1
|
Ma Z, Liu F, Tsui CKM, Cai L. Phylogenomics and adaptive evolution of the Colletotrichum gloeosporioides species complex. Commun Biol 2025; 8:593. [PMID: 40204844 PMCID: PMC11982366 DOI: 10.1038/s42003-025-08024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
The Colletotrichum gloeosporioides species complex (CGSC) is one of the most devastating fungal phytopathogens, and is composed of three main clades: Kahawae, Musae, and Theobromicola. Despite the diversity of CGSC, there is limited understanding on their evolutionary mechanisms. By analysing 49 newly assembled genomes, we found that the expansion of transposable elements, especially long terminal repeat retrotransposons, facilitates the expansion of genome size and genetic variation. In-depth analyses suggested that an intra-chromosomal inversion may have been the driving force behind the divergence of Kahawae clade from its ancestor. Within the Kahawae clade, the narrow-hosted quarantine species C. kahawae has undergone extensive chromosomal rearrangements mediated by repetitive sequences, generating highly dynamic lineage-specific genomic regions compared to the closely related broad-hosted species C. cigarro. The findings of this study highlight the role of chromosomal rearrangements in promoting genetic diversification and host adaptation, and provide new perspectives for understanding the evolution of phytopathogenic fungi.
Collapse
Affiliation(s)
- Ziying Ma
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Fang Liu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Clement K M Tsui
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Infectious Disease Research Laboratory, National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lei Cai
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
2
|
Darma R, Shang Z, Bracegirdle J, Moggach S, McDonald MC, Piggott AM, Solomon PS, Chooi YH. Transcriptomics-Driven Discovery of New Meroterpenoid Rhynchospenes Involved in the Virulence of the Barley Pathogen Rhynchosporium commune. ACS Chem Biol 2025; 20:421-431. [PMID: 39937077 DOI: 10.1021/acschembio.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Rhynchosporium commune, the causal agent of barley scald disease, poses a major threat to global barley production. Despite its significant impact, the molecular mechanisms underlying R. commune's infection process remain largely unexplored. To address this, we analyzed the differential gene expression data of R. commune WAI453 cultivated under both in planta and in vitro conditions, aiming to identify secondary metabolite biosynthetic gene clusters that are potentially involved in the pathogenicity of R. commune. Our analysis revealed increased expression of a polyketide-terpene gene cluster (the rhy cluster), containing a specific myeloblastosis (MYB)-type transcription factor gene rhyM, during in planta growth. Overexpression of rhyM in an axenic culture activated the expression of the rhy cluster, resulting in the production of a series of new meroterpenoid metabolites, which we named rhynchospenes A-E. Their structures were elucidated through a combination of spectroscopic methods and single crystal X-ray diffraction analysis. Infiltration of rhynchospenes into barley leaves resulted in strong necrosis, with rhynchospene B demonstrating the highest phytotoxicity and causing necrosis at a minimum concentration of 50 ppm. Silencing rhyM in R. commune WAI453 confirmed the role of rhynchospenes as virulence factors in barley disease. The resulting mutant showed significantly reduced expression of the rhy cluster in planta compared to the wild-type strain and decreased virulence in seedling pathogenicity assays on barley. The characterization of the rhy cluster and rhynchospenes provided insights into the role of secondary metabolites in R. commune virulence and barley scald disease development. The study also highlights the potential use of MYB-type transcription factor overexpression in uncovering cryptic SMs involved in pathogenicity and host adaptations.
Collapse
Affiliation(s)
- Reynaldi Darma
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K
| | - Zhuo Shang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Joe Bracegirdle
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Stephen Moggach
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Megan C McDonald
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Newfeld J, Ujimatsu R, Hiruma K. Uncovering the Host Range-Lifestyle Relationship in the Endophytic and Anthracnose Pathogenic Genus Colletotrichum. Microorganisms 2025; 13:428. [PMID: 40005793 PMCID: PMC11858739 DOI: 10.3390/microorganisms13020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Colletotrichum includes agriculturally and scientifically important pathogens that infect numerous plants. They can also adopt an endophytic lifestyle, refraining from causing disease and/or even promoting plant growth when inoculated on a non-susceptible host. In this manner, the host range of a Colletotrichum fungus can shift, depending on whether it exhibits endophytic or pathogenic lifestyles. Some fungi, such as Colletotrichum tofieldiae, can even shift between pathogenicity and endophytism within the same host depending on the environmental conditions. Here, we aim to disentangle the relationship between lifestyle and host range in Colletotrichum. Specifically, we aim to demonstrate that lifestyle is dependent on the host colonized in many Colletotrichum fungi. We discuss the ways in which pathogenic Colletotrichum species may act endophytically on alternative hosts, how comparative genomics has uncovered candidate molecules (namely effectors, CAZymes, and secondary metabolites) underlying fungal lifestyle, and the merits of using endophytic fungi alongside pathogenic fungi in research, which facilitates the use of reverse genetics to uncover molecular determinants of lifestyle. In particular, we reference the Arabidopsis thaliana-Colletotrichum tofieldiae study system as a model for elucidating the dual roles of plant-fungus interactions, both endophytic and pathogenic, through integrative omics approaches and reverse genetics. This is because C. tofieldiae contains closely related pathogens and endophytes, making it an ideal model for identifying candidate determinants of lifestyle. This approach could identify key molecular targets for effective pathogen management in agriculture. Lastly, we propose a model in which pathogenic lifestyle occupies a different host range than the endophytic lifestyle. This will enhance our understanding of pathogenicity and endophytism in a globally significant fungal genus and lay the groundwork for future research examining molecular determinants of lifestyle in plant-associated fungi.
Collapse
Affiliation(s)
| | | | - Kei Hiruma
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (J.N.); (R.U.)
| |
Collapse
|
4
|
Kaur A, Russell I, Liu R, Holland A, Bhandari R, Potnis N. Navigating Host Immunity and Concurrent Ozone Stress: Strain-Resolved Metagenomics Reveals Maintenance of Intraspecific Diversity and Genetic Variation in Xanthomonas on Pepper. Evol Appl 2025; 18:e70069. [PMID: 39816160 PMCID: PMC11732741 DOI: 10.1111/eva.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
The evolving threat of new pathogen variants in the face of global environmental changes poses a risk to a sustainable crop production. Predicting and responding to how climate change affects plant-pathosystems is challenging, as environment affects host-pathogen interactions from molecular to the community level, and with eco-evolutionary feedbacks at play. To address this knowledge gap, we studied short-term within-host eco-evolutionary changes in the pathogen, Xanthomonas perforans, on resistant and susceptible pepper in the open-top chambers (OTCs) under elevated Ozone (O3) conditions in a single growing season. We observed increased disease severity with greater variance on the resistant cultivar under elevated O3, yet no apparent change on the susceptible cultivar. Despite the dominance of a single pathogen genotype on the susceptible cultivar, the resistant cultivar supported a heterogeneous pathogen population. Altered O3 levels led to a strain turnover, with a relatively greater gene flux on the resistant cultivar. Both standing genetic variation and de novo parallel mutations contributed toward evolutionary modifications during adaptation onto the resistant cultivar. The presence of elevated O3, however, led to a relatively higher genetic polymorphism, with random and transient mutations. Population heterogeneity along with genetic variation, and the promotion of interdependency are mechanisms by which pathogen responds to stressors. While parallel mutations may provide clues to predicting long-term pathogen evolution and adaptive potential. And, a high proportion of transient mutations suggest less predictable pathogen evolution under climatic alterations. This knowledge is relevant as we study the risk of pathogen emergence and the mechanisms and constraints underlying long-term pathogen adaptation under climatic shifts.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Ivory Russell
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Ranlin Liu
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Auston Holland
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Rishi Bhandari
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Neha Potnis
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
5
|
Sigova EA, Dvorianinova EM, Arkhipov AA, Rozhmina TA, Kudryavtseva LP, Kaplun AM, Bodrov YV, Pavlova VA, Borkhert EV, Zhernova DA, Pushkova EN, Melnikova NV, Dmitriev AA. Nanopore Data-Driven T2T Genome Assemblies of Colletotrichum lini Strains. J Fungi (Basel) 2024; 10:874. [PMID: 39728370 DOI: 10.3390/jof10120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Colletotrichum lini is a pathogenic fungus that infects flax and causes significant yield losses. In this study, we assembled the genomes of four highly virulent C. lini strains using the Oxford Nanopore Technologies (ONT, R10.4.1 flow cells) and Illumina platforms. The performance of two tools developed for telomere-to-telomere (T2T) genome assembly was compared: Verkko and Hifiasm. Prior to the assembly, ONT reads were corrected using the HERRO algorithm. Verkko generated genome assemblies of high completeness but low contiguity, while Hifiasm allowed the generation of T2T assemblies. Despite significantly different genome coverage with ONT data (25-100×), four assemblies of equal contiguity were obtained: 53.6-54.7 Mb, ten core chromosomes, and two or three accessory chromosomes. A comparative analysis of different polishing tools showed that at a certain genome coverage with the corrected ONT data (≥35×), the additional polishing of the assembly did not improve its accuracy, even with the Illumina data. An analysis of the genome structures of the four C. lini strains revealed a high similarity between the core chromosomes. Thus, our approach enabled assembling T2T Colletotrichum genomes only from the ONT data obtained using R10.4.1 flow cells and may be promising for other fungal genera. These assemblies will allow the accurate identification of strain-specific differences at the chromosome level and will aid in the development of effective strategies to protect flax from anthracnose.
Collapse
Affiliation(s)
- Elizaveta A Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Alexander A Arkhipov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | | | - Antoniy M Kaplun
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Yakov V Bodrov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Moscow 119571, Russia
| | - Valeria A Pavlova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Moscow 119571, Russia
| | - Elena V Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daiana A Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena N Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
6
|
Alkemade JA, Hohmann P, Messmer MM, Barraclough TG. Comparative Genomics Reveals Sources of Genetic Variability in the Asexual Fungal Plant Pathogen Colletotrichum lupini. MOLECULAR PLANT PATHOLOGY 2024; 25:e70039. [PMID: 39673077 PMCID: PMC11645255 DOI: 10.1111/mpp.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Fungal plant pathogens cause major crop losses worldwide, with many featuring compartmentalised genomes that include both core and accessory regions, which are believed to drive adaptation. The highly host-specific fungus Colletotrichum lupini greatly impacts lupin (Lupinus spp.) cultivation. This pathogen is part of clade 1 of the C. acutatum species complex and comprises four genetically uniform, presumably clonal, lineages (I-IV). Despite this, variation in virulence and morphology has been observed within these lineages. To investigate the potential sources of genetic variability in this asexual fungus, we compared the genomes of 16 C. lupini strains and 17 related Colletotrichum species. Phylogenomics confirmed the presence of four distinct lineages, but further examination based on genome size, gene content, transposable elements (TEs), and deletions revealed that lineage II could be split into two groups, II-A and II-B. TE content varied between lineages and correlated strongly with genome size variation, supporting a role for TEs in genome expansion in this species. Pangenome analysis revealed a highly variable accessory genome, including a minichromosome present in lineages II, III, and IV, but absent in lineage I. Accessory genes and effectors appeared to cluster in proximity to TEs. Presence/absence variation of putative effectors was lineage-specific, suggesting that these genes play a crucial role in determining host range. Notably, no effectors were found on the TE-rich minichromosome. Our findings shed light on the potential mechanisms generating genetic diversity in this asexual fungal pathogen that could aid future disease management.
Collapse
Affiliation(s)
- Joris A. Alkemade
- Department of BiologyUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human ScienceMagdalen CollegeOxfordUK
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
| | - Pierre Hohmann
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
| | - Monika M. Messmer
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
| | - Timothy G. Barraclough
- Department of BiologyUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human ScienceMagdalen CollegeOxfordUK
| |
Collapse
|
7
|
Morelos-Martínez MI, Cano-Camacho H, Díaz-Tapia KM, Simpson J, López-Romero E, Zavala-Páramo MG. Comparative Genomic Analyses of Colletotrichum lindemuthianum Pathotypes with Different Virulence Levels and Lifestyles. J Fungi (Basel) 2024; 10:651. [PMID: 39330411 PMCID: PMC11432805 DOI: 10.3390/jof10090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Colletotrichum lindemuthianum is the most frequent pathogenic fungus of the common bean Phaseolus vulgaris. This filamentous fungus employs a hemibiotrophic nutrition/infection strategy, which is characteristic of many Colletotrichum species. Due to host-pathogen coevolution, C. lindemuthianum includes pathotypes with a diversity of virulence against differential common bean varieties. In this study, we performed comparative genomic analyses on three pathotypes with different virulence levels and a non-pathogenic pathotype, isolated from different geographical areas in Mexico. Our results revealed large genomes with high transposable element contents that have undergone expansions, generating intraspecific diversity. All the pathotypes exhibited a similar number of clusters of orthologous genes (COGs) and Gene Ontology (GO) terms. TFomes contain families that are typical in fungal genomes; however, they show different contents between pathotypes, mainly in transcription factors with the fungal-specific TF and Zn2Cys6 domains. Peptidase families mainly contain abundant serine peptidases, metallopeptidases, and cysteine peptidases. In the secretomes, the number of genes differed between the pathotypes, with a high percentage of candidate effectors. Both the virulence gene and CAZyme gene content for each pathotype was abundant and diverse, and the latter was enriched in hemicellulolytic enzymes. We provide new insights into the nature of intraspecific diversity among C. lindemuthianum pathotypes and the origin of their ability to rapidly adapt to genetic changes in its host and environmental conditions.
Collapse
Affiliation(s)
- Ma Irene Morelos-Martínez
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico
| | - Karla Morelia Díaz-Tapia
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico
| | - June Simpson
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36821, Guanajuato, Mexico
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta SN, Guanajuato 36030, Guanajuato, Mexico
| | - María Guadalupe Zavala-Páramo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58000, Michoacán, Mexico
| |
Collapse
|
8
|
Dou M, Li Y, Hao Y, Zhang K, Yin X, Feng Z, Xu X, Zhang Q, Bao W, Chen X, Liu G, Wang Y, Tian L, Xu Y. Histological and transcriptomic insights into the interaction between grapevine and Colletotrichum viniferum. FRONTIERS IN PLANT SCIENCE 2024; 15:1446288. [PMID: 39220012 PMCID: PMC11362058 DOI: 10.3389/fpls.2024.1446288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Introduction Grape is of high economic value. Colletotrichum viniferum, a pathogen causing grape ripe rot and leaf spot, threatens grape production and quality. Methods This study investigates the interplay between C. viniferum by Cytological study and transcriptome sequencing. Results Different grapevine germplasms, V. vinifera cv. Thompson Seedless (TS), V. labrusca accession Beaumont (B) and V. piasezkii Liuba-8 (LB-8) were classified as highly sensitive, moderate resistant and resistant to C. viniferum, respectively. Cytological study analysis reveals distinct differences between susceptible and resistant grapes post-inoculation, including faster pathogen development, longer germination tubes, normal appressoria of C. viniferum and absence of white secretions in the susceptible host grapevine. To understand the pathogenic mechanisms of C. viniferum, transcriptome sequencing was performed on the susceptible grapevine "TS" identifying 236 differentially expressed C. viniferum genes. These included 56 effectors, 36 carbohydrate genes, 5 P450 genes, and 10 genes involved in secondary metabolism. Fungal effectors are known as pivotal pathogenic factors that modulate plant immunity and affect disease development. Agrobacterium-mediated transient transformation in Nicotiana benthamiana screened 10 effectors (CvA13877, CvA01508, CvA05621, CvA00229, CvA07043, CvA05569, CvA12648, CvA02698, CvA14071 and CvA10999) that inhibited INF1 (infestans 1, P. infestans PAMP elicitor) induced cell death and 2 effectors (CvA02641 and CvA11478) that induced cell death. Additionally, transcriptome analysis of "TS" in response to C. viniferum identified differentially expressed grape genes related to plant hormone signaling (TGA, PR1, ETR, and ERF1/2), resveratrol biosynthesis genes (STS), phenylpropanoid biosynthesis genes (PAL and COMT), photosynthetic antenna proteins (Lhca and Lhcb), transcription factors (WRKY, NAC, MYB, ERF, GATA, bHLH and SBP), ROS (reactive oxygen species) clearance genes (CAT, GSH, POD and SOD), and disease-related genes (LRR, RPS2 and GST). Discussion This study highlights the potential functional diversity of C. viniferum effectors. Our findings lay a foundation for further research of infection mechanisms in Colletotrichum and identification of disease response targets in grape.
Collapse
Affiliation(s)
- Mengru Dou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yuhang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yu Hao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kangzhuang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Zinuo Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xi Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Qi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Wenwu Bao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Ling Tian
- School of Management, Shenzhen Polytechnic University, Shenzhen, Guangdong, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Lapalu N, Simon A, Lu A, Plaumann PL, Amselem J, Pigné S, Auger A, Koch C, Dallery JF, O'Connell RJ. Complete genome of the Medicago anthracnose fungus, Colletotrichum destructivum, reveals a mini-chromosome-like region within a core chromosome. Microb Genom 2024; 10:001283. [PMID: 39166978 PMCID: PMC11338638 DOI: 10.1099/mgen.0.001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Colletotrichum destructivum (Cd) is a phytopathogenic fungus causing significant economic losses on forage legume crops (Medicago and Trifolium species) worldwide. To gain insights into the genetic basis of fungal virulence and host specificity, we sequenced the genome of an isolate from Medicago sativa using long-read (PacBio) technology. The resulting genome assembly has a total length of 51.7 Mb and comprises ten core chromosomes and two accessory chromosomes, all of which were sequenced from telomere to telomere. A total of 15, 631 gene models were predicted, including genes encoding potentially pathogenicity-related proteins such as candidate-secreted effectors (484), secondary metabolism key enzymes (110) and carbohydrate-active enzymes (619). Synteny analysis revealed extensive structural rearrangements in the genome of Cd relative to the closely related Brassicaceae pathogen, Colletotrichum higginsianum. In addition, a 1.2 Mb species-specific region was detected within the largest core chromosome of Cd that has all the characteristics of fungal accessory chromosomes (transposon-rich, gene-poor, distinct codon usage), providing evidence for exchange between these two genomic compartments. This region was also unique in having undergone extensive intra-chromosomal segmental duplications. Our findings provide insights into the evolution of accessory regions and possible mechanisms for generating genetic diversity in this asexual fungal pathogen.
Collapse
Affiliation(s)
- Nicolas Lapalu
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Adeline Simon
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Antoine Lu
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Peter-Louis Plaumann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Joëlle Amselem
- Université Paris-Saclay, INRAE, URGI, 78000 Versailles, France
| | - Sandrine Pigné
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Annie Auger
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Christian Koch
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | | | |
Collapse
|
10
|
Kumakura N, Singkaravanit-Ogawa S, Gan P, Tsushima A, Ishihama N, Watanabe S, Seo M, Iwasaki S, Narusaka M, Narusaka Y, Takano Y, Shirasu K. Guanosine-specific single-stranded ribonuclease effectors of a phytopathogenic fungus potentiate host immune responses. THE NEW PHYTOLOGIST 2024; 242:170-191. [PMID: 38348532 DOI: 10.1111/nph.19582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/06/2024] [Indexed: 03/08/2024]
Abstract
Plants activate immunity upon recognition of pathogen-associated molecular patterns. Although phytopathogens have evolved a set of effector proteins to counteract plant immunity, some effectors are perceived by hosts and induce immune responses. Here, we show that two secreted ribonuclease effectors, SRN1 and SRN2, encoded in a phytopathogenic fungus, Colletotrichum orbiculare, induce cell death in a signal peptide- and catalytic residue-dependent manner, when transiently expressed in Nicotiana benthamiana. The pervasive presence of SRN genes across Colletotrichum species suggested the conserved roles. Using a transient gene expression system in cucumber (Cucumis sativus), an original host of C. orbiculare, we show that SRN1 and SRN2 potentiate host pattern-triggered immunity responses. Consistent with this, C. orbiculare SRN1 and SRN2 deletion mutants exhibited increased virulence on the host. In vitro analysis revealed that SRN1 specifically cleaves single-stranded RNAs at guanosine, leaving a 3'-end phosphate. Importantly, the potentiation of C. sativus responses by SRN1 and SRN2, present in the apoplast, depends on ribonuclease catalytic residues. We propose that the pathogen-derived apoplastic guanosine-specific single-stranded endoribonucleases lead to immunity potentiation in plants.
Collapse
Affiliation(s)
- Naoyoshi Kumakura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | | - Pamela Gan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Ayako Tsushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nobuaki Ishihama
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nakagami, Okinawa, 903-0213, Japan
| | - Shintaro Iwasaki
- RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Mari Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Kaga, Okayama, 716-1241, Japan
| | - Yoshihiro Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Kaga, Okayama, 716-1241, Japan
| | - Yoshitaka Takano
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Zaccaron AZ, Stergiopoulos I. Analysis of five near-complete genome assemblies of the tomato pathogen Cladosporium fulvum uncovers additional accessory chromosomes and structural variations induced by transposable elements effecting the loss of avirulence genes. BMC Biol 2024; 22:25. [PMID: 38281938 PMCID: PMC10823647 DOI: 10.1186/s12915-024-01818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Fungal plant pathogens have dynamic genomes that allow them to rapidly adapt to adverse conditions and overcome host resistance. One way by which this dynamic genome plasticity is expressed is through effector gene loss, which enables plant pathogens to overcome recognition by cognate resistance genes in the host. However, the exact nature of these loses remains elusive in many fungi. This includes the tomato pathogen Cladosporium fulvum, which is the first fungal plant pathogen from which avirulence (Avr) genes were ever cloned and in which loss of Avr genes is often reported as a means of overcoming recognition by cognate tomato Cf resistance genes. A recent near-complete reference genome assembly of C. fulvum isolate Race 5 revealed a compartmentalized genome architecture and the presence of an accessory chromosome, thereby creating a basis for studying genome plasticity in fungal plant pathogens and its impact on avirulence genes. RESULTS Here, we obtained near-complete genome assemblies of four additional C. fulvum isolates. The genome assemblies had similar sizes (66.96 to 67.78 Mb), number of predicted genes (14,895 to 14,981), and estimated completeness (98.8 to 98.9%). Comparative analysis that included the genome of isolate Race 5 revealed high levels of synteny and colinearity, which extended to the density and distribution of repetitive elements and of repeat-induced point (RIP) mutations across homologous chromosomes. Nonetheless, structural variations, likely mediated by transposable elements and effecting the deletion of the avirulence genes Avr4E, Avr5, and Avr9, were also identified. The isolates further shared a core set of 13 chromosomes, but two accessory chromosomes were identified as well. Accessory chromosomes were significantly smaller in size, and one carried pseudogenized copies of two effector genes. Whole-genome alignments further revealed genomic islands of near-zero nucleotide diversity interspersed with islands of high nucleotide diversity that co-localized with repeat-rich regions. These regions were likely generated by RIP, which generally asymmetrically affected the genome of C. fulvum. CONCLUSIONS Our results reveal new evolutionary aspects of the C. fulvum genome and provide new insights on the importance of genomic structural variations in overcoming host resistance in fungal plant pathogens.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616-8751, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616-8751, USA.
| |
Collapse
|
12
|
Yonehara K, Kumakura N, Motoyama T, Ishihama N, Dallery J, O'Connell R, Shirasu K. Efficient multiple gene knockout in Colletotrichum higginsianum via CRISPR/Cas9 ribonucleoprotein and URA3-based marker recycling. MOLECULAR PLANT PATHOLOGY 2023; 24:1451-1464. [PMID: 37522511 PMCID: PMC10576178 DOI: 10.1111/mpp.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Colletotrichum higginsianum is a hemibiotrophic pathogen that causes anthracnose disease on crucifer hosts, including Arabidopsis thaliana. Despite the availability of genomic and transcriptomic information and the ability to transform both organisms, identifying C. higginsianum genes involved in virulence has been challenging due to recalcitrance to gene targeting and redundancy of virulence factors. To overcome these obstacles, we developed an efficient method for multiple gene disruption in C. higginsianum by combining CRISPR/Cas9 and a URA3-based marker recycling system. Our method significantly increased the efficiency of gene knockout via homologous recombination by introducing genomic DNA double-strand breaks. We demonstrated the applicability of the URA3-based marker recycling system for multiple gene targeting in the same strain. Using our technology, we successfully targeted two melanin biosynthesis genes, SCD1 and PKS1, which resulted in deficiency in melanization and loss of pathogenicity in the mutants. Our findings demonstrate the effectiveness of our methods in analysing virulence factors in C. higginsianum, thus accelerating research on plant-fungus interactions.
Collapse
Affiliation(s)
- Katsuma Yonehara
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| | | | | | | | | | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
13
|
Wang H, Huang R, Ren J, Tang L, Huang S, Chen X, Fan J, Li B, Wang Q, Hsiang T, Liu H, Li Q. The evolution of mini-chromosomes in the fungal genus Colletotrichum. mBio 2023; 14:e0062923. [PMID: 37283539 PMCID: PMC10470602 DOI: 10.1128/mbio.00629-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 06/08/2023] Open
Abstract
Anthracnose diseases caused by Colletotrichum species are among the most common fungal diseases. These symptoms typically manifest as dark, sunken lesions on leaves, stems, and fruit. In China, mango anthracnose seriously affects fruit yield and quality. Genome sequencing of several species shows the presence of mini-chromosomes. These are thought to contribute to virulence, but their formation and activity remain to be fully elucidated. Here, we assembled 17 Colletotrichum genomes (16 isolated from mango plus one from persimmon) through PacBio long-read sequencing. Half of the assembled scaffolds had telomeric repeats at both ends indicating full-length chromosomes. Based on comparative genomics analysis at interspecies and intraspecies levels, we identified extensive chromosomal rearrangements events. We analyzed mini-chromosomes of Colletotrichum spp. and found large variation among close relatives. In C. fructicola, homology between core chromosomes and mini-chromosomes suggested that some mini-chromosomes were generated by recombination of core chromosomes. In C. musae GZ23-3, we found 26 horizontally transferred genes arranged in clusters on mini-chromosomes. In C. asianum FJ11-1, several potential pathogenesis-related genes on mini-chromosomes were upregulated, especially in strains with highly pathogenic phenotypes. Mutants of these upregulated genes showed obvious defects in virulence. Our findings provide insights into the evolution and potential relationships to virulence associated with mini-chromosomes. IMPORTANCE Colletotrichum is a cosmopolitan fungal genus that seriously affects fruit yield and quality of many plant species. Mini-chromosomes have been found to be related to virulence in Colletotrichum. Further examination of mini-chromosomes can help us elucidate some pathogenic mechanisms of Colletotrichum. In this study, we generated novel assemblies of several Colletotrichum strains. Comparative genomic analyses within and between Colletotrichum species were conducted. We then identified mini-chromosomes in our sequenced strains systematically. The characteristics and generation of mini-chromosomes were investigated. Transcriptome analysis and gene knockout revealed pathogenesis-related genes located on mini-chromosomes of C. asianum FJ11-1. This study represents the most comprehensive investigation of chromosome evolution and potential pathogenicity of mini-chromosomes in the Colletotrichum genus.
Collapse
Affiliation(s)
- Haoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rong Huang
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, Guangxi, China
| | - Jingyi Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lihua Tang
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, Guangxi, China
| | - Suiping Huang
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, Guangxi, China
| | - Xiaolin Chen
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, Guangxi, China
| | - Jun Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Bintao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qili Li
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, Guangxi, China
| |
Collapse
|
14
|
Becerra S, Baroncelli R, Boufleur TR, Sukno SA, Thon MR. Chromosome-level analysis of the Colletotrichum graminicola genome reveals the unique characteristics of core and minichromosomes. Front Microbiol 2023; 14:1129319. [PMID: 37032845 PMCID: PMC10076810 DOI: 10.3389/fmicb.2023.1129319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
The fungal pathogen Colletotrichum graminicola causes the anthracnose of maize (Zea mays) and is responsible for significant yield losses worldwide. The genome of C. graminicola was sequenced in 2012 using Sanger sequencing, 454 pyrosequencing, and an optical map to obtain an assembly of 13 pseudochromosomes. We re-sequenced the genome using a combination of short-read (Illumina) and long-read (PacBio) technologies to obtain a chromosome-level assembly. The new version of the genome sequence has 13 chromosomes with a total length of 57.43 Mb. We detected 66 (23.62 Mb) structural rearrangements in the new assembly with respect to the previous version, consisting of 61 (21.98 Mb) translocations, 1 (1.41 Mb) inversion, and 4 (221 Kb) duplications. We annotated the genome and obtained 15,118 predicted genes and 3,614 new gene models compared to the previous version of the assembly. We show that 25.88% of the new assembly is composed of repetitive DNA elements (13.68% more than the previous assembly version), which are mostly found in gene-sparse regions. We describe genomic compartmentalization consisting of repeat-rich and gene-poor regions vs. repeat-poor and gene-rich regions. A total of 1,140 secreted proteins were found mainly in repeat-rich regions. We also found that ~75% of the three smallest chromosomes (minichromosomes, between 730 and 551 Kb) are strongly affected by repeat-induced point mutation (RIP) compared with 28% of the larger chromosomes. The gene content of the minichromosomes (MCs) comprises 121 genes, of which 83.6% are hypothetical proteins with no predicted function, while the mean percentage of Chr1-Chr10 is 36.5%. No predicted secreted proteins are present in the MCs. Interestingly, only 2% of the genes in Chr11 have homologs in other strains of C. graminicola, while Chr12 and 13 have 58 and 57%, respectively, raising the question as to whether Chrs12 and 13 are dispensable. The core chromosomes (Chr1-Chr10) are very different with respect to the MCs (Chr11-Chr13) in terms of the content and sequence features. We hypothesize that the higher density of repetitive elements and RIPs in the MCs may be linked to the adaptation and/or host co-evolution of this pathogenic fungus.
Collapse
Affiliation(s)
- Sioly Becerra
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Thaís R. Boufleur
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Serenella A. Sukno
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
| | - Michael R. Thon
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
| |
Collapse
|
15
|
Lu X, Miao J, Shen D, Dou D. Proteinaceous Effector Discovery and Characterization in Plant Pathogenic Colletotrichum Fungi. Front Microbiol 2022; 13:914035. [PMID: 35694285 PMCID: PMC9184758 DOI: 10.3389/fmicb.2022.914035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Anthracnose caused by plant pathogenic Colletotrichum fungi results in large economic losses in field crop production worldwide. To aid the establishment of plant host infection, Colletotrichum pathogens secrete numerous effector proteins either in apoplastic space or inside of host cells for effective colonization. Understanding these effector repertoires is critical for developing new strategies for resistance breeding and disease management. With the advance of genomics and bioinformatics tools, a large repertoire of putative effectors has been identified in Colletotrichum genomes, and the biological functions and molecular mechanisms of some studied effectors have been summarized. Here, we review recent advances in genomic identification, understanding of evolutional characteristics, transcriptional profiling, and functional characterization of Colletotrichum effectors. We also offer a perspective on future research.
Collapse
Affiliation(s)
| | | | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | |
Collapse
|
16
|
Zaccaron AZ, Chen LH, Samaras A, Stergiopoulos I. A chromosome-scale genome assembly of the tomato pathogen Cladosporium fulvum reveals a compartmentalized genome architecture and the presence of a dispensable chromosome. Microb Genom 2022; 8:000819. [PMID: 35471194 PMCID: PMC9453070 DOI: 10.1099/mgen.0.000819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
Cladosporium fulvum is a fungal pathogen that causes leaf mould of tomato. The reference genome of this pathogen was released in 2012 but its high repetitive DNA content prevented a contiguous assembly and further prohibited the analysis of its genome architecture. In this study, we combined third generation sequencing technology with the Hi-C chromatin conformation capture technique, to produce a high-quality and near complete genome assembly and gene annotation of a Race 5 isolate of C. fulvum. The resulting genome assembly contained 67.17 Mb organized into 14 chromosomes (Chr1-to-Chr14), all of which were assembled telomere-to-telomere. The smallest of the chromosomes, Chr14, is only 460 kb in size and contains 25 genes that all encode hypothetical proteins. Notably, PCR assays revealed that Chr14 was absent in 19 out of 24 isolates of a world-wide collection of C. fulvum, indicating that Chr14 is dispensable. Thus, C. fulvum is currently the second species of Capnodiales shown to harbour dispensable chromosomes. The genome of C. fulvum Race 5 is 49.7 % repetitive and contains 14 690 predicted genes with an estimated completeness of 98.9%, currently one of the highest among the Capnodiales. Genome structure analysis revealed a compartmentalized architecture composed of gene-dense and repeat-poor regions interspersed with gene-sparse and repeat-rich regions. Nearly 39.2 % of the C. fulvum Race 5 genome is affected by Repeat-Induced Point (RIP) mutations and evidence of RIP leakage toward non-repetitive regions was observed in all chromosomes, indicating the RIP plays an important role in the evolution of this pathogen. Finally, 345 genes encoding candidate effectors were identified in C. fulvum Race 5, with a significant enrichment of their location in gene-sparse regions, in accordance with the 'two-speed genome' model of evolution. Overall, the new reference genome of C. fulvum presents several notable features and is a valuable resource for studies in plant pathogens.
Collapse
Affiliation(s)
- Alex Z. Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, USA
| | - Li-Hung Chen
- Department of Plant Pathology, University of California Davis, Davis, USA
- Present address: Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Anastasios Samaras
- Department of Plant Pathology, University of California Davis, Davis, USA
| | | |
Collapse
|
17
|
Sperschneider J, Dodds PN. EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:146-156. [PMID: 34698534 DOI: 10.1094/mpmi-08-21-0201-r] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many fungi and oomycete species are devasting plant pathogens. These eukaryotic filamentous pathogens secrete effector proteins to facilitate plant infection. Fungi and oomycete pathogens have diverse infection strategies and their effectors generally do not share sequence homology. However, they occupy similar host environments, either the plant apoplast or plant cytoplasm, and, therefore, may share some unifying properties based on the requirements of these host compartments. Here, we exploit these biological signals and present the first classifier (EffectorP 3.0) that uses two machine-learning models: one trained on apoplastic effectors and one trained on cytoplasmic effectors. EffectorP 3.0 accurately predicts known apoplastic and cytoplasmic effectors in fungal and oomycete secretomes with low estimated false-positive rates of 3 and 8%, respectively. Cytoplasmic effectors have a higher proportion of positively charged amino acids, whereas apoplastic effectors are enriched for cysteine residues. The combination of fungal and oomycete effectors in training leads to a higher number of predicted cytoplasmic effectors in biotrophic fungi. EffectorP 3.0 expands predicted effector repertoires beyond small, cysteine-rich secreted proteins in fungi and RxLR-motif containing secreted proteins in oomycetes. We show that signal peptide prediction is essential for accurate effector prediction, because EffectorP 3.0 recognizes a cytoplasmic signal also in intracellular, nonsecreted proteins.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, Australia
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia
| |
Collapse
|
18
|
Hsieh DK, Chuang SC, Chen CY, Chao YT, Lu MYJ, Lee MH, Shih MC. Comparative Genomics of Three Colletotrichum scovillei Strains and Genetic Analysis Revealed Genes Involved in Fungal Growth and Virulence on Chili Pepper. Front Microbiol 2022; 13:818291. [PMID: 35154058 PMCID: PMC8828978 DOI: 10.3389/fmicb.2022.818291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Colletotrichum scovillei causes anthracnose of chili pepper in many countries. Three strains of this pathogen, Coll-524, Coll-153, and Coll-365, show varied virulence on chili pepper. Among the three strains, Coll-365 showed significant defects in growth and virulence. To decipher the genetic variations among these strains and identify genes contributing to growth and virulence, comparative genomic analysis and gene transformation to show gene function were applied in this study. Compared to Coll-524, Coll-153, and Coll-365 had numerous gene losses including 32 candidate effector genes that are mainly exist in acutatum species complex. A cluster of 14 genes in a 34-kb genomic fragment was lost in Coll-365. Through gene transformation, three genes in the 34-kb fragment were identified to have functions in growth and/or virulence of C. scovillei. CsPLAA encoding a phospholipase A2-activating protein enhanced the growth of Coll-365. A combination of CsPLAA with one transcription factor CsBZTF and one C6 zinc finger domain-containing protein CsCZCP was found to enhance the pathogenicity of Coll-365. Introduction of CsGIP, which encodes a hypothetical protein, into Coll-365 caused a reduction in the germination rate of Coll-365. In conclusion, the highest virulent strain Coll-524 had more genes and encoded more pathogenicity related proteins and transposable elements than the other two strains, which may contribute to the high virulence of Coll-524. In addition, the absence of the 34-kb fragment plays a critical role in the defects of growth and virulence of strain Coll-365.
Collapse
Affiliation(s)
- Dai-Keng Hsieh
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Cheng Chuang
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Chun-Yi Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Ting Chao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Miin-Huey Lee
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Miin-Huey Lee,
| | - Ming-Che Shih
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Ming-Che Shih,
| |
Collapse
|
19
|
Tsushima A, Narusaka M, Gan P, Kumakura N, Hiroyama R, Kato N, Takahashi S, Takano Y, Narusaka Y, Shirasu K. The Conserved Colletotrichum spp. Effector Candidate CEC3 Induces Nuclear Expansion and Cell Death in Plants. Front Microbiol 2021; 12:682155. [PMID: 34539598 PMCID: PMC8446390 DOI: 10.3389/fmicb.2021.682155] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 01/25/2023] Open
Abstract
Plant pathogens secrete proteins, known as effectors, that promote infection by manipulating host cells. Members of the phytopathogenic fungal genus Colletotrichum collectively have a broad host range and generally adopt a hemibiotrophic lifestyle that includes an initial biotrophic phase and a later necrotrophic phase. We hypothesized that Colletotrichum fungi use a set of conserved effectors during infection to support the two phases of their hemibiotrophic lifestyle. This study aimed to examine this hypothesis by identifying and characterizing conserved effectors among Colletotrichum fungi. Comparative genomic analyses using genomes of ascomycete fungi with different lifestyles identified seven effector candidates that are conserved across the genus Colletotrichum. Transient expression assays showed that one of these putative conserved effectors, CEC3, induces nuclear expansion and cell death in Nicotiana benthamiana, suggesting that CEC3 is involved in promoting host cell death during infection. Nuclear expansion and cell death induction were commonly observed in CEC3 homologs from four different Colletotrichum species that vary in host specificity. Thus, CEC3 proteins could represent a novel class of core effectors with functional conservation in the genus Colletotrichum.
Collapse
Affiliation(s)
- Ayako Tsushima
- Graduate School of Science, The University of Tokyo, Bunkyo, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Mari Narusaka
- Research Institute for Biological Sciences Okayama, Kaga-gun, Japan
| | - Pamela Gan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | | | - Ryoko Hiroyama
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Naoki Kato
- Center for Sustainable Resource Science, RIKEN, Wako, Japan
| | | | | | | | - Ken Shirasu
- Graduate School of Science, The University of Tokyo, Bunkyo, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| |
Collapse
|
20
|
Philippsen GS. Transposable Elements in the Genome of Human Parasite Schistosoma mansoni: A Review. Trop Med Infect Dis 2021; 6:tropicalmed6030126. [PMID: 34287380 PMCID: PMC8293314 DOI: 10.3390/tropicalmed6030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
Transposable elements (TEs) are DNA sequences able to transpose within the host genome and, consequently, influence the dynamics of evolution in the species. Among the possible effects, TEs insertions may alter the expression and coding patterns of genes, leading to genomic innovations. Gene-duplication events, resulting from DNA segmental duplication induced by TEs transposition, constitute another important mechanism that contributes to the plasticity of genomes. This review aims to cover the current knowledge regarding TEs in the genome of the parasite Schistosoma mansoni, an agent of schistosomiasis-a neglected tropical disease affecting at least 250 million people worldwide. In this context, the literature concerning TEs description and TEs impact on the genomic architecture for S. mansoni was revisited, displaying evidence of TEs influence on schistosome speciation-mediated by bursts of transposition-and in gene-duplication events related to schistosome-host coevolution processes, as well several instances of TEs contribution into the coding sequences of genes. These findings indicate the relevant role of TEs in the evolution of the S. mansoni genome.
Collapse
|
21
|
Sacristán S, Goss EM, Eves-van den Akker S. How Do Pathogens Evolve Novel Virulence Activities? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:576-586. [PMID: 33522842 DOI: 10.1094/mpmi-09-20-0258-ia] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.We consider the state of knowledge on pathogen evolution of novel virulence activities, broadly defined as anything that increases pathogen fitness with the consequence of causing disease in either the qualitative or quantitative senses, including adaptation of pathogens to host immunity and physiology, host species, genotypes, or tissues, or the environment. The evolution of novel virulence activities as an adaptive trait is based on the selection exerted by hosts on variants that have been generated de novo or arrived from elsewhere. In addition, the biotic and abiotic environment a pathogen experiences beyond the host may influence pathogen virulence activities. We consider host-pathogen evolution, host range expansion, and external factors that can mediate pathogen evolution. We then discuss the mechanisms by which pathogens generate and recombine the genetic variation that leads to novel virulence activities, including DNA point mutation, transposable element activity, gene duplication and neofunctionalization, and genetic exchange. In summary, if there is an (epi)genetic mechanism that can create variation in the genome, it will be used by pathogens to evolve virulence factors. Our knowledge of virulence evolution has been biased by pathogen evolution in response to major gene resistance, leaving other virulence activities underexplored. Understanding the key driving forces that give rise to novel virulence activities and the integration of evolutionary concepts and methods with mechanistic research on plant-microbe interactions can help inform crop protection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Erica M Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, U.S.A
| | | |
Collapse
|
22
|
Mironenko NV, Orina AS, Kovalenko NM. Nuclear Genetic Polymorphism in Pyrenophora tritici-repentis Strains for ToxA and ToxB Effector Genes. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Gan P, Hiroyama R, Tsushima A, Masuda S, Shibata A, Ueno A, Kumakura N, Narusaka M, Hoat TX, Narusaka Y, Takano Y, Shirasu K. Telomeres and a repeat-rich chromosome encode effector gene clusters in plant pathogenic Colletotrichum fungi. Environ Microbiol 2021; 23:6004-6018. [PMID: 33780109 DOI: 10.1111/1462-2920.15490] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Members of the Colletotrichum gloeosporioides species complex are causal agents of anthracnose in many commercially important plants. Closely related strains have different levels of pathogenicity on hosts despite their close phylogenetic relationship. To gain insight into the genetics underlying these differences, we generated and annotated whole-genome assemblies of multiple isolates of C. fructicola (Cf) and C. siamense (Cs), as well as three previously unsequenced species, C. aenigma (Ca), C. tropicale and C. viniferum with different pathogenicity on strawberry. Based on comparative genomics, we identified accessory regions with a high degree of conservation in strawberry-pathogenic Cf, Cs and Ca strains. These regions encode homologs of pathogenicity-related genes known as effectors, organized in syntenic gene clusters, with copy number variations in different strains of Cf, Cs and Ca. Analysis of highly contiguous assemblies of Cf, Cs and Ca revealed the association of related accessory effector gene clusters with telomeres and repeat-rich chromosomes and provided evidence of exchange between these two genomic compartments. In addition, expression analysis indicated that orthologues in syntenic gene clusters showed a tendency for correlated gene expression during infection. These data provide insight into mechanisms by which Colletotrichum genomes evolve, acquire and organize effectors.
Collapse
Affiliation(s)
- Pamela Gan
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Ryoko Hiroyama
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Ayako Tsushima
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan.,Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Sachiko Masuda
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Akiko Ueno
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Naoyoshi Kumakura
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Mari Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama, Japan
| | | | - Yoshihiro Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama, Japan
| | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan.,Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
24
|
Cook DE, Kramer HM, Torres DE, Seidl MF, Thomma BPHJ. A unique chromatin profile defines adaptive genomic regions in a fungal plant pathogen. eLife 2020; 9:e62208. [PMID: 33337321 PMCID: PMC7781603 DOI: 10.7554/elife.62208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Genomes store information at scales beyond the linear nucleotide sequence, which impacts genome function at the level of an individual, while influences on populations and long-term genome function remains unclear. Here, we addressed how physical and chemical DNA characteristics influence genome evolution in the plant pathogenic fungus Verticillium dahliae. We identified incomplete DNA methylation of repetitive elements, associated with specific genomic compartments originally defined as Lineage-Specific (LS) regions that contain genes involved in host adaptation. Further chromatin characterization revealed associations with features such as H3 Lys-27 methylated histones (H3K27me3) and accessible DNA. Machine learning trained on chromatin data identified twice as much LS DNA as previously recognized, which was validated through orthogonal analysis, and we propose to refer to this DNA as adaptive genomic regions. Our results provide evidence that specific chromatin profiles define adaptive genomic regions, and highlight how different epigenetic factors contribute to the organization of these regions.
Collapse
Affiliation(s)
- David E Cook
- Department of Plant Pathology, Kansas State UniversityManhattanUnited States
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
| | - H Martin Kramer
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
| | - David E Torres
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht UniversityUtrechtNetherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht UniversityUtrechtNetherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
25
|
Bamba M, Aoki S, Kajita T, Setoguchi H, Watano Y, Sato S, Tsuchimatsu T. Massive rhizobial genomic variation associated with partner quality in Lotus-Mesorhizobium symbiosis. FEMS Microbiol Ecol 2020; 96:5917975. [PMID: 33016310 DOI: 10.1093/femsec/fiaa202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/29/2020] [Indexed: 11/14/2022] Open
Abstract
Variation in partner quality is commonly observed in diverse cooperative relationships, despite the theoretical prediction that selection favoring high-quality partners should eliminate such variation. Here, we investigated how genetic variation in partner quality could be maintained in the nitrogen-fixing mutualism between Lotus japonicus and Mesorhizobium bacteria. We reconstructed de novo assembled full-genome sequences from nine rhizobial symbionts, finding massive variation in the core genome and the similar symbiotic islands, indicating recent horizontal gene transfer (HGT) of the symbiosis islands into diverse Mesorhizobium lineages. A cross-inoculation experiment using 9 sequenced rhizobial symbionts and 15 L. japonicus accessions revealed extensive quality variation represented by plant growth phenotypes, including genotype-by-genotype interactions. Variation in quality was not associated with the presence/absence variation in known symbiosis-related genes in the symbiosis island; rather, it showed significant correlation with the core genome variation. Given the recurrent HGT of the symbiosis islands into diverse Mesorhizobium strains, local Mesorhizobium communities could serve as a major source of variation for core genomes, which might prevent variation in partner quality from fixing, even in the presence of selection favoring high-quality partners. These findings highlight the novel role of HGT of symbiosis islands in maintaining partner quality variation in the legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Masaru Bamba
- Department of Biology (Frontier Science Program), Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.,Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Seishiro Aoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, The University of the Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Takashi Tsuchimatsu
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Neik TX, Amas J, Barbetti M, Edwards D, Batley J. Understanding Host-Pathogen Interactions in Brassica napus in the Omics Era. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1336. [PMID: 33050509 PMCID: PMC7599536 DOI: 10.3390/plants9101336] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host-pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way.
Collapse
Affiliation(s)
- Ting Xiang Neik
- Sunway College Kuala Lumpur, Bandar Sunway 47500, Selangor, Malaysia;
| | - Junrey Amas
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Martin Barbetti
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| |
Collapse
|
27
|
Jayawardena RS, Hyde KD, Chen YJ, Papp V, Palla B, Papp D, Bhunjun CS, Hurdeal VG, Senwanna C, Manawasinghe IS, Harischandra DL, Gautam AK, Avasthi S, Chuankid B, Goonasekara ID, Hongsanan S, Zeng X, Liyanage KK, Liu N, Karunarathna A, Hapuarachchi KK, Luangharn T, Raspé O, Brahmanage R, Doilom M, Lee HB, Mei L, Jeewon R, Huanraluek N, Chaiwan N, Stadler M, Wang Y. One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020). FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00460-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThis is a continuation of a series focused on providing a stable platform for the taxonomy of phytopathogenic fungi and fungus-like organisms. This paper focuses on one family: Erysiphaceae and 24 phytopathogenic genera: Armillaria, Barriopsis, Cercospora, Cladosporium, Clinoconidium, Colletotrichum, Cylindrocladiella, Dothidotthia,, Fomitopsis, Ganoderma, Golovinomyces, Heterobasidium, Meliola, Mucor, Neoerysiphe, Nothophoma, Phellinus, Phytophthora, Pseudoseptoria, Pythium, Rhizopus, Stemphylium, Thyrostroma and Wojnowiciella. Each genus is provided with a taxonomic background, distribution, hosts, disease symptoms, and updated backbone trees. Species confirmed with pathogenicity studies are denoted when data are available. Six of the genera are updated from previous entries as many new species have been described.
Collapse
|
28
|
Badet T, Croll D. The rise and fall of genes: origins and functions of plant pathogen pangenomes. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:65-73. [PMID: 32480355 DOI: 10.1016/j.pbi.2020.04.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Plant pathogens can rapidly overcome resistance of their hosts by mutating key pathogenicity genes encoding for effectors. Pathogen adaptation is fuelled by extensive genetic variability in populations and different strains may not share the same set of genes. Recently, such an intra-specific variation in gene content became formalized as pangenomes distinguishing core genes (i.e. shared) and accessory genes (i.e. lineage or strain-specific). Across pathogens species, key effectors tend to be part of the rapidly evolving accessory genome. Here, we show how the construction and analysis of pathogen pangenomes provide deep insights into the dynamic host adaptation process. We also discuss how pangenomes should ideally be built and how geography, niche and lifestyle likely determine pangenome sizes.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Switzerland.
| |
Collapse
|
29
|
de Vries S, Stukenbrock EH, Rose LE. Rapid evolution in plant-microbe interactions - an evolutionary genomics perspective. THE NEW PHYTOLOGIST 2020; 226:1256-1262. [PMID: 31997351 DOI: 10.1111/nph.16458] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 01/13/2020] [Indexed: 05/22/2023]
Abstract
Access to greater genomic resolution through new sequencing technologies is transforming the field of plant pathology. As scientists embrace these new methods, some overarching patterns and observations come into focus. Evolutionary genomic studies are used to determine not only the origins of pathogen lineages and geographic patterns of genetic diversity, but also to discern how natural selection structures genetic variation across the genome. With greater and greater resolution, we can now pinpoint the targets of selection on a large scale. At multiple levels, crypsis and convergent evolution are evident. Host jumps and shifts may be more pervasive than once believed, and hybridization and horizontal gene transfer (HGT) likely play important roles in the emergence of genetic novelty.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- The Botanical Institute, Christian-Albrechts University of Kiel, Am Botanischen Garden 9-11, 24118, Kiel, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
30
|
Plaumann PL, Koch C. The Many Questions about Mini Chromosomes in Colletotrichum spp. PLANTS 2020; 9:plants9050641. [PMID: 32438596 PMCID: PMC7284448 DOI: 10.3390/plants9050641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
Many fungal pathogens carry accessory regions in their genome, which are not required for vegetative fitness. Often, although not always, these regions occur as relatively small chromosomes in different species. Such mini chromosomes appear to be a typical feature of many filamentous plant pathogens. Since these regions often carry genes coding for effectors or toxin-producing enzymes, they may be directly related to virulence of the respective pathogen. In this review, we outline the situation of small accessory chromosomes in the genus Colletotrichum, which accounts for ecologically important plant diseases. We summarize which species carry accessory chromosomes, their gene content, and chromosomal makeup. We discuss the large variation in size and number even between different isolates of the same species, their potential roles in host range, and possible mechanisms for intra- and interspecies exchange of these interesting genetic elements.
Collapse
|
31
|
da Silva LL, Moreno HLA, Correia HLN, Santana MF, de Queiroz MV. Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl Microbiol Biotechnol 2020; 104:1891-1904. [PMID: 31932894 DOI: 10.1007/s00253-020-10363-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022]
Abstract
The genus Colletotrichum comprises species with different lifestyles but is mainly known for phytopathogenic species that infect crops of agronomic relevance causing considerable losses. The fungi of the genus Colletotrichum are distributed in species complexes and within each complex some species have particularities regarding their lifestyle. The most commonly found and described lifestyles in Colletotrichum are endophytic and hemibiotrophic phytopathogenic. Several of these phytopathogenic species show wide genetic variability, which makes long-term maintenance of resistance in plants difficult. Different mechanisms may play an important role in the emergence of genetic variants but are not yet fully understood in this genus. These mechanisms include heterokaryosis, a parasexual cycle, sexual cycle, transposable element activity, and repeat-induced point mutations. This review provides an overview of the genus Colletotrichum, the species complexes described so far and the most common lifestyles in the genus, with a special emphasis on the mechanisms that may be responsible, at least in part, for the emergence of new genotypes under field conditions.
Collapse
Affiliation(s)
- Leandro Lopes da Silva
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hanna Lorena Alvarado Moreno
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hilberty Lucas Nunes Correia
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Mateus Ferreira Santana
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
32
|
Tsushima A, Gan P, Shirasu K. Method for Assessing Virulence of Colletotrichum higginsianum on Arabidopsis thaliana Leaves Using Automated Lesion Area Detection and Measurement. Bio Protoc 2019; 9:e3434. [PMID: 33654930 DOI: 10.21769/bioprotoc.3434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/02/2022] Open
Abstract
The plant pathogenic fungus, Colletotrichum higginsianum is widely used to understand infection mechanisms, as it infects the model plant Arabidopsis thaliana. To determine the virulence of C. higginsianum, several methods have been developed, such as disease reaction scoring, lesion measurement, entry rate assays, and relative fungal biomass assays using real-time quantitative PCR. Although many studies have taken advantage of these methods, they have shortcomings in terms of objectivity, time, or cost. Here, we show a lesion area detection method applying ImageJ color thresholds to images of A. thaliana leaves infected by C. higginsianum. This method can automatically detect multiple lesions in a short time without the requirement for special equipment and measures lesion areas in a standardized way. This high throughput technique will aid better understanding of plant immunity and pathogenicity and contribute to reproducibility of assays.
Collapse
Affiliation(s)
- Ayako Tsushima
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Pamela Gan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan.,Graduate School of Science, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
33
|
Cordeiro J, Carvalho TL, Valente VLDS, Robe LJ. Evolutionary history and classification of Micropia retroelements in Drosophilidae species. PLoS One 2019; 14:e0220539. [PMID: 31622354 PMCID: PMC6797199 DOI: 10.1371/journal.pone.0220539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) have the main role in shaping the evolution of genomes and host species, contributing to the creation of new genes and promoting rearrangements frequently associated with new regulatory networks. Support for these hypotheses frequently results from studies with model species, and Drosophila provides a great model organism to the study of TEs. Micropia belongs to the Ty3/Gypsy group of long terminal repeats (LTR) retroelements and comprises one of the least studied Drosophila transposable elements. In this study, we assessed the evolutionary history of Micropia within Drosophilidae, while trying to assist in the classification of this TE. At first, we performed searches of Micropia presence in the genome of natural populations from several species. Then, based on searches within online genomic databases, we retrieved Micropia-like sequences from the genomes of distinct Drosophilidae species. We expanded the knowledge of Micropia distribution within Drosophila species. The Micropia retroelements we detected consist of an array of divergent sequences, which we subdivided into 20 subfamilies. Even so, a patchy distribution of Micropia sequences within the Drosophilidae phylogeny could be identified, with incongruences between the species phylogeny and the Micropia phylogeny. Comparing the pairwise synonymous distance (dS) values between Micropia and three host nuclear sequences, we found several cases of unexpectedly high levels of similarity between Micropia sequences in divergent species. All these findings provide a hypothesis to the evolution of Micropia within Drosophilidae, which include several events of vertical and horizontal transposon transmission, associated with ancestral polymorphisms and recurrent Micropia sequences diversification.
Collapse
Affiliation(s)
- Juliana Cordeiro
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tuane Letícia Carvalho
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre; Rio Grande do Sul; Brazil
| | - Lizandra Jaqueline Robe
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Departamento de Ecologia e Evolução, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
34
|
Gan P, Tsushima A, Hiroyama R, Narusaka M, Takano Y, Narusaka Y, Kawaradani M, Damm U, Shirasu K. Colletotrichum shisoi sp. nov., an anthracnose pathogen of Perilla frutescens in Japan: molecular phylogenetic, morphological and genomic evidence. Sci Rep 2019; 9:13349. [PMID: 31527702 PMCID: PMC6746953 DOI: 10.1038/s41598-019-50076-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 09/05/2019] [Indexed: 11/09/2022] Open
Abstract
Species of the fungal genus Colletotrichum are among the most devastating pathogens of agricultural crops in the world. Based on DNA sequence data (ITS, GAPDH, CHS-1, ACT, TUB2) and morphology, we revealed Colletotrichum isolates infecting the oil crop Perilla frutescens, commonly known as shiso, to represent a previously unknown species of the C. destructivum species complex and described it as C. shisoi. We found that C. shisoi appears to be able to adopt a hemibiotrophic lifestyle, characterised by the formation of biotrophic hyphae followed by severe necrotic lesions on P. frutescens, but is less virulent on Arabidopsis, compared to its close relative C. higginsianum which also belongs to the C. destructivum species complex. The genome of C. shisoi was sequenced, annotated and its predicted proteome compared with four other Colletotrichum species. The predicted proteomes of C. shisoi and C. higginsianum, share many candidate effectors, which are small, secreted proteins that may contribute to infection. Interestingly, C. destructivum species complex-specific secreted proteins showed evidence of increased diversifying selection which may be related to their host specificities.
Collapse
Affiliation(s)
- P Gan
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - A Tsushima
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan.,Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - R Hiroyama
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - M Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama, Japan
| | - Y Takano
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Y Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama, Japan
| | - M Kawaradani
- Research Institute of Environment, Agriculture and Fisheries, Osaka, Japan
| | - U Damm
- Senckenberg Museum of Natural History Görlitz, 02806, Görlitz, Germany
| | - K Shirasu
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan. .,Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
35
|
Transposon-Mediated Horizontal Transfer of the Host-Specific Virulence Protein ToxA between Three Fungal Wheat Pathogens. mBio 2019; 10:mBio.01515-19. [PMID: 31506307 PMCID: PMC6737239 DOI: 10.1128/mbio.01515-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This work dissects the tripartite horizontal transfer of ToxA, a gene that has a direct negative impact on global wheat yields. Defining the extent of horizontally transferred DNA is important because it can provide clues to the mechanisms that facilitate HGT. Our analysis of ToxA and its surrounding 14 kb suggests that this gene was horizontally transferred in two independent events, with one event likely facilitated by a type II DNA transposon. These horizontal transfer events are now in various processes of decay in each species due to the repeated insertion of new transposons and subsequent rounds of targeted mutation by a fungal genome defense mechanism known as repeat induced point mutation. This work highlights the role that HGT plays in the evolution of host adaptation in eukaryotic pathogens. It also increases the growing body of evidence indicating that transposons facilitate adaptive HGT events between fungi present in similar environments and hosts. Most known examples of horizontal gene transfer (HGT) between eukaryotes are ancient. These events are identified primarily using phylogenetic methods on coding regions alone. Only rarely are there examples of HGT where noncoding DNA is also reported. The gene encoding the wheat virulence protein ToxA and the surrounding 14 kb is one of these rare examples. ToxA has been horizontally transferred between three fungal wheat pathogens (Parastagonospora nodorum, Pyrenophora tritici-repentis, and Bipolaris sorokiniana) as part of a conserved ∼14 kb element which contains coding and noncoding regions. Here we used long-read sequencing to define the extent of HGT between these three fungal species. Construction of near-chromosomal-level assemblies enabled identification of terminal inverted repeats on either end of the 14 kb region, typical of a type II DNA transposon. This is the first description of ToxA with complete transposon features, which we call ToxhAT. In all three species, ToxhAT resides in a large (140-to-250 kb) transposon-rich genomic island which is absent in isolates that do not carry the gene (annotated here as toxa−). We demonstrate that the horizontal transfer of ToxhAT between P. tritici-repentis and P. nodorum occurred as part of a large (∼80 kb) HGT which is now undergoing extensive decay. In B. sorokiniana, in contrast, ToxhAT and its resident genomic island are mobile within the genome. Together, these data provide insight into the noncoding regions that facilitate HGT between eukaryotes and into the genomic processes which mask the extent of HGT between these species.
Collapse
|