ancestral insect mtgenome except for the repeat region, which contains a 195 bp unit repeated 11.9 times, representing the highest reported repeats among the known aphid mtgenomes to date. A new molecular phylogeny of Aphidae is reconstructed based on all available aphid mtgenomes, and it is shown that the mtgenome data can robustly resolve relationships at the subfamily level, but do not have sufficient phylogenetic information to resolve deep relationships. A phylogeny-based comparative analysis of mtgenomes has been performed to investigate the evolution of the repeat region between tRNA-Glu and tRNA-Phe. So far, among aphids, 13 species are known to have this repeat region of variable lengths, and a phylogenetic analysis of the repeat region shows that a large proportion of the sequences are conserved across the phylogeny, suggesting that the repeat region evolved in the most recent common ancestor of Aphidinae and Eriosomatinae, and that it has gone through numerous episodes of lineage-specific losses and expansions. Combined together, this study provides novel insights into how the repeat regions have evolved within aphids.
Collapse
Affiliation(s)
- Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| | - Ravi Kiran Donthu
- Puerto Rico, Science, Technology & Research Trust, San Juan, PR, USA; Know Your Bee, Inc, San Juan, PR, USA
| | | | | | - Everett Weber
- Puerto Rico, Science, Technology & Research Trust, San Juan, PR, USA; Know Your Bee, Inc, San Juan, PR, USA
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, DHHS, Bethesda, MD, USA
| | - Rosanna Giordano
- Puerto Rico, Science, Technology & Research Trust, San Juan, PR, USA; Know Your Bee, Inc, San Juan, PR, USA
| |
Collapse
|
22
|
Li Q, Yang M, Chen C, Xiong C, Jin X, Pu Z, Huang W. Characterization and phylogenetic analysis of the complete mitochondrial genome of the medicinal fungus Laetiporus sulphureus. Sci Rep 2018; 8:9104. [PMID: 29904057 PMCID: PMC6002367 DOI: 10.1038/s41598-018-27489-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
The medicinal fungus Laetiporus sulphureus is widely distributed worldwide. To screen for molecular markers potentially useful for phylogenetic analyses of this species and related species, the mitochondrial genome of L. sulphureus was sequenced and assembled. The complete circular mitochondrial genome was 101,111 bp long, and contained 38 protein-coding genes (PCGs), 2 rRNA genes, and 25 tRNA genes. Our BLAST search aligned about 6.1 kb between the mitochondrial and nuclear genomes of L. sulphureus, indicative of possible gene transfer events. Both the GC and AT skews in the L. sulphureus mitogenome were negative, in contrast to the other seven Polyporales species tested. Of the 15 PCGs conserved across the seven species of Polyporales, the lengths of 11 were unique in the L. sulphureus mitogenome. The Ka/Ks of these 15 PCGs were all less than 1, indicating that PCGs were subject to purifying selection. Our phylogenetic analysis showed that three single genes (cox1, cob, and rnl) were potentially useful as molecular markers. This study is the first publication of a mitochondrial genome in the family Laetiporaceae, and will facilitate the study of population genetics and evolution in L. sulphureus and other species in this family.
Collapse
Affiliation(s)
- Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Mei Yang
- Panzhihua City Academy of Agricultural and Forest Sciences, Panzhihua, 617061, Sichuan, P.R. China
| | - Cheng Chen
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, P.R. China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China
| | - Zhigang Pu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China. .,Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd, Chengdu, 610061, Sichuan, China.
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China. .,Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd, Chengdu, 610061, Sichuan, China.
| |
Collapse
|
23
|
Xu J, Liao C, Guo Q, Long C, Dai X. Mitochondrial genome of a leaf-mining beetle Prionispa champaka Maulik (Coleoptera: Chrysomelidae: Cassidinae). Mitochondrial DNA B Resour 2018; 3:147-148. [PMID: 33474101 PMCID: PMC7800080 DOI: 10.1080/23802359.2017.1413318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023] Open
Abstract
Prionispa champaka is a leaf-mining species which feeds on Pollia spp. and widely distributes in southern China. The complete mitogenomic sequence of P. champaka (Chrysomelidae: Cassidinae) was obtained and annotated, with a length of 20,494 bp. It was longer than those of other Chrysomelid species (not including Bruchinae) because of its much longer non-coding sequences. Gene arrangement and content of P. champaka was identical to the most common type in insects, and it was also biased toward AT (accounting for 78.4%). Phylogenetic analysis based on mitochondrial PCGs indicated that P. champaka was closely clustered with 5 other Cassidinae species, supporting the traditional morphological classification within Cassidinae.
Collapse
Affiliation(s)
- Jiasheng Xu
- Leafminer Group, School of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Chengqing Liao
- Leafminer Group, School of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Qingyun Guo
- Leafminer Group, School of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Chengpeng Long
- Leafminer Group, School of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Xiaohua Dai
- Leafminer Group, School of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
- National Navel-Orange Engineering Research Center, Ganzhou, China
| |
Collapse
|