1
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci 2018; 19:E2439. [PMID: 30126181 PMCID: PMC6121285 DOI: 10.3390/ijms19082439] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin exhibits extraordinary diversity in terms of its functions and distribution. When discovered, it was thought to be uniquely of pineal gland origin. Subsequently, melatonin synthesis was identified in a variety of organs and recently it was shown to be produced in the mitochondria. Since mitochondria exist in every cell, with a few exceptions, it means that every vertebrate, invertebrate, and plant cell produces melatonin. The mitochondrial synthesis of melatonin is not photoperiod-dependent, but it may be inducible under conditions of stress. Mitochondria-produced melatonin is not released into the systemic circulation, but rather is used primarily in its cell of origin. Melatonin's functions in the mitochondria are highly diverse, not unlike those of sirtuin 3 (SIRT3). SIRT3 is an NAD+-dependent deacetylase which regulates, among many functions, the redox state of the mitochondria. Recent data proves that melatonin and SIRT3 post-translationally collaborate in regulating free radical generation and removal from mitochondria. Since melatonin and SIRT3 have cohabitated in the mitochondria for many eons, we predict that these molecules interact in many other ways to control mitochondrial physiology. It is predicted that these mutual functions will be intensely investigated in the next decade and importantly, we assume that the findings will have significant applications for preventing/delaying some age-related diseases and aging itself.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guardalajara, 4436 Jalisco, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Antonoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico D.F., Mexico.
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Dario Acuna-Castroviejo
- Departamento de Fisiologia, Instituto de Biotecnologia, Universidad de Granada, Avenida de Conocimiento S/U, 18016 Granada, Spain.
| |
Collapse
|
2
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
3
|
Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation. Genetics 2016; 204:177-90. [PMID: 27489001 DOI: 10.1534/genetics.116.190835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
Collapse
|
4
|
Abstract
Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break.
Collapse
|
5
|
Winter E. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2012; 76:1-15. [PMID: 22390969 PMCID: PMC3294429 DOI: 10.1128/mmbr.05010-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells encounter numerous signals during the development of an organism that induce division, differentiation, and apoptosis. These signals need to be present for defined intervals in order to induce stable changes in the cellular phenotype. The point after which an inducing signal is no longer needed for completion of a differentiation program can be termed the "commitment point." Meiotic development in the yeast Saccharomyces cerevisiae (sporulation) provides a model system to study commitment. Similar to differentiation programs in multicellular organisms, the sporulation program in yeast is regulated by a transcriptional cascade that produces early, middle, and late sets of sporulation-specific transcripts. Although critical meiosis-specific events occur as early genes are expressed, commitment does not take place until middle genes are induced. Middle promoters are activated by the Ndt80 transcription factor, which is produced and activated shortly before most middle genes are expressed. In this article, I discuss the connection between Ndt80 and meiotic commitment. A transcriptional regulatory pathway makes NDT80 transcription contingent on the prior expression of early genes. Once Ndt80 is produced, the recombination (pachytene) checkpoint prevents activation of the Ndt80 protein. Upon activation, Ndt80 triggers a positive autoregulatory loop that leads to the induction of genes that promote exit from prophase, the meiotic divisions, and spore formation. The pathway is controlled by multiple feed-forward loops that give switch-like properties to the commitment transition. The conservation of regulatory components of the meiotic commitment pathway and the recently reported ability of Ndt80 to increase replicative life span are discussed.
Collapse
Affiliation(s)
- Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae. Genetics 2011; 188:535-48. [PMID: 21546544 DOI: 10.1534/genetics.111.129197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extended heterochromatin domains, which are repressive to transcription and help define centromeres and telomeres, are formed through specific interactions between silencing proteins and nucleosomes. This study reveals that in Saccharomyces cerevisiae, the same nucleosomal surface is critical for the formation of multiple types of heterochromatin, but not for local repression mediated by a related transcriptional repressor. Thus, this region of the nucleosome may be generally important to long-range silencing. In S. cerevisiae, the Sir proteins perform long-range silencing, whereas the Sum1 complex acts locally to repress specific genes. A mutant form of Sum1p, Sum1-1p, achieves silencing in the absence of Sir proteins. A genetic screen identified mutations in histones H3 and H4 that disrupt Sum1-1 silencing and fall in regions of the nucleosome previously known to disrupt Sir silencing and rDNA silencing. In contrast, no mutations were identified that disrupt wild-type Sum1 repression. Mutations that disrupt silencing fall in two regions of the nucleosome, the tip of the H3 tail and a surface of the nucleosomal core (LRS domain) and the adjacent base of the H4 tail. The LRS/H4 tail region interacts with the Sir3p bromo-adjacent homology (BAH) domain to facilitate Sir silencing. By analogy, this study is consistent with the LRS/H4 tail region interacting with Orc1p, a paralog of Sir3p, to facilitate Sum1-1 silencing. Thus, the LRS/H4 tail region of the nucleosome may be relatively accessible and facilitate interactions between silencing proteins and nucleosomes to stabilize long-range silencing.
Collapse
|
7
|
Kelemen JZ, Ratna P, Scherrer S, Becskei A. Spatial epigenetic control of mono- and bistable gene expression. PLoS Biol 2010; 8:e1000332. [PMID: 20305717 PMCID: PMC2838748 DOI: 10.1371/journal.pbio.1000332] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/09/2010] [Indexed: 11/18/2022] Open
Abstract
Bistability in signaling networks is frequently employed to promote stochastic switch-like transitions between cellular differentiation states. Differentiation can also be triggered by antagonism of activators and repressors mediated by epigenetic processes that constitute regulatory circuits anchored to the chromosome. Their regulatory logic has remained unclear. A reaction-diffusion model reveals that the same reaction mechanism can support both graded monostable and switch-like bistable gene expression, depending on whether recruited repressor proteins generate a single silencing gradient or two interacting gradients that flank a gene. Our experiments confirm that chromosomal recruitment of activator and repressor proteins permits a plastic form of control; the stability of gene expression is determined by the spatial distribution of silencing nucleation sites along the chromosome. The unveiled regulatory principles will help to understand the mechanisms of variegated gene expression, to design synthetic genetic networks that combine transcriptional regulatory motifs with chromatin-based epigenetic effects, and to control cellular differentiation.
Collapse
Affiliation(s)
- János Z. Kelemen
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Prasuna Ratna
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Simone Scherrer
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Attila Becskei
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Hickman MA, Rusche LN. The Sir2-Sum1 complex represses transcription using both promoter-specific and long-range mechanisms to regulate cell identity and sexual cycle in the yeast Kluyveromyces lactis. PLoS Genet 2009; 5:e1000710. [PMID: 19893609 PMCID: PMC2762165 DOI: 10.1371/journal.pgen.1000710] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/05/2009] [Indexed: 01/01/2023] Open
Abstract
Deacetylases of the Sir2 family regulate lifespan and response to stress. We have examined the evolutionary history of Sir2 and Hst1, which arose by gene duplication in budding yeast and which participate in distinct mechanisms of gene repression. In Saccharomyces cerevisiae, Sir2 interacts with the SIR complex to generate long-range silenced chromatin at the cryptic mating-type loci, HMLalpha and HMRa. Hst1 interacts with the SUM1 complex to repress sporulation genes through a promoter-specific mechanism. We examined the functions of the non-duplicated Sir2 and its partners, Sir4 and Sum1, in the yeast Kluyveromyces lactis, a species that diverged from Saccharomyces prior to the duplication of Sir2 and Hst1. KlSir2 interacts with both KlSir4 and KlSum1 and represses the same sets of target genes as ScSir2 and ScHst1, indicating that Sir2 and Hst1 subfunctionalized after duplication. However, the KlSir4-KlSir2 and KlSum1-KlSir2 complexes do not function as the analogous complexes do in S. cerevisiae. KlSir4 contributes to an extended repressive chromatin only at HMLalpha and not at HMRa. In contrast, the role of KlSum1 is broader. It employs both long-range and promoter-specific mechanisms to repress cryptic mating-type loci, cell-type-specific genes, and sporulation genes and represents an important regulator of cell identity and the sexual cycle. This study reveals that a single repressive complex can act through two distinct mechanisms to regulate gene expression and illustrates how mechanisms by which regulatory proteins act can change over evolutionary time.
Collapse
Affiliation(s)
- Meleah A. Hickman
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Laura N. Rusche
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
9
|
Zill OA, Rine J. Interspecies variation reveals a conserved repressor of alpha-specific genes in Saccharomyces yeasts. Genes Dev 2008; 22:1704-16. [PMID: 18559484 DOI: 10.1101/gad.1640008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mating-type determination circuit in Saccharomyces yeast serves as a classic paradigm for the genetic control of cell type in all eukaryotes. Using comparative genetics, we discovered a central and conserved, yet previously undetected, component of this genetic circuit: active repression of alpha-specific genes in a cells. Upon inactivation of the SUM1 gene in Saccharomyces bayanus, a close relative of Saccharomyces cerevisiae, a cells acquired mating characteristics of alpha cells and displayed autocrine activation of their mating response pathway. Sum1 protein bound to the promoters of alpha-specific genes, repressing their transcription. In contrast to the standard model, alpha1 was important but not required for alpha-specific gene activation and mating of alpha cells in the absence of Sum1. Neither Sum1 protein expression, nor its association with target promoters was mating-type-regulated. Thus, the alpha1/Mcm1 coactivators did not overcome repression by occluding Sum1 binding to DNA. Surprisingly, the mating-type regulatory function of Sum1 was conserved in S. cerevisiae. We suggest that a comprehensive understanding of some genetic pathways may be best attained through the expanded phenotypic space provided by study of those pathways in multiple related organisms.
Collapse
Affiliation(s)
- Oliver A Zill
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
10
|
Evolution of new function through a single amino acid change in the yeast repressor Sum1p. Mol Cell Biol 2008; 28:2567-78. [PMID: 18268008 DOI: 10.1128/mcb.01785-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The SUM1-1 mutation is an example of a single amino acid change that results in new function. Wild-type Sum1p in Saccharomyces cerevisiae is a DNA-binding repressor that acts locally, whereas mutant Sum1-1p forms an extended repressive chromatin structure. By characterizing a panel of mutations in which various amino acids replaced the critical residue, threonine 988, we found that threonine was required for wild-type function and that in the absence of threonine the association of Sum1p with DNA was reduced. Isoleucine, the amino acid in mutant Sum1-1p, was required for the novel spreading property. Thus, the SUM1-1 mutation results in both a loss and a gain of function. The presence of isoleucine caused Sum1-1p to self-associate, a property that may promote spreading. In addition, isoleucine enabled Sum1-1p to associate with the origin recognition complex (ORC) and accumulate near ORC binding sites. Thus, both threonine and isoleucine at position 988 enable Sum1p to form intermolecular interactions. We propose that interaction domains may be hotspots for gain-of-function mutations because alterations in such domains have the potential to redirect a protein to new sets of binding partners. In addition, self-association of chromatin proteins may promote the formation of extended chromatin structures.
Collapse
|
11
|
Valenzuela L, Gangadharan S, Kamakaka RT. Analyses of SUM1-1-mediated long-range repression. Genetics 2006; 172:99-112. [PMID: 16272409 PMCID: PMC1456157 DOI: 10.1534/genetics.105.050427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/11/2005] [Indexed: 12/29/2022] Open
Abstract
In Saccharomyces cerevisiae, local repression is promoter specific and localized to a small region on the DNA, while silencing is promoter nonspecific, encompasses large domains of chromatin, and is stably inherited for multiple generations. Sum1p is a local repressor protein that mediates repression of meiosis-specific genes in mitotic cells while the Sir proteins are long-range repressors that stably silence genes at HML, HMR, and telomeres. The SUM1-1 mutation is a dominant neomorphic mutation that enables the mutant protein to be recruited to the HMR locus and repress genes, even in the absence of the Sir proteins. In this study we show that the mutation in Sum1-1p enabled it to spread, and the native HMR barrier blocked it from spreading. Thus, like the Sir proteins, Sum1-1p was a long-range repressor, but unlike the Sir proteins, Sum1-1p-mediated repression was more promoter specific, repressing certain genes better than others. Furthermore, repression mediated by Sum1-1p was not stably maintained or inherited and we therefore propose that Sum1-1p-mediated long-range repression is related but distinct from silencing.
Collapse
Affiliation(s)
- Lourdes Valenzuela
- Unit on Chromatin and Transcription, NICHD/NIH, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
12
|
Yu Q, Elizondo S, Bi X. Structural analyses of Sum1-1p-dependent transcriptionally silent chromatin in Saccharomyces cerevisiae. J Mol Biol 2005; 356:1082-92. [PMID: 16406069 DOI: 10.1016/j.jmb.2005.11.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 11/30/2005] [Accepted: 11/30/2005] [Indexed: 11/17/2022]
Abstract
In Saccharomyces cerevisiae, transcriptional silencing of the cryptic mating loci HML and HMR is established by the combined actions of cis-acting silencers and trans-acting proteins, including Sir2p, Sir3p and Sir4p. The Sir proteins serve as an integral part of a special silent chromatin at the HM loci. Deletion of any of the SIR2-SIR4 genes leads to a complete loss of silencing. However, the SUM1-1 mutation can restore silencing at the HM loci. Recently, it has been shown that Sum1-1p is directed to the silencers and internal regions of the HM loci, and interacts with the Hst1p histone deacetylase that is a paralog of the Sir2p histone deacetylase. Like Sir-dependent silent chromatin, Sum1-1p-dependent chromatin is hypoacetylated. These suggest that Sum1-1p and Hst1p play roles similar to those of the Sir proteins in promoting transcriptional silencing. Here, we examine whether Sum1-1p-dependent chromatin is similar to Sir-dependent silent chromatin, which is characterized by densely and precisely positioned nucleosomes. We demonstrate that Sum1-1p-dependent primary chromatin structure at HMR largely resembles, but is not identical with, Sir-dependent silent chromatin, whereas Sum1-1p-dependent HML chromatin largely resembles, but is not identical with, derepressed chromatin found in a sir- background. This correlates with the previous finding that SUM1-1 restores silencing more efficiently at HMR than at HML. We show also that DNA in Sum1-1p-dependent silent chromatin assumes a distinct topology. Moreover, we present evidence indicating that Sum1-1p can increase the stability of Sir-dependent silent chromatin, thereby providing an explanation for the finding that SUM1-1 enhances HML/HMR silencing in a SIR+ background.
Collapse
Affiliation(s)
- Qun Yu
- Department of Biology University of Rochester Rochester, NY 14627, USA
| | | | | |
Collapse
|
13
|
Lynch PJ, Fraser HB, Sevastopoulos E, Rine J, Rusche LN. Sum1p, the origin recognition complex, and the spreading of a promoter-specific repressor in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:5920-32. [PMID: 15988008 PMCID: PMC1168811 DOI: 10.1128/mcb.25.14.5920-5932.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 04/07/2005] [Accepted: 04/20/2005] [Indexed: 01/31/2023] Open
Abstract
In Saccharomyces cerevisiae, Sum1p is a promoter-specific repressor. A single amino acid change generates the mutant Sum1-1p, which causes regional silencing at new loci where wild-type Sum1p does not act. Thus, Sum1-1p is a model for understanding how the spreading of repressive chromatin is regulated. When wild-type Sum1p was targeted to a locus where mutant Sum1-1p spreads, wild-type Sum1p did not spread as efficiently as mutant Sum1-1p did, despite being in the same genomic context. Thus, the SUM1-1 mutation altered the ability of the protein to spread. The spreading of Sum1-1p required both an enzymatically active deacetylase, Hst1p, and the N-terminal tail of histone H4, consistent with the spreading of Sum1-1p involving sequential modification of and binding to histone tails, as observed for other silencing proteins. Furthermore, deletion of the N-terminal tail of H4 caused Sum1-1p to return to loci where wild-type Sum1p acts, consistent with the SUM1-1 mutation increasing the affinity of the protein for H4 tails. These results imply that the spreading of repressive chromatin proteins is regulated by their affinities for histone tails. Finally, this study uncovered a functional connection between wild-type Sum1p and the origin recognition complex, and this relationship also contributes to mutant Sum1-1p localization.
Collapse
Affiliation(s)
- Patrick J Lynch
- Department of Biochemistry and Institute for Genome Sciences and Policy, Duke University, 101 Science Drive, Box 3382, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
14
|
Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 2003; 72:481-516. [PMID: 12676793 DOI: 10.1146/annurev.biochem.72.121801.161547] [Citation(s) in RCA: 598] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomes are organized into active regions known as euchromatin and inactive regions known as heterochromatin, or silenced chromatin. This review describes contemporary knowledge and models for how silenced chromatin in Saccharomyces cerevisiae forms, functions, and is inherited. In S. cerevisiae, Sir proteins are the key structural components of silenced chromatin. Sir proteins interact first with silencers, which dictate which regions are silenced, and then with histone tails in nucleosomes as the Sir proteins spread from silencers along chromosomes. Importantly, the spreading of silenced chromatin requires the histone deacetylase activity of Sir2p. This requirement leads to a general model for the spreading and inheritance of silenced chromatin or other special chromatin states. Such chromatin domains are marked by modifications of the nucleosomes or DNA, and this mark is able to recruit an enzyme that makes further marks. Thus, among different organisms, multiple forms of repressive chromatin can be formed using similar strategies but completely different proteins. We also describe emerging evidence that mutations that cause global changes in the modification of histones can alter the balance between euchromatin and silenced chromatin within a cell.
Collapse
Affiliation(s)
- Laura N Rusche
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720-3202, USA.
| | | | | |
Collapse
|
15
|
McCord R, Pierce M, Xie J, Wonkatal S, Mickel C, Vershon AK. Rfm1, a novel tethering factor required to recruit the Hst1 histone deacetylase for repression of middle sporulation genes. Mol Cell Biol 2003; 23:2009-16. [PMID: 12612074 PMCID: PMC149475 DOI: 10.1128/mcb.23.6.2009-2016.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Revised: 10/24/2002] [Accepted: 12/19/2002] [Indexed: 11/20/2022] Open
Abstract
Transcriptional repression is often correlated with the alteration of chromatin structure through modifications of the nucleosomes in the promoter region, such as by deacetylation of the N-terminal histone tails. This is presumed to make the promoter region inaccessible to other regulatory factors and the general transcription machinery. To accomplish this, histone deacetylases are recruited to specific promoters via DNA-binding proteins and tethering factors. We have previously reported the requirement for the NAD(+)-dependent histone deacetylase Hst1 and the DNA-binding protein Sum1 for vegetative repression of many middle sporulation genes in Saccharomyces cerevisiae. Here we report the identification of a novel tethering factor, Rfm1, that is required for Hst1-mediated repression. Rfm1 interacts with both Sum1 and Hst1 and is required for the Sum1-Hst1 interaction. DNA microarray and Northern blot analyses showed that Rfm1 is required for repression of the same subset of Sum1-repressed genes that require Hst1. These results suggest that Rfm1 is a specificity factor that targets the Hst1 deacetylase to a subset of Sum1-regulated genes.
Collapse
Affiliation(s)
- Ron McCord
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
16
|
Pak J, Segall J. Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:6430-40. [PMID: 12192042 PMCID: PMC135635 DOI: 10.1128/mcb.22.18.6430-6440.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The meiotic recombination checkpoint, which is triggered by defects in recombination or chromosome synapsis, arrests sporulating cells of Saccharomyces cerevisiae at pachytene by preventing accumulation of active Clb-Cdc28. We compared the effects of manipulating the three known targets of the meiotic recombination checkpoint, NDT80, SWE1, and SUM1, in dmc1-arrested cells. Ndt80 is an activator of a set of middle sporulation-specific genes (MSGs), which includes CLB genes and genes involved in spore wall formation; Swe1 inhibits Clb-Cdc28 activity; and Sum1 is a repressor of NDT80 and some MSGs. Activation of the checkpoint leads to inhibition of Ndt80 activity and to stabilization of Swe1 and Sum1. Thus, dmc1-arrested cells fail to express MSGs, arrest at pachytene, and do not form spores. Our study shows that dmc1/dmc1 sum1/sum1 cells expressed MSGs prematurely and at high levels, entered the meiotic divisions efficiently, and in some cases formed asci containing mature spores. In contrast, dmc1/dmc1 swe1/swe1 cells expressed MSGs at a very low level, were inefficient and delayed in entry into the meiotic divisions, and never formed mature spores. We found that cells of dmc1/dmc1 sum1/sum1 ndt80/ndt80 and dmc1/dmc1 swe1/swe1 ndt80/ndt80 strains arrested at pachytene and that dmc1/dmc1 or dmc1/dmc1 swe1/swe1 cells overexpressing NDT80 were less efficient in bypassing checkpoint-mediated arrest than dmc1/dmc1 sum1/sum1 cells. Our results are consistent with previous suggestions that increased Clb-Cdc28 activity, caused by mutation of SWE1 or by an NDT80-dependent increase in CLB expression, allows dmc1/dmc1 cells to exit pachytene and that subsequent upregulation of Ndt80 activity by a feedback mechanism promotes entry into the meiotic divisions. Spore morphogenesis, however, requires efficient and timely activation of MSGs, which we speculate was achieved in dmc1/dmc1 sum1/sum1 cells by premature expression of NDT80.
Collapse
Affiliation(s)
- Julia Pak
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
17
|
Pak J, Segall J. Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:6417-29. [PMID: 12192041 PMCID: PMC135636 DOI: 10.1128/mcb.22.18.6417-6429.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 06/07/2002] [Accepted: 06/21/2002] [Indexed: 01/11/2023] Open
Abstract
The NDT80 gene of Saccharomyces cerevisiae, which encodes a global activator of transcription of middle sporulation-specific genes, is first expressed after the activation of early meiotic genes but prior to activation of middle sporulation-specific genes. Both upstream repression sequence 1 (URS1) and mid-sporulation element (MSE) sites are present in the promoter region of the NDT80 gene; these elements have been shown previously to contribute to the regulation of expression of early and middle sporulation-specific genes, respectively, by mediating repression in growing cells and activation at specific times during sporulation. In this study, we have shown that the overlapping windows of URS1- and MSE-mediated repression and activation are responsible for the distinctive premiddle expression pattern of the NDT80 gene. Our data suggest that a Sum1-associated repression complex bound at the NDT80 MSE sites prevents Ime1 tethered at the NDT80 URS1 sites from activating transcription of the NDT80 gene at the time that Ime1-dependent activation of early URS1-regulated meiotic genes is occurring. We propose that a decrease in the efficiency of Sum1-mediated repression as cells progress through the early events of the sporulation program allows the previously inactive Ime1 tethered at the URS1(NDT80) sites to promote a low level of expression of the NDT80 gene. This initial phase of URS1-dependent NDT80 expression is followed by Ndt80-dependent upregulation of its own expression, which requires the MSE(NDT80) sites and occurs concomitantly with Ndt80-dependent activation of a set of middle MSE-regulated sporulation-specific genes. Mutation of IME2 prevents expression of NDT80 in sporulating cells. We show in this study that NDT80 is expressed and that middle genes are activated in cells of an Deltaime2/Deltaime2 Deltasum1/Deltasum1 strain in sporulation medium. This suggests that Ime2 activates expression of NDT80 by eliminating Sum1-mediated repression.
Collapse
Affiliation(s)
- Julia Pak
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
18
|
Rusché LN, Kirchmaier AL, Rine J. Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol Biol Cell 2002; 13:2207-22. [PMID: 12134062 PMCID: PMC117306 DOI: 10.1091/mbc.e02-03-0175] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2002] [Revised: 03/29/2002] [Accepted: 04/12/2002] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, silencing at the HM loci depends on Sir proteins, which are structural components of silenced chromatin. To explore the structure and assembly of silenced chromatin, the associations of Sir proteins with sequences across the HMR locus were examined by chromatin immunoprecipitation. In wild-type cells, Sir2p, Sir3p, and Sir4p were spread throughout and coincident with the silenced region at HMR. Sir1p, in contrast, associated only with the HMR-E silencer, consistent with its role in establishment but not maintenance of silencing. Sir4p was required for the association of other Sir proteins with silencers. In contrast, in the absence of Sir2p or Sir3p, partial assemblies of Sir proteins could form at silencers, where Sir protein assembly began. Spreading across HMR required Sir2p and Sir3p, as well as the deacetylase activity of Sir2p. These data support a model for the spreading of silenced chromatin involving cycles of nucleosome deacetylation by Sir2p followed by recruitment of additional Sir2p, Sir3p, and Sir4p to the newly deacetylated nucleosome. This model suggests mechanisms for boundary formation, and for maintenance and inheritance of silenced chromatin. The principles are generalizable to other types of heritable chromatin states.
Collapse
Affiliation(s)
- Laura N Rusché
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
19
|
Sousa S, McLaughlin MM, Pereira SA, VanHorn S, Knowlton R, Brown JR, Nicholas RO, Livi GP. The ARO4 gene of Candida albicans encodes a tyrosine-sensitive DAHP synthase: evolution, functional conservation and phenotype of Aro3p-, Aro4p-deficient mutants. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1291-1303. [PMID: 11988503 DOI: 10.1099/00221287-148-5-1291] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The enzyme 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase catalyses the first step in aromatic amino acid biosynthesis in prokaryotes, plants and fungi. Cells of Saccharomyces cerevisiae contain two catalytically redundant DAHP synthases, encoded by the genes ARO3 and ARO4, whose activities are feedback-inhibited by phenylalanine and tyrosine, respectively. ARO3/4 gene transcription is controlled by GCN4. The authors previously cloned an ARO3 gene orthologue from Candida albicans and found that: (1) it can complement an aro3 aro4 double mutation in S. cerevisiae, an effect inhibited by excess phenylalanine, and (2) a homozygous aro3-deletion mutant of C. albicans is phenotypically Aro(+), suggesting the existence of another isozyme(s). They now report the identification and functional characterization of the C. albicans orthologue of S. cerevisiae Aro4p. The two Aro4p enzymes share 68% amino acid identity. Phylogenetic analysis places the fungal DAHP synthases in a cluster separate from prokaryotic orthologues and suggests that ARO3 and ARO4 arose from a single gene via a gene duplication event early in fungal evolution. C. albicans ARO4 mRNA is elevated upon amino acid starvation, consistent with the presence of three putative Gcn4p-responsive elements (GCREs) in the gene promoter sequence. C. albicans ARO4 complements an aro3 aro4 double mutation in S. cerevisiae, an effect inhibited by excess tyrosine. The authors engineered Deltaaro3/Deltaaro3 Deltaaro4/MET3p::ARO4 cells of C. albicans (with one wild-type copy of ARO4 placed under control of the repressible MET3 promoter) and found that they fail to grow in the absence of aromatic amino acids when ARO4 expression is repressed, and that this growth defect can be partially rescued by aromatic amino acids and certain aromatic amino acid pathway intermediates. It is concluded that, like S. cerevisiae, C. albicans contains two DAHP synthases required for the first step in the aromatic amino acid biosynthetic pathway.
Collapse
MESH Headings
- 3-Deoxy-7-Phosphoheptulonate Synthase/chemistry
- 3-Deoxy-7-Phosphoheptulonate Synthase/deficiency
- 3-Deoxy-7-Phosphoheptulonate Synthase/genetics
- Amino Acid Sequence
- Amino Acids, Aromatic/biosynthesis
- Amino Acids, Aromatic/metabolism
- Blotting, Southern
- Candida albicans/enzymology
- Candida albicans/genetics
- Candida albicans/growth & development
- Cloning, Molecular
- Evolution, Molecular
- Feedback, Physiological
- Gene Deletion
- Genes, Fungal
- Genetic Complementation Test
- Homozygote
- Isoenzymes/chemistry
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Molecular Sequence Data
- Phenotype
- Phylogeny
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Silvino Sousa
- Departments of Comparative Genomics1, Discovery Genetics2, Genomics Bioinformatics3, Microbial Bioinformatics and Microbial Genetics4, Glaxo SmithKline, King of Prussia, PA 19406, USA
| | - Megan M McLaughlin
- Departments of Comparative Genomics1, Discovery Genetics2, Genomics Bioinformatics3, Microbial Bioinformatics and Microbial Genetics4, Glaxo SmithKline, King of Prussia, PA 19406, USA
| | - Sarita A Pereira
- Departments of Comparative Genomics1, Discovery Genetics2, Genomics Bioinformatics3, Microbial Bioinformatics and Microbial Genetics4, Glaxo SmithKline, King of Prussia, PA 19406, USA
| | - Stephanie VanHorn
- Departments of Comparative Genomics1, Discovery Genetics2, Genomics Bioinformatics3, Microbial Bioinformatics and Microbial Genetics4, Glaxo SmithKline, King of Prussia, PA 19406, USA
| | - Robert Knowlton
- Departments of Comparative Genomics1, Discovery Genetics2, Genomics Bioinformatics3, Microbial Bioinformatics and Microbial Genetics4, Glaxo SmithKline, King of Prussia, PA 19406, USA
| | - James R Brown
- Departments of Comparative Genomics1, Discovery Genetics2, Genomics Bioinformatics3, Microbial Bioinformatics and Microbial Genetics4, Glaxo SmithKline, King of Prussia, PA 19406, USA
| | - Richard O Nicholas
- Departments of Comparative Genomics1, Discovery Genetics2, Genomics Bioinformatics3, Microbial Bioinformatics and Microbial Genetics4, Glaxo SmithKline, King of Prussia, PA 19406, USA
| | - George P Livi
- Departments of Comparative Genomics1, Discovery Genetics2, Genomics Bioinformatics3, Microbial Bioinformatics and Microbial Genetics4, Glaxo SmithKline, King of Prussia, PA 19406, USA
| |
Collapse
|
20
|
Huang Y. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 2002; 30:1465-82. [PMID: 11917007 PMCID: PMC101825 DOI: 10.1093/nar/30.7.1465] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Revised: 01/28/2002] [Accepted: 01/28/2002] [Indexed: 11/13/2022] Open
Abstract
Transcriptional silencing is a heritable form of gene inactivation that involves the assembly of large regions of DNA into a specialized chromatin structure that inhibits transcription. This phenomenon is responsible for inhibiting transcription at silent mating-type loci, telomeres and rDNA repeats in both budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe, as well as at centromeres in fission yeast. Although transcriptional silencing in both S.cerevisiae and S.pombe involves modification of chromatin, no apparent amino acid sequence similarities have been reported between the proteins involved in establishment and maintenance of silent chromatin in these two distantly related yeasts. Silencing in S.cerevisiae is mediated by Sir2p-containing complexes, whereas silencing in S.pombe is mediated primarily by Swi6-containing complexes. The Swi6 complexes of S.pombe contain proteins closely related to their counterparts in higher eukaryotes, but have no apparent orthologs in S.cerevisiae. Silencing proteins from both yeasts are also actively involved in other chromosome-related nuclear functions, including DNA repair and the regulation of chromatin structure.
Collapse
|
21
|
Sutton A, Heller RC, Landry J, Choy JS, Sirko A, Sternglanz R. A novel form of transcriptional silencing by Sum1-1 requires Hst1 and the origin recognition complex. Mol Cell Biol 2001; 21:3514-22. [PMID: 11313477 PMCID: PMC100273 DOI: 10.1128/mcb.21.10.3514-3522.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, a and alpha mating-type information is stored in transcriptionally silenced cassettes called HML and HMR. Silencing of these loci, maintained by the formation of a specialized type of heterochromatin, requires trans-acting proteins and cis-acting elements. Proteins required for silencing include the Sir2 NAD(+)-dependent deacetylase, Sir3, and Sir4. Factors that bind to the cis elements at HMR and HML and that are important for silencing include the origin recognition complex (ORC). Mutations of any of these Sir proteins or combinations of cis elements result in loss of silencing. SUM1-1 was previously identified as a dominant mutation that restores silencing to HMR in the absence of either the Sir proteins or some of the cis elements. We have investigated the novel mechanism whereby Sum1-1 causes Sir-independent silencing at HMR and present the following findings: Sum1-1 requires the Sir2 homolog, Hst1, for silencing and most probably requires the NAD(+)-dependent deacetylase activity of this protein. Sum1-1 interacts strongly with ORC, and this strong interaction is dependent on HMR DNA. Furthermore, ORC is required for Sum1-1-mediated silencing at HMR. These observations lead to a model for Sum1-1 silencing of HMR in which Sum1-1 is recruited to HMR by binding to ORC. Sum1-1, in turn, recruits Hst1. Hst1 then deacetylates histones or other chromatin-associated proteins to cause chromatin condensation and transcriptional silencing.
Collapse
Affiliation(s)
- A Sutton
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
In Saccharomyces cerevisiae, gene silencing at the HMR and HML loci is normally dependent on Sir2p, Sir3p, and Sir4p, which are structural components of silenced chromatin. Sir2p is a NAD+-dependent histone deacetylase required for silencing. Silencing can be restored in cells lacking Sir proteins by a dominant mutation in SUM1, which normally acts as a mitotic repressor of meiotic genes. This study found that mutant Sum1-1p, but not wild-type Sum1p, associated directly with HM loci. The origin recognition complex (ORC) was required for Sum1-1p-mediated silencing, and mutations in ORC genes reduced association of Sum1-1p with the HM loci. Sum1-1p-mediated silencing also depended on HST1, a paralog of SIR2. Both Sum1-1p and wild-type Sum1p interacted with Hst1p in coimmunoprecipitation experiments. Therefore, the SUM1-1 mutation did not change the affinity of Sum1p for Hst1p, but rather relocalized Sum1p to the HM loci. Sum1-1-Hst1p action led to hypoacetylation of the nucleosomes at HM loci. Thus, Sum1-1p and Hst1p could substitute for Sir proteins to achieve silencing through formation of a compositionally distinct type of heterochromatin.
Collapse
Affiliation(s)
- L N Rusché
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
23
|
Abstract
Transcriptional silencing at the HM loci and telomeres in yeast depends on several trans-acting factors, including Rap1p and the Sir proteins. The SUM1-1 mutation was identified by its ability to restore silencing to strains deficient in one or more of these trans-acting factors. The mechanism by which SUM1-1 bypasses the requirement for silencing proteins is not known. We identified four loci that when reduced in dosage in diploid strains increase the ability of SUM1-1 strains to suppress silencing defects. Two of the genes responsible for this effect were found to be MGA2 and SPT23. Mga2p and Spt23p were previously identified as functionally related transcription factors that influence chromatin structure. We find that deletion of MGA2 or SPT23 also increases the efficiency of silencing in haploid SUM1-1 strains. These results suggest that Mga2p and Spt23p are antagonists of silencing. Consistent with this proposal we find that deletion of MGA2 or SPT23 also suppresses the silencing defects caused by deletion of the SIR1 gene or by mutations in the HMR silencer sequences. However, we find that Mga2p and Spt23p can positively affect silencing in other contexts; deletion of either MGA2 or SPT23 decreases mating in strains bearing mutations in the HML-E silencer. Mga2p and Spt23p appear to be a novel class of factors that influence disparate pathways of transcriptional control by chromatin.
Collapse
Affiliation(s)
- M L Dula
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
24
|
Smith JS, Caputo E, Boeke JD. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol Cell Biol 1999; 19:3184-97. [PMID: 10082585 PMCID: PMC84112 DOI: 10.1128/mcb.19.4.3184] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genetic loci, including the ribosomal DNA (rDNA). Silencing at telomeres (telomere position effect [TPE]) and the cryptic mating-type loci (HML and HMR) depends on the silent information regulator genes, SIR1, SIR2, SIR3, and SIR4. However, silencing of polymerase II-transcribed reporter genes integrated within the rDNA locus (rDNA silencing) requires only SIR2. The mechanism of rDNA silencing is therefore distinct from TPE and HM silencing. Few genes other than SIR2 have so far been linked to the rDNA silencing process. To identify additional non-Sir factors that affect rDNA silencing, we performed a genetic screen designed to isolate mutations which alter the expression of reporter genes integrated within the rDNA. We isolated two classes of mutants: those with a loss of rDNA silencing (lrs) phenotype and those with an increased rDNA silencing (irs) phenotype. Using transposon mutagenesis, lrs mutants were found in 11 different genes, and irs mutants were found in 22 different genes. Surprisingly, we did not isolate any genes involved in rRNA transcription. Instead, multiple genes associated with DNA replication and modulation of chromatin structure were isolated. We describe these two gene classes, and two previously uncharacterized genes, LRS4 and IRS4. Further characterization of the lrs and irs mutants revealed that many had alterations in rDNA chromatin structure. Several lrs mutants, including those in the cdc17 and rfc1 genes, caused lengthened telomeres, consistent with the hypothesis that telomere length modulates rDNA silencing. Mutations in the HDB (RPD3) histone deacetylase complex paradoxically increased rDNA silencing by a SIR2-dependent, SIR3-independent mechanism. Mutations in rpd3 also restored mating competence selectively to sir3Delta MATalpha strains, suggesting restoration of silencing at HMR in a sir3 mutant background.
Collapse
MESH Headings
- Chromatin/metabolism
- Chromatin/ultrastructure
- DNA Replication
- DNA, Ribosomal/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genes, Mating Type, Fungal
- Histone Deacetylases
- Models, Genetic
- Mutation
- Phenotype
- RNA, Ribosomal/biosynthesis
- Repressor Proteins/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Selection, Genetic
- Silent Information Regulator Proteins, Saccharomyces cerevisiae
- Sirtuin 2
- Sirtuins
- Telomere/genetics
- Telomere-Binding Proteins
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- J S Smith
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
25
|
Abstract
Saccharomyces cerevisiae can change its mating type as often as every generation by a highly choreographed, site-specific recombination event that replaces one MAT allele with different DNA sequences encoding the opposite allele. The study of this process has yielded important insights into the control of cell lineage, the silencing of gene expression, and the formation of heterochromatin, as well as the molecular events of double-strand break-induced recombination. In addition, MAT switching provides a remarkable example of a small locus control region--the Recombination Enhancer--that controls recombination along an entire chromosome arm.
Collapse
Affiliation(s)
- J E Haber
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
26
|
Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C, Mahowald M, Gottschling DE. Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 1998; 150:613-32. [PMID: 9755194 PMCID: PMC1460361 DOI: 10.1093/genetics/150.2.613] [Citation(s) in RCA: 373] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ends of chromosomes in Saccharomyces cerevisiae initiate a repressive chromatin structure that spreads internally and inhibits the transcription of nearby genes, a phenomenon termed telomeric silencing. To investigate the molecular basis of this process, we carried out a genetic screen to identify genes whose overexpression disrupts telomeric silencing. We thus isolated 10 DOT genes (disruptor of telomeric silencing). Among these were genes encoding chromatin component Sir4p, DNA helicase Dna2p, ribosomal protein L32, and two proteins of unknown function, Asf1p and Ifh1p. The collection also included genes that had not previously been identified: DOT1, DOT4, DOT5, DOT6, and TLC1, which encodes the RNA template component of telomerase. With the exception of TLC1, all these genes, particularly DOT1 and DOT4, also reduced silencing at other repressed loci (HM loci and rDNA) when overexpressed. Moreover, deletion of the latter two genes weakened silencing as well, suggesting that DOT1 and DOT4 normally play important roles in gene repression. DOT1 deletion also affected telomere tract length. The function of Dot1p is not known. The sequence of Dot4p suggests that it is a ubiquitin-processing protease. Taken together, the DOT genes include both components and regulators of silent chromatin.
Collapse
Affiliation(s)
- M S Singer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ehrenhofer-Murray AE, Rivier DH, Rine J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 1997; 145:923-34. [PMID: 9093847 PMCID: PMC1207897 DOI: 10.1093/genetics/145.4.923] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Silencing at the cryptic mating-type loci HML and HMR of Saccharomyces cerevisiae requires regulatory sites called silencers. Mutations in the Rap1 and Abf1 binding sites of the HMR-E silencer (HMRa-e**) cause the silencer to be nonfunctional, and hence, cause derepression of HMR. Here, we have isolated and characterized mutations in SAS2 as second-site suppressors of the silencing defect of HMRa-e**. Silencing conferred by the removal of SAS2 (sas2 delta) depended upon the integrity of the ARS consensus sequence of the HMR-E silencer, thus arguing for an involvement of the origin recognition complex (ORC). Restoration of silencing by sas2 delta required ORC2 and ORC5, but not SIR1 or RAP1. Furthermore, sas2 delta suppressed the temperature sensitivity, but not the silencing defect of orc2-1 and orc5-1. Moreover, sas2 delta had opposing effects on silencing of HML and HMR. The putative Sas2 protein bears similarities to known protein acetyltransferases. Several models for the role of Sas2 in silencing are discussed.
Collapse
Affiliation(s)
- A E Ehrenhofer-Murray
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
28
|
Chi MH, Shore D. SUM1-1, a dominant suppressor of SIR mutations in Saccharomyces cerevisiae, increases transcriptional silencing at telomeres and HM mating-type loci and decreases chromosome stability. Mol Cell Biol 1996; 16:4281-94. [PMID: 8754829 PMCID: PMC231427 DOI: 10.1128/mcb.16.8.4281] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcriptional silencing in the yeast Saccharomyces cerevisiae occurs at HML and HMR mating-type loci and telomeres and requires the products of the silent information regulator (SIR) genes. Recent evidence suggests that the silencer- and telomere-binding protein Rap1p initiates silencing by recruiting a complex of Sir proteins to the chromosome, where they act in some way to modify chromatin structure or accessibility. A single allele of the SUM1gene (SUM1-1) which restores silencing at HM loci in strains mutant for any of the four SIR genes was identified a number of years ago. However, conflicting genetic results and the lack of other alleles of SUM1 made it difficult to surmise the wild-type function of SUM1 or the manner in which the SUM1-1 mutation restores silencing in sir mutant strains. Here we report the cloning and characterization of the SUM1 gene and the SUM1-1 mutant allele. Our results indicate that SUM1-1 is an unusual altered-function mutation that can bypass the need for SIR function in HM silencing and increase repression at telomeres. A sum1 deletion mutation has only minor effects on silencing in SIR strains and does not restore silencing in sir mutants. In addition to its effect on transcriptional silencing, the SUM1-1 mutation (but not a sum1 deletion) increases the rate of chromosome loss and cell death. We suggest several speculative models for the action of SUM1-1 in silencing based on these and other data.
Collapse
Affiliation(s)
- M H Chi
- Department of Microbiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
29
|
Enomoto S, Longtine MS, Berman J. TEL+CEN antagonism on plasmids involves telomere repeat sequences tracts and gene products that interact with chromosomal telomeres. Chromosoma 1994; 103:237-50. [PMID: 7988285 DOI: 10.1007/bf00352248] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Saccharomyces cerevisiae, circular plasmids that include either a centromere (CEN-plasmids) or a telomere sequence (TEL-plasmids) segregate more efficiently than circular ARS-plasmids. In contrast, circular plasmids that include both telomere and centromere sequences were unstable, a property we term TEL+CEN antagonism. TEL+CEN antagonism required a telomere repeat tract longer than 49 bp although the distance and relative orientation of the centromere and telomere sequences was not critical. TEL+CEN antagonism was alleviated in strains carrying different rap1 alleles including rap1ts, rap1s, and rap1t alleles. Mutations SIR2, SIR3, SIR4, NAT1 and ARD1, genes that influence transcriptional silencing at telomeres and at the silent mating type loci, abolished TEL+CEN antagonism Mutation of SIR1 also partially alleviated TEL-CEN antagonism. In some sir mutant strains short yeast artificial chromosomes (YACs), which are normally unstable, became more stable, suggesting that the same mechanism that caused TEL+CEN antagonism on circular plasmids may contribute to the instability of short linear plasmids.
Collapse
Affiliation(s)
- S Enomoto
- Department of Plant Biology, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
30
|
Pereira SA, Livi GP. Cloning and expression of the ARO3 gene encoding DAHP synthase from Candida albicans. Gene X 1993; 132:159-65. [PMID: 7901125 DOI: 10.1016/0378-1119(93)90191-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Saccharomyces cerevisiae, the primary step in the aromatic (ARO) amino acid (aa) biosynthetic pathway is catalyzed by two isozymes of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHPS). The activity of one DAHPS isozyme (encoded by the ARO3 gene) is feedback inhibited by phenylalanine, whereas the other (encoded by the ARO4 gene) is inhibited by tyrosine. The expression of these genes is also regulated at the transcriptional level by the general control activator GCN4. We took advantage of the high degree of aa sequence homology between DAHPSs from several species to isolate ARO3 homologues from the pathogenic yeast Candida albicans. An ARO3/ARO4-specific sequence was generated from C. albicans genomic DNA by polymerase chain reaction amplification and used as a probe to screen a C. albicans cDNA library. A 1.3-kb cDNA clone was isolated and sequenced. The cDNA contains a long open reading frame predicting a 368-aa protein with significant homology to known DAHPSs, including both the S. cerevisiae ARO3 and ARO4 products (68.5% and 58.5% identity, respectively). Northern analysis of yeast and mycelial poly(A)+ RNA revealed equivalent expression of a 1.3-kb transcript in both cell types. A genomic clone was isolated by cross-hybridization, and analysis of the 5' untranslated region revealed the presence of a putative GCN4-binding site. This clone complemented an aro3 mutation in S. cerevisiae; functional complementation was inhibited by the presence of excess phenylalanine (but not tyrosine) in the growth medium, confirming that the cloned gene is the C. albicans homologue of ARO3.
Collapse
Affiliation(s)
- S A Pereira
- Department of Molecular Biology, Lehigh University, Bethlehem, PA 18015
| | | |
Collapse
|
31
|
Abstract
Three copies of the mating-type genes, which determine cell type, are found in the budding yeast Saccharomyces cerevisiae. The copy at the MAT locus is transcriptionally active, whereas identical copies of the mating-type genes at the HML and HMR loci are transcriptionally silent. Hence, HML and HMR, also known as the silent mating-type loci, are subject to a position effect. Regulatory sequences flank the silent mating-type loci and mediate repression of HML and HMR. These regulatory sequences are called silencers for their ability to repress the transcription of nearby genes in a distance- and orientation-independent fashion. In addition, a number of proteins, including the four SIR proteins, histone H4, and an alpha-acetyltransferase, are required for the complete repression of HML and HMR. Because alterations in the amino-terminal domain of histone H4 result in the derepression of the silent mating-type loci, the mechanism of repression may involve the assembly of a specific chromatin structure. A number of additional clues permit insight into the nature of repression at HML and HMR. First, an S phase event is required for the establishment of repression. Second, at least one gene appears to play a role in the establishment mechanism yet is not essential for the stable propagation of repression through many rounds of cell division. Third, certain aspects of repression are linked to aspects of replication. The silent mating-type loci share many similarities with heterochromatin. Furthermore, regions of S. cerevisiae chromosomes, such as telomeres, which are known to be heterochromatic in other organisms, require a subset of SIR proteins for repression. Further analysis of the transcriptional repression at the silent mating-type loci may lend insight into heritable repression in other eukaryotes.
Collapse
Affiliation(s)
- P Laurenson
- Division of Genetics, University of California, Berkeley 94720
| | | |
Collapse
|
32
|
Hardy CF, Sussel L, Shore D. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 1992; 6:801-14. [PMID: 1577274 DOI: 10.1101/gad.6.5.801] [Citation(s) in RCA: 389] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The yeast RAP1 protein is a sequence-specific DNA-binding protein that functions as both a repressor and an activator of transcription. RAP1 is also involved in the regulation of telomere structure, where its binding sites are found within the terminal poly(C1-3A) sequences. Previous studies have indicated that the regulatory function of RAP1 is determined by the context of its binding site and, presumably, its interactions with other factors. Using the two-hybrid system, a genetic screen for the identification of protein-protein interactions, we have isolated a gene encoding a RAP1-interacting factor (RIF1). Strains carrying gene disruptions of RIF1 grow normally but are defective in transcriptional silencing and telomere length regulation, two phenotypes strikingly similar to those of silencing-defective rap1s mutants. Furthermore, hybrid proteins containing rap1s missense mutations are defective in an interaction with RIF1 in the two-hybrid system. Taken together, these data support the idea that the rap1s phenotypes are attributable to a failure to recruit RIF1 to silencers and telomeres and suggest that RIF1 is a cofactor or mediator for RAP1 in the establishment of a repressed chromatin state at these loci. By use of the two-hybrid system, we have isolated a mutation in RIF1 that partially restores the interaction with rap1s mutant proteins.
Collapse
Affiliation(s)
- C F Hardy
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
33
|
Abstract
The repression of transcription of the silent mating-type locus HMRa in the yeast Saccharomyces cerevisiae requires the four SIR proteins, histone H4 and a flanking site designated HMR-E. The SUM1-1 mutation alleviated the need for many of these components in transcriptional repression. In the absence of each of the SIR proteins, SUM1-1 restored repression in MAT alpha strains; thus, SUM1-1 appeared to bypass the need for the SIR genes in repression of HMRa. Repression was not specific to the genes normally present at HMR, since the TRP1 gene placed at HMR was repressed by SUM1-1 in a sir3 strain. Therefore, like the mechanisms of silencing normally used at HMR, silencing by SUM1-1 was gene-nonspecific. SUM1-1 suppressed point mutations in histone H4, but failed to suppress strongly a deletion mutation in histone H4. Similarly, SUM1-1 suppressed mutations in the three known elements of HMR-E, but was unable to suppress a deletion of HMR-E. These epistasis analyses implied that the functions required for repression at HMR can be ordered, with the SIR genes and silencer elements acting upstream of SUM1-1. SUM1-1 itself may function at the level of chromatin in the assembly of inactive DNA at the silent mating-type loci.
Collapse
Affiliation(s)
- P Laurenson
- Department of Molecular and Cellular Biology, University of California, Berkeley 94720
| | | |
Collapse
|
34
|
Lin CI, Livi GP, Ivy JM, Klar AJ. Extragenic suppressors of mar2(sir3) mutations in Saccharomyces cerevisiae. Genetics 1990; 125:321-31. [PMID: 2199314 PMCID: PMC1204022 DOI: 10.1093/genetics/125.2.321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The silent mating-type genes (HML and HMR) of Saccharomyces cerevisiae are kept under negative transcriptional control by four trans-acting MAR (or SIR) loci. We have isolated extragenic suppressors of the mar2-1 mutation which, based on genetic complementation tests, define two additional loci involved in regulating the expression of HML and HMR. A strain with the genotype HMLa MAT alpha HMRa mar2-1 is sterile due to the simultaneous expression of a and alpha information. Two mutants exhibiting an alpha phenotype (which may result from the restoration of MAR/SIR repression) were isolated and genetically characterized. The mutations in these strains: (1) are recessive, (2) are capable of suppressing a mar2-deletion mutation, (3) are unlinked to MAT, (4) complement one another as well as the previously identified sum1-1 mutation, and (5) are not new alleles of the known MAR/SIR loci. We designate these new regulatory loci SUM2 and SUM3 (suppressor of mar). Unlike the sum1-1 mutation, suppression by sum2-1 and sum3-1 is mar2-locus specific. Both sum2-1 and sum3-1 affect the expression of a information at the HM loci. Transcript analysis shows a significant reduction in HMLa and HMRa gene transcription in mar2-1 sum2-1 and mar2-1 sum3-1 cells. Furthermore, we have found genetic evidence to suggest that mar2-1 sum2-1 cells exhibit only partial expression of silent alpha information. We conclude that the SUM2 and SUM3 gene products are required for expression of the HM loci and act downstream of the MAR2 (SIR3) gene function. Possible mechanisms for the action of the SUM gene products are discussed.
Collapse
Affiliation(s)
- C I Lin
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
35
|
The sum1-1 mutation affects silent mating-type gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 1990. [PMID: 2403645 DOI: 10.1128/mcb.10.1.409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The silent mating-type genes (HML and HMR) of Saccharomyces cerevisiae are kept under negative transcriptional control by the trans-acting products of the four MAR/SIR loci. MAR/SIR gene mutations result in the simultaneous derepression of HML and HMR gene expression. The sum1-1 mutation was previously identified as an extragenic suppressor of mutations in MAR1 (SIR2) and MAR2 (SIR3). As assayed genetically, sum1-1 is capable of restoring repression of silent mating-type information in cells containing mar1 or mar2 null mutations. We show here that the mating-type phenotype associated with sum1-1 results from a dramatic reduction in the steady-state level of HML and HMR gene transcripts. At the same time, the sum1-1 mutation has no significant effect on the level of each of the four MAR/SIR mRNAs.
Collapse
|
36
|
The sum1-1 mutation affects silent mating-type gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10:409-12. [PMID: 2403645 PMCID: PMC360769 DOI: 10.1128/mcb.10.1.409-412.1990] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The silent mating-type genes (HML and HMR) of Saccharomyces cerevisiae are kept under negative transcriptional control by the trans-acting products of the four MAR/SIR loci. MAR/SIR gene mutations result in the simultaneous derepression of HML and HMR gene expression. The sum1-1 mutation was previously identified as an extragenic suppressor of mutations in MAR1 (SIR2) and MAR2 (SIR3). As assayed genetically, sum1-1 is capable of restoring repression of silent mating-type information in cells containing mar1 or mar2 null mutations. We show here that the mating-type phenotype associated with sum1-1 results from a dramatic reduction in the steady-state level of HML and HMR gene transcripts. At the same time, the sum1-1 mutation has no significant effect on the level of each of the four MAR/SIR mRNAs.
Collapse
|
37
|
Schnell R, D'Ari L, Foss M, Goodman D, Rine J. Genetic and molecular characterization of suppressors of SIR4 mutations in Saccharomyces cerevisiae. Genetics 1989; 122:29-46. [PMID: 2471670 PMCID: PMC1203690 DOI: 10.1093/genetics/122.1.29] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In order to learn more about other proteins that may be involved in repression of HML and HMR in Saccharomyces cerevisiae, extragenic suppressor mutations were identified that could restore repression in cells defective in SIR4, a gene required for function of the silencer elements flanking HML and HMR. These suppressor mutations, which define at least three new genes, SAN1, SAN2 and SAN3, arose at the frequency expected for loss-of-function mutations following mutagenesis. All san mutations were recessive. Suppression by san1 was allele-nonspecific, since san1 could suppress two very different alleles of SIR4, and was locus-specific since san1 was unable to suppress a SIR3 mutation or a variety of mutations conferring auxotrophies. The SAN1 gene was cloned, sequenced, and used to construct a null allele. The null allele had the same phenotype as the EMS-induced mutations and exhibited no pleiotropies of its own. Thus, the SAN1 gene was not essential. SAN1-mediated suppression was neither due to compensatory mutations in interacting proteins, nor to translational missense suppression. SAN1 may act posttranslationally to control the stability or activity of the SIR4 protein.
Collapse
Affiliation(s)
- R Schnell
- Department of Biochemistry, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
38
|
Abstract
The product of the MAT alpha 2 gene is a DNA-binding protein that acts as a repressor of two different sets of cell type-specific genes. In alpha cells, the alpha 2 protein represses the transcription of several a-specific genes. In a/alpha cells, the alpha 2 protein acts together with the product of the MATa1 gene, the a1 protein, to repress several genes used by haploids in the mating process. In addition to the mat alpha 2 mutations that result in defects in both types of regulation, other mat alpha 2 alleles have been described that result in defects in the repression of a-specific genes but that do not affect the ability of the alpha 2 and a1 proteins to interact to repress the haploid-specific genes. We report here the isolation of a new class of mat alpha 2 mutations that do not affect the ability of the alpha 2 protein to repress a-specific genes, but that interfere with the ability of the alpha 2 protein to interact with the a1 protein to repress the haploid-specific genes and establish the a/alpha cell type. These mutations may help determine the means by which the a1 protein interacts with alpha 2 to expand the set of genes under its control.
Collapse
Affiliation(s)
- J Strathern
- Laboratory of Eukaryotic Gene Expression, National Cancer Institute-Frederick Cancer Research Facility, Maryland 21701
| | | | | | | |
Collapse
|