1
|
Pandrangi SL, Chittineedi P, Manthari RK, Suhruth B. Impact of oxytosis on the cross-talk of mTORC with mitochondrial proteins in drug-resistant cancer stem cells. J Cell Physiol 2024; 239:e31421. [PMID: 39188055 PMCID: PMC11649969 DOI: 10.1002/jcp.31421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
By delivering the environmental inputs to transport nutrients and growth factors, Mechanistic Target of Rapamycin (mTOR) plays a significant role in the growth and metabolism of eukaryotic cells through the regulation of numerous elementary cellular processes such as autophagy, protein synthesis, via translation of mitochondrial protein transcription factor A mitochondrial, mitochondrial ribosomal proteins, and mitochondrial respiratory complexes I &V that are encoded in the nucleus with the help of translation initiation factor 4E-BP. These mitochondrial proteins are involved in cell signaling to regulate proper cell growth, proliferation, and death which are essential for tumor growth and proliferation. This suggests that tumor cells are dependent on mTORC1 for various metabolic pathways. However, this crucial regulator is activated and regulated by calcium homeostasis. Mounting evidence suggests the role of calcium ions in regulating mitochondrial enzymes and proteins. Hence, disrupting calcium homeostasis leads to calcium-dependent cell death called "Oxytosis" through hampering the expression of various mitochondrial proteins. "Oxytosis" is a novel non-apoptotic cell death characterized by glutamate cytotoxicity and ferritin degradation. The present review focuses on the crosstalk between mTORC1 and mitochondrial proteins in the cancer pathophysiology and the impact of calcium ions on disrupting mTORC1 leading to the induction of "Oxytosis."
Collapse
Affiliation(s)
- Santhi L. Pandrangi
- Department of Life Sciences, School of ScienceGITAM (Deemed to be) UniversityVisakhapatnamIndia
| | - Prasanthi Chittineedi
- Department of Life Sciences, School of ScienceGITAM (Deemed to be) UniversityVisakhapatnamIndia
| | - Ram K. Manthari
- Department of Life Sciences, School of ScienceGITAM (Deemed to be) UniversityVisakhapatnamIndia
| | - Balaji Suhruth
- Department of Life Sciences, School of ScienceGITAM (Deemed to be) UniversityVisakhapatnamIndia
| |
Collapse
|
2
|
Gendron EMS, Qing X, Sevigny JL, Li H, Liu Z, Blaxter M, Powers TO, Thomas WK, Porazinska DL. Comparative mitochondrial genomics in Nematoda reveal astonishing variation in compositional biases and substitution rates indicative of multi-level selection. BMC Genomics 2024; 25:615. [PMID: 38890582 PMCID: PMC11184840 DOI: 10.1186/s12864-024-10500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Nematodes are the most abundant and diverse metazoans on Earth, and are known to significantly affect ecosystem functioning. A better understanding of their biology and ecology, including potential adaptations to diverse habitats and lifestyles, is key to understanding their response to global change scenarios. Mitochondrial genomes offer high species level characterization, low cost of sequencing, and an ease of data handling that can provide insights into nematode evolutionary pressures. RESULTS Generally, nematode mitochondrial genomes exhibited similar structural characteristics (e.g., gene size and GC content), but displayed remarkable variability around these general patterns. Compositional strand biases showed strong codon position specific G skews and relationships with nematode life traits (especially parasitic feeding habits) equal to or greater than with predicted phylogeny. On average, nematode mitochondrial genomes showed low non-synonymous substitution rates, but also high clade specific deviations from these means. Despite the presence of significant mutational saturation, non-synonymous (dN) and synonymous (dS) substitution rates could still be significantly explained by feeding habit and/or habitat. Low ratios of dN:dS rates, particularly associated with the parasitic lifestyles, suggested the presence of strong purifying selection. CONCLUSIONS Nematode mitochondrial genomes demonstrated a capacity to accumulate diversity in composition, structure, and content while still maintaining functional genes. Moreover, they demonstrated a capacity for rapid evolutionary change pointing to a potential interaction between multi-level selection pressures and rapid evolution. In conclusion, this study helps establish a background for our understanding of the potential evolutionary pressures shaping nematode mitochondrial genomes, while outlining likely routes of future inquiry.
Collapse
Affiliation(s)
- Eli M S Gendron
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Xue Qing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
| | - Joseph L Sevigny
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyin Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | | - Thomas O Powers
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - W Kelly Thomas
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Dorota L Porazinska
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Diz AP, Skibinski DOF. Patterns of admixture and introgression in a mosaic Mytilus galloprovincialis and Mytilus edulis hybrid zone in SW England. Mol Ecol 2024; 33:e17233. [PMID: 38063472 DOI: 10.1111/mec.17233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/25/2024]
Abstract
The study of hybrid zones offers important insights into speciation. Earlier studies on hybrid populations of the marine mussel species Mytilus edulis and Mytilus galloprovincialis in SW England provided evidence of admixture but were constrained by the limited number of molecular markers available. We use 57 ancestry-informative SNPs, most of which have been mapped genetically, to provide evidence of distinctive differences between admixed populations in SW England and asymmetrical introgression from M. edulis to M. galloprovincialis. We combine the genetic study with analysis of phenotypic traits of potential ecological and adaptive significance. We demonstrate that hybrid individuals have brown mantle edges unlike the white or purple in the parental species, suggesting allelic or non-allelic genomic interactions. We report differences in gonad development stage between the species consistent with a prezygotic barrier between the species. By incorporating results from publications dating back to 1980, we confirm the long-term stability of the hybrid zone despite higher viability of M. galloprovincialis. This stability coincides with a dramatic change in temperature of UK coastal waters and suggests that these hybrid populations might be resisting the effects of global warming. However, a single SNP locus associated with the Notch transmembrane signalling protein shows a markedly different pattern of variation to the others and might be associated with adaptation of M. galloprovincialis to colder northern temperatures.
Collapse
Affiliation(s)
- Angel P Diz
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVIGO), Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | | |
Collapse
|
4
|
Gallardi D, Xue X, Mercier E, Mills T, Lefebvre F, Rise ML, Murray HM. RNA-seq analysis of the mantle transcriptome from Mytilus edulis during a seasonal spawning event in deep and shallow water culture sites on the northeast coast of Newfoundland, Canada. Mar Genomics 2021; 60:100865. [PMID: 33933383 DOI: 10.1016/j.margen.2021.100865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
The blue mussel (Mytilus edulis) has global commercial and ecological importance both in wild and cultured conditions. However there is a qualitative and quantitative lack of knowledge of the molecular mechanisms associated with its reproductive physiology, especially with reference to environmental interactions. Here we initiated a transcriptomic analysis (RNA-sequencing (RNA-seq)) of the mantle from both sexes sampled during a seasonal spawning event and from two culture depths (shallow-5 m; deep- 15 m). Mantle libraries were produced from 3 males and 3 females sampled from each of two shallow sites and two deep sites for a total of 12 replicate male and 12 replicate female libraries (24 total libraries). Overall a total of 2.3 billion raw 100 base reads with an average of 96.5 million reads/library were obtained and assembled into 296,118 transcripts with an average length of 568 bp. Overall, 315 transcripts from male libraries and 25 from female libraries were found to be upregulated in deep water as compared to shallow (edgeR adjusted p value ≤ 0.05). Conversely, 126 transcripts from male libraries and 135 from female libraries were found to be significantly downregulated at the same depth. Thirteen transcripts were selected for qPCR validation based on importance in reproduction, antimicrobial defense and metabolism. Of these, 9 RNA-seq identified transcripts were shown by qPCR to be differentially expressed between groups: 2 were upregulated in deep compared with shallow water (dhx38, mt-co1), 2 were upregulated for female compared with male mantle (pias2, mapkap1) and 6 genes (fndc3a, acbd3, klhl10, ccnb3, armc4, mt-co1) showed to be upregulated in males compared to females. The majority of qPCR studied transcripts were identified as involved in gamete development based on the UniProt database. This study further characterizes the importance of the mantle transcriptome during reproductive activities of M. edulis.
Collapse
Affiliation(s)
- Daria Gallardi
- Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St. John's, NL A1C 5X1, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Eloi Mercier
- Canadian Centre for Computational Genomics - Montreal Node, McGill University and Genome Quebec Innovation Center, 740 Dr. Penfield Avenue, Montréal, Québec H3A 0G1, Canada
| | - Terry Mills
- Norlantic Processors Limited, P.O. Box 381, Botwood, NL A0H 1E0, Canada
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics - Montreal Node, McGill University and Genome Quebec Innovation Center, 740 Dr. Penfield Avenue, Montréal, Québec H3A 0G1, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Harry M Murray
- Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St. John's, NL A1C 5X1, Canada
| |
Collapse
|
5
|
Description of Sarcocystis scandentiborneensis sp. nov. from treeshrews ( Tupaia minor, T. tana) in northern Borneo with annotations on the utility of COI and 18S rDNA sequences for species delineation. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:220-231. [PMID: 32695576 PMCID: PMC7364115 DOI: 10.1016/j.ijppaw.2020.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 11/27/2022]
Abstract
Sarcocystis scandentiborneensis sp. nov. was discovered in histological sections of striated musculature of treeshrews (Tupaia minor, T. tana) from Northern Borneo. Sarcocysts were cigar-shaped, 102 μm–545 μm long, and on average 53 μm in diameter. The striated cyst wall varied in thickness (2–10 μm), depending on whether the finger-like, villous protrusions (VP) were bent. Ultrastructurally, sarcocysts were similar to wall type 12 but basal microtubules extended into VPs that tapered off with a unique U-shaped, electron-dense apical structure. In phylogenetic trees of the nuclear 18S rRNA gene, S. scandentiborneensis formed a distinct branch within a monophyletic subclade of Sarcocystis spp. with (colubrid) snake-rodent life cycle. We mapped all intraspecific (two haplotypes) and interspecific nucleotide substitutions to the secondary structure of the 18S rRNA gene: in both cases, the highest variability occurred within helices V2 and V4 but intraspecific variability mostly related to transitions, while transition/transversion ratios between S. scandentiborneensis, S. zuoi, and S. clethrionomyelaphis were skewed towards transversions. Lack of relevant sequences restricted phylogenetic analysis of the mitochondrial Cytochrome C oxidase subunit I (COI) gene to include only one species of Sarcocystis recovered from a snake host (S. pantherophisi) with which the new species formed a sister relationship. We confirm the presence of the functionally important elements of the COI barcode amino acid sequence of S. scandentiborneensis, whereby the frequency of functionally important amino acids (Alanine, Serine) was markedly different to other taxa of the Sarcocystidae. We regard S. scandentiborneensis a new species, highlighting that structurally or functionally important aspects of the 18S rRNA and COI could expand their utility for delineation of species. We also address the question why treeshrews, believed to be close to primates, carry a parasite that is genetically close to a Sarcocystis lineage preferably developing in the Rodentia as intermediate hosts. Sarcocystis scandentiborneensis sp. nov. identified from Tupaia tana and T. minor. Putative snake-treeshrew life cycle. Unique brush-like cyst wall with an electron-dense apical structure. Transition/transversion ratios of 18S rDNA improve species discrimination. COI: Interspecific differences of functionally important amino acids of barcode area.
Collapse
|
6
|
Ghiselli F, Maurizii MG, Reunov A, Ariño-Bassols H, Cifaldi C, Pecci A, Alexandrova Y, Bettini S, Passamonti M, Franceschini V, Milani L. Natural Heteroplasmy and Mitochondrial Inheritance in Bivalve Molluscs. Integr Comp Biol 2020; 59:1016-1032. [PMID: 31120503 DOI: 10.1093/icb/icz061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heteroplasmy is the presence of more than one type of mitochondrial genome within an individual, a condition commonly reported as unfavorable and affecting mitonuclear interactions. So far, no study has investigated heteroplasmy at protein level, and whether it occurs within tissues, cells, or even organelles. The only known evolutionarily stable and natural heteroplasmic system in Metazoa is the Doubly Uniparental Inheritance (DUI)-reported so far in ∼100 bivalve species-in which two mitochondrial lineages are present: one transmitted through eggs (F-type) and the other through sperm (M-type). Because of such segregation, mitochondrial oxidative phosphorylation proteins reach a high amino acid sequence divergence (up to 52%) between the two lineages in the same species. Natural heteroplasmy coupled with high sequence divergence between F- and M-type proteins provides a unique opportunity to study their expression and assess the level and extent of heteroplasmy. Here, for the first time, we immunolocalized F- and M-type variants of three mitochondrially-encoded proteins in the DUI species Ruditapes philippinarum, in germline and somatic tissues at different developmental stages. We found heteroplasmy at organelle level in undifferentiated germ cells of both sexes, and in male soma, whereas gametes were homoplasmic: eggs for the F-type and sperm for the M-type. Thus, during gametogenesis, only the sex-specific mitochondrial variant is maintained, likely due to a process of meiotic drive. We examine the implications of our results for DUI proposing a revised model, and we discuss interactions of mitochondria with germ plasm and their role in germline development. Molecular and phylogenetic evidence suggests that DUI evolved from the common Strictly Maternal Inheritance, so the two systems likely share the same underlying molecular mechanism, making DUI a useful system for studying mitochondrial biology.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Arkadiy Reunov
- National Scientific Centre of Marine Biology, Russian Academy of Sciences Far Eastern Branch, Vladivostok 690041, Russia.,Department of Biology, St. Francis Xavier University, Antigonish N.S. B2G 2W5, Canada
| | - Helena Ariño-Bassols
- Departamento de Fisiología e Inmunología, Universitat de Barcelona, Barcelona 08028, Spain
| | - Carmine Cifaldi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Andrea Pecci
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Yana Alexandrova
- National Scientific Centre of Marine Biology, Russian Academy of Sciences Far Eastern Branch, Vladivostok 690041, Russia
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| |
Collapse
|
7
|
Lubośny M, Śmietanka B, Przyłucka A, Burzyński A. Highly divergent mitogenomes ofGeukensia demissa(Bivalvia, Mytilidae) with extreme AT content. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marek Lubośny
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| | - Beata Śmietanka
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| | - Aleksandra Przyłucka
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology Institute of Oceanology Polish Academy of Sciences Sopot Poland
| |
Collapse
|
8
|
Milani L, Ghiselli F. Faraway, so close. The comparative method and the potential of non-model animals in mitochondrial research. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190186. [PMID: 31787048 DOI: 10.1098/rstb.2019.0186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inference from model organisms has been the engine for many discoveries in life science, but indiscriminate generalization leads to oversimplifications and misconceptions. Model organisms and inductive reasoning are irreplaceable: there is no other way to tackle the complexity of living systems. At the same time, it is not advisable to infer general patterns from a restricted number of species, which are very far from being representative of the diversity of life. Not all models are equal. Some organisms are suitable to find similarities across species, other highly specialized organisms can be used to focus on differences. In this opinion piece, we discuss the dominance of the mechanistic/reductionist approach in life sciences and make a case for an enhanced application of the comparative approach to study processes in all their various forms across different organisms. We also enlist some rising animal models in mitochondrial research, to exemplify how non-model organisms can be chosen in a comparative framework. These taxa often do not possess implemented tools and dedicated methods/resources. However, because of specific features, they have the potential to address still unanswered biological questions. Finally, we discuss future perspectives and caveats of the comparative method in the age of 'big data'. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Iannello M, Puccio G, Piccinini G, Passamonti M, Ghiselli F. The dynamics of mito-nuclear coevolution: A perspective from bivalve species with two different mechanisms of mitochondrial inheritance. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Guglielmo Puccio
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Giovanni Piccinini
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| |
Collapse
|
10
|
Śmietanka B, Lubośny M, Przyłucka A, Gérard K, Burzyński A. Mitogenomics of Perumytilus purpuratus (Bivalvia: Mytilidae) and its implications for doubly uniparental inheritance of mitochondria. PeerJ 2018; 6:e5593. [PMID: 30245933 PMCID: PMC6149501 DOI: 10.7717/peerj.5593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022] Open
Abstract
Animal mitochondria are usually inherited through the maternal lineage. The exceptional system allowing fathers to transmit their mitochondria to the offspring exists in some bivalves. Its taxonomic spread is poorly understood and new mitogenomic data are needed to fill the gap. Here, we present for the first time the two divergent mitogenomes from Chilean mussel Perumytilus purpuratus. The existence of these sex-specific mitogenomes confirms that this species has the doubly uniparental inheritance (DUI) of mitochondria. The genetic distance between the two mitochondrial lineages in P. purpuratus is not only much bigger than in the Mytilus edulis species complex but also greater than the distance observed in Musculista senhousia, the only other DUI-positive member of the Mytilidae family for which both complete mitochondrial genomes were published to date. One additional, long ORF (open reading frame) is present exclusively in the maternal mitogenome of P. purpuratus. This ORF evolves under purifying selection, and will likely be a target for future DUI research.
Collapse
Affiliation(s)
- Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Marek Lubośny
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Aleksandra Przyłucka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Karin Gérard
- Centro de Investigacion Gaia-Antartica, Departamento de Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas, Chile
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
11
|
Romero MR, Pérez-Figueroa A, Carrera M, Swanson WJ, Skibinski DOF, Diz AP. RNA-seq coupled to proteomic analysis reveals high sperm proteome variation between two closely related marine mussel species. J Proteomics 2018; 192:169-187. [PMID: 30189323 DOI: 10.1016/j.jprot.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/10/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Speciation mechanisms in marine organisms have attracted great interest because of the apparent lack of substantial barriers to genetic exchange in marine ecosystems. Marine mussels of the Mytilus edulis species complex provide a good model to study mechanisms underlying species formation. They hybridise extensively at many localities and both pre- and postzygotic isolating mechanisms may be operating. Mussels have external fertilisation and sperm cells should show specific adaptations for survival and successful fertilisation. Sperm thus represent key targets in investigations of the molecular mechanisms underlying reproductive isolation. We undertook a deep transcriptome sequencing (RNA-seq) of mature male gonads and a 2DE/MS-based proteome analysis of sperm from Mytilus edulis and M. galloprovincialis raised in a common environment. We provide evidence of extensive expression differences between the two mussel species, and general agreement between the transcriptomic and proteomic results in the direction of expression differences between species. Differential expression is marked for mitochondrial genes and for those involved in spermatogenesis, sperm motility, sperm-egg interactions, the acrosome reaction, sperm capacitation, ATP reserves and ROS production. Proteins and their corresponding genes might thus be good targets in further genomic analysis of reproductive barriers between these closely related species. SIGNIFICANCE: Model systems for the study of fertilization include marine invertebrates with external fertilisation, such as abalones, sea urchins and mussels, because of the ease with which large quantities of gametes released into seawater can be collected after induced spawning. Unlike abalones and sea urchins, hybridisation has been reported between mussels of different Mytilus spp., which thus makes them very appealing for the study of reproductive isolation at both pre- and postzygotic levels. There is a lack of empirical proteomic studies on sperm samples comparing different Mytilus species, which could help to advance this study. A comparative analysis of sperm proteomes across different taxa may provide important insights into the fundamental molecular processes and mechanisms involved in reproductive isolation. It might also contribute to a better understanding of sperm function and of the adaptive evolution of sperm proteins in different taxa. There is now growing evidence from genomics studies that multiple protein complexes and many individual proteins might have important functions in sperm biology and the fertilisation process. From an applied perspective, the identification of sperm-specific proteins could also contribute to the improved understanding of fertility problems and as targets for fertility control.
Collapse
Affiliation(s)
- Mónica R Romero
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain
| | - Andrés Pérez-Figueroa
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | | | - Willie J Swanson
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, USA
| | - David O F Skibinski
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain.
| |
Collapse
|