1
|
Milarska SE, Androsiuk P, Paukszto Ł, Jastrzębski JP, Maździarz M, Larson KW, Giełwanowska I. Complete chloroplast genomes of Cerastium alpinum, C. arcticum and C. nigrescens: genome structures, comparative and phylogenetic analysis. Sci Rep 2023; 13:18774. [PMID: 37907682 PMCID: PMC10618263 DOI: 10.1038/s41598-023-46017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
The genus Cerastium includes about 200 species that are mostly found in the temperate climates of the Northern Hemisphere. Here we report the complete chloroplast genomes of Cerastium alpinum, C. arcticum and C. nigrescens. The length of cp genomes ranged from 147,940 to 148,722 bp. Their quadripartite circular structure had the same gene organization and content, containing 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Repeat sequences varied from 16 to 23 per species, with palindromic repeats being the most frequent. The number of identified SSRs ranged from 20 to 23 per species and they were mainly composed of mononucleotide repeats containing A/T units. Based on Ka/Ks ratio values, most genes were subjected to purifying selection. The newly sequenced chloroplast genomes were characterized by a high frequency of RNA editing, including both C to U and U to C conversion. The phylogenetic relationships within the genus Cerastium and family Caryophyllaceae were reconstructed based on the sequences of 71 protein-coding genes. The topology of the phylogenetic tree was consistent with the systematic position of the studied species. All representatives of the genus Cerastium were gathered in a single clade with C. glomeratum sharing the least similarity with the others.
Collapse
Affiliation(s)
- Sylwia E Milarska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1, 10-721, Olsztyn, Poland
| | - Jan P Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Mateusz Maździarz
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1, 10-721, Olsztyn, Poland
| | - Keith W Larson
- Climate Impacts Research Centre, Umeå University, 90187, Umeå, Sweden
| | - Irena Giełwanowska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
2
|
Xu S, Teng K, Zhang H, Gao K, Wu J, Duan L, Yue Y, Fan X. Chloroplast genomes of four Carex species: Long repetitive sequences trigger dramatic changes in chloroplast genome structure. FRONTIERS IN PLANT SCIENCE 2023; 14:1100876. [PMID: 36778700 PMCID: PMC9911286 DOI: 10.3389/fpls.2023.1100876] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The chloroplast genomes of angiosperms usually have a stable circular quadripartite structure that exhibits high consistency in genome size and gene order. As one of the most diverse genera of angiosperms, Carex is of great value for the study of evolutionary relationships and speciation within its genus, but the study of the structure of its chloroplast genome is limited due to its highly expanded and restructured genome with a large number of repeats. In this study, we provided a more detailed account of the chloroplast genomes of Carex using a hybrid assembly of second- and third-generation sequencing and examined structural variation within this genus. The study revealed that chloroplast genomes of four Carex species are significantly longer than that of most angiosperms and are characterized by high sequence rearrangement rates, low GC content and gene density, and increased repetitive sequences. The location of chloroplast genome structural variation in the species of Carex studied is closely related to the positions of long repeat sequences; this genus provides a typical example of chloroplast structural variation and expansion caused by long repeats. Phylogenetic relationships constructed based on the chloroplast protein-coding genes support the latest taxonomic system of Carex, while revealing that structural variation in the chloroplast genome of Carex may have some phylogenetic significance. Moreover, this study demonstrated a hybrid assembly approach based on long and short reads to analyze complex chloroplast genome assembly and also provided an important reference for the analysis of structural rearrangements of chloroplast genomes in other taxa.
Collapse
Affiliation(s)
- Shenjian Xu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ke Teng
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Kang Gao
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Juying Wu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Liusheng Duan
- College of Plants and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuesen Yue
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xifeng Fan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
3
|
Scobeyeva VA, Artyushin IV, Krinitsina AA, Nikitin PA, Antipin MI, Kuptsov SV, Belenikin MS, Omelchenko DO, Logacheva MD, Konorov EA, Samoilov AE, Speranskaya AS. Gene Loss, Pseudogenization in Plastomes of Genus Allium ( Amaryllidaceae), and Putative Selection for Adaptation to Environmental Conditions. Front Genet 2021; 12:674783. [PMID: 34306019 PMCID: PMC8296844 DOI: 10.3389/fgene.2021.674783] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Amaryllidaceae is a large family with more than 1,600 species, belonging to 75 genera. The largest genus—Allium—is vast, comprising about a thousand species. Allium species (as well as other members of the Amaryllidaceae) are widespread and diversified, they are adapted to a wide range of habitats from shady forests to open habitats like meadows, steppes, and deserts. The genes present in chloroplast genomes (plastomes) play fundamental roles for the photosynthetic plants. Plastome traits could thus be associated with geophysical abiotic characteristics of habitats. Most chloroplast genes are highly conserved and are used as phylogenetic markers for many families of vascular plants. Nevertheless, some studies revealed signatures of positive selection in chloroplast genes of many plant families including Amaryllidaceae. We have sequenced plastomes of the following nine Allium (tribe Allieae of Allioideae) species: A. zebdanense, A. moly, A. victorialis, A. macleanii, A. nutans, A. obliquum, A. schoenoprasum, A. pskemense, A. platyspathum, A. fistulosum, A. semenovii, and Nothoscordum bivalve (tribe Leucocoryneae of Allioideae). We compared our data with previously published plastomes and provided our interpretation of Allium plastome genes’ annotations because we found some noteworthy inconsistencies with annotations previously reported. For Allium species we estimated the integral evolutionary rate, counted SNPs and indels per nucleotide position as well as compared pseudogenization events in species of three main phylogenetic lines of genus Allium to estimate whether they are potentially important for plant physiology or just follow the phylogenetic pattern. During examination of the 38 species of Allium and the 11 of other Amaryllidaceae species we found that rps16, rps2, infA, ccsA genes have lost their functionality multiple times in different species (regularly evolutionary events), while the pseudogenization of other genes was stochastic events. We found that the “normal” or “pseudo” state of rps16, rps2, infA, ccsA genes correlates well with the evolutionary line of genus the species belongs to. The positive selection in various NADH dehydrogenase (ndh) genes as well as in matK, accD, and some others were found. Taking into account known mechanisms of coping with excessive light by cyclic electron transport, we can hypothesize that adaptive evolution in genes, coding subunits of NADH-plastoquinone oxidoreductase could be driven by abiotic factors of alpine habitats, especially by intensive light and UV radiation.
Collapse
Affiliation(s)
- Victoria A Scobeyeva
- Department of Evolution, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya V Artyushin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasiya A Krinitsina
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel A Nikitin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim I Antipin
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei V Kuptsov
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim S Belenikin
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Denis O Omelchenko
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, Moscow, Russia
| | - Maria D Logacheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgenii A Konorov
- Laboratory of Animal Genetics, Vavilov Institute of General Genetics, Russian Academy of Science (RAS), Moscow, Russia
| | - Andrey E Samoilov
- Group of Genomics and Postgenomic Technologies, Central Research Institute of Epidemiology, Moscow, Russia
| | - Anna S Speranskaya
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Group of Genomics and Postgenomic Technologies, Central Research Institute of Epidemiology, Moscow, Russia
| |
Collapse
|
4
|
Omelchenko DO, Krinitsina AA, Belenikin MS, Konorov EA, Kuptsov SV, Logacheva MD, Speranskaya AS. Complete plastome sequencing of Allium paradoxum reveals unusual rearrangements and the loss of the ndh genes as compared to Allium ursinum and other onions. Gene 2019; 726:144154. [PMID: 31589962 DOI: 10.1016/j.gene.2019.144154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/12/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023]
Abstract
In this work the complete chloroplast DNAs of Allium paradoxum and Allium ursinum, two edible species of Allium subg. Amerallium (the first lineage), were sequenced, assembled, annotated, and compared with complete Allium plastomes of the second and third evolutionary lines from GenBank database. The A. ursinum plastome contains 90 predicted genes (81 unique) including 5 pseudogenes, while A. paradoxum has 88 predicted genes (79 unique) including 19 pseudogenes. The comparative analysis has revealed that the A. paradoxum plastome differs markedly from those of other species. Due to many deletions, the A. paradoxum plastome is the shortest of known for Allium species, being only 145,819 bp long. The most prominent distinctions are (1) a 4825 bp long local inversion that spans from the ndhE to the rpl32 gene in the small single copy region and (2) pseudogenization, or the loss of all NADH-genes. In contrast, the plastome of A. ursinum - a species from the first evolutionary line (as well as A. paradoxum) - resembles the Allium species of the second and third evolutionary lines, showing no large rearrangements or discrepancies in gene content. It is unclear yet whether only A. paradoxum was affected by some evolutionary events or its close relatives from both sect. Briseis and other sections of Amerallium were altered as well. We speculate the sunlight-intolerant, shade-loving nature of A. paradoxum and the impairment of the ndh genes in its plastome could be interrelated phenomena.
Collapse
Affiliation(s)
- Denis O Omelchenko
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; Institute for Information Transmission Problems, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russia; Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow Region 143026, Russia.
| | - Anastasia A Krinitsina
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; All-Russia Research Institute of Agricultural Biotechnology, Timiryasevskaya St. 42, Moscow 127550, Russia.
| | - Maxim S Belenikin
- Moscow Institute of Physics and Technology, Institutskiy Ln. 9, Dolgoprudny Moscow Region 141701, Russia
| | - Evgenii A Konorov
- Vavilov Institute of General Genetics RAS, Gubkina St. 3, Moscow 119991, Russia; V.M. Gorbatov Federal Research Center for Food Systems RAS, Talalikhina 26, Moscow 109316, Russia
| | - Sergey V Kuptsov
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia
| | - Maria D Logacheva
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; Institute for Information Transmission Problems, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russia; Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow Region 143026, Russia
| | - Anna S Speranskaya
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; Central Research Institute of Epidemiology, Novogireevskaya St. 3a, Moscow 111123, Russia.
| |
Collapse
|
5
|
Landau A, Lencina F, Pacheco MG, Prina AR. Plastome Mutations and Recombination Events in Barley Chloroplast Mutator Seedlings. J Hered 2016; 107:266-73. [PMID: 26774059 PMCID: PMC4885237 DOI: 10.1093/jhered/esw003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/04/2016] [Indexed: 11/12/2022] Open
Abstract
The barley chloroplast mutator (cpm) is an allele of a nuclear gene that when homozygous induces several types of cytoplasmically inherited chlorophyll deficiencies. In this work, a plastome Targeting Induced Local Lesions in Genomes (TILLING) strategy based on mismatch digestion was used on families that carried the cpm genotype through many generations. Extensive scanning of 33 plastome genes and a few intergenic regions was conducted. Numerous polymorphisms were detected on both genic and intergenic regions. The detected polymorphisms can be accounted for by at least 61 independent mutational events. The vast majority of the polymorphisms originated in substitutions and small indels (insertions/deletions) in microsatellites. The rpl23 and the rps16 genes were the most polymorphic. Interestingly, the variation observed in the rpl23 gene consisted of several combinations of 5 different one nucleotide polymorphisms. Besides, 4 large indels that have direct repeats at both ends were also observed, which appear to be originated from recombinational events. The cpm mutation spectrum suggests that the CPM gene product is probably involved in plastome mismatch repair. The numerous subtle molecular changes that were localized in a wide range of plastome sites show the cpm as a valuable source of plastome variability for plant research and/or plant breeding. Moreover, the cpm mutant appears to be an interesting experimental material for investigating the mechanisms responsible for maintaining the stability of plant organelle DNA.
Collapse
Affiliation(s)
- Alejandra Landau
- From the Instituto de Genética "Ewald A. Favret", CICVyA (Centro de Investigación en Ciencias Veterinarias y Agronómicas), Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n (1686) Hurlingham, Buenos Aires, Argentina (Landau, Lencina, Pacheco, and Prina)
| | - Franco Lencina
- From the Instituto de Genética "Ewald A. Favret", CICVyA (Centro de Investigación en Ciencias Veterinarias y Agronómicas), Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n (1686) Hurlingham, Buenos Aires, Argentina (Landau, Lencina, Pacheco, and Prina)
| | - María G Pacheco
- From the Instituto de Genética "Ewald A. Favret", CICVyA (Centro de Investigación en Ciencias Veterinarias y Agronómicas), Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n (1686) Hurlingham, Buenos Aires, Argentina (Landau, Lencina, Pacheco, and Prina)
| | - Alberto R Prina
- From the Instituto de Genética "Ewald A. Favret", CICVyA (Centro de Investigación en Ciencias Veterinarias y Agronómicas), Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n (1686) Hurlingham, Buenos Aires, Argentina (Landau, Lencina, Pacheco, and Prina).
| |
Collapse
|
6
|
Das S, Duggal P, Roy R, Myneedu VP, Behera D, Prasad HK, Bhattacharya A. Identification of hot and cold spots in genome of Mycobacterium tuberculosis using Shewhart Control Charts. Sci Rep 2012; 2:297. [PMID: 22389766 PMCID: PMC3291883 DOI: 10.1038/srep00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/08/2012] [Indexed: 11/09/2022] Open
Abstract
The organization of genomic sequences is dynamic and undergoes change during the process of evolution. Many of the variations arise spontaneously and the observed genomic changes can either be distributed uniformly throughout the genome or be preferentially localized to some regions (hot spots) compared to others. Conversely cold spots may tend to accumulate very few variations or none at all. In order to identify such regions statistically, we have developed a method based on Shewhart Control Chart. The method was used for identification of hot and cold spots of single-nucleotide variations (SNVs) in Mycobacterium tuberculosis genomes. The predictions have been validated by sequencing some of these regions derived from clinical isolates. This method can be used for analysis of other genome sequences particularly infectious microbes.
Collapse
Affiliation(s)
- Sarbashis Das
- School of Computational and Integrative Sciences, JawaharlalNehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
7
|
Ibrahim RIH, Sakamoto M, Azuma JI. PCR-RFLP and genetic diversity analysis of cpDNA in some species of the genus Salvia L. ACTA ACUST UNITED AC 2012. [DOI: 10.3199/iscb.7.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ, Liu JR. The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. PLANT CELL REPORTS 2006; 25:1369-79. [PMID: 16835751 DOI: 10.1007/s00299-006-0196-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/29/2006] [Accepted: 06/09/2006] [Indexed: 05/07/2023]
Abstract
The complete nucleotide sequence of the chloroplast genome of potato Solanum tuberosum L. cv. Desiree was determined. The circular double-stranded DNA, which consists of 155,312 bp, contains a pair of inverted repeat regions (IRa, IRb) of 25,595 bp each. The inverted repeat regions are separated by small and large single copy regions of 18,373 and 85,749 bp, respectively. The genome contains 79 proteins, 30 tRNAs, 4 rRNAs, and unidentified genes. A comparison of chloroplast genomes of seven Solanaceae species revealed that the gene content and their relative positions of S. tuberosum are similar to the other six Solanaceae species. However, undefined open reading frames (ORFs) in LSC region were highly diverged in Solanaceae species except N. sylvestris. Detailed comparison was identified by numerous indels in the intergenic regions that were mostly located in the LSC region. Among them, a single large 241-bp deletion, was not associated with direct repeats and found in only S. tuberosum, clearly discriminates a cultivated potato from wild potato species Solanum bulbocastanum. The extent of sequence divergence may provide the basis for evaluating genetic diversity within the Solanaceae species, and will be useful to examine the evolutionary processes in potato landraces.
Collapse
Affiliation(s)
- Hwa-Jee Chung
- Plant Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Guo CH, Terachi T. Variations in a hotspot region of chloroplast DNAs among common wheat and Aegilops revealed by nucleotide sequence analysis. Genes Genet Syst 2006; 80:277-85. [PMID: 16284421 DOI: 10.1266/ggs.80.277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The second largest BamHI fragment (B2) of the chloroplast DNA in Triticum (wheat) and Aegilops contains a highly variable region (a hotspot), resulting in four types of B2 of different size, i.e. B2l (10.5kb), B2m (10.2kb), B2 (9.6kb) and B2s (9.4kb). In order to gain a better understanding of the molecular nature of the variations in length and explain unexpected identity among B2 of Ae. ovata, Ae. speltoides and common wheat (T. aestivum), the nucleotide sequence between a stop codon of rbcL and a HindIII site in cemA in the hotspot was determined for Ae. ovata, Ae. speltoides, Ae. caudata and Ae. mutica. The total number of nucleotides in the region was 2808, 2810, 3302, and 3594 bp, for Ae. speltoides, Ae. ovata, Ae. caudata and Ae. mutica, respectively, and the sequences were compared with the corresponding ones of Ae. crassa 4x, T. aestivum and Ae. squarrosa. Compared with the largest B2l fragment of Ae. mutica, a 791bp and a 793 bp deletion were found in Ae. speltoides and Ae. ovata, respectively, and the possible site of deletion in the two species is the same as that of T. aestivum. However, a deleted segment in Ae. ovata is 2 bp longer than that of Ae. speltoides (and T. aestivum), demonstrating that recurrent deletions had occurred in the chloroplast genomes of both species. Comparison of the sequences from Ae. caudata and Ae. crassa 4x with that of Ae. mutica revealed a 289 bp and a 61 bp deletion at the same site in Ae. caudata and Ae. crassa 4x, respectively. Sequence comparison using wild Aegilops plants showed that the large length variations in a hotspot are fixed to each species. A considerable number of polymorphisms are observed in a loop in the 3' of rbcL. The study reveals the relative importance of the large and small indels and minute inversions to account for variations in the chloroplast genomes among closely related species.
Collapse
Affiliation(s)
- Chang-Hong Guo
- Laboratory of Genetics, Faculty of Biology, Harbin Normal University, Heilongjiang, PR China
| | | |
Collapse
|
10
|
Ibrahim RIH, Azuma JI, Sakamoto M. Complete Nucleotide Sequence of the Cotton (Gossypium barbadense L.) Chloroplast Genome with a Comparative Analysis of Sequences among 9 Dicot Plants. Genes Genet Syst 2006; 81:311-21. [PMID: 17159292 DOI: 10.1266/ggs.81.311] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recently, the complete chloroplast genome sequences of many important crop plants were determined, and this can be considered a major step forward toward exploiting the usefulness of chloroplast genetic engineering technology. Economically, cotton is one of the most important crop plants for many countries. To further our understanding of this important crop, we determined the complete nucleotide sequence of the chloroplast genome from cotton (Gossypium barbadense L.). The chloroplast genome of cotton is 160,317 base pairs (bp) in length, and is composed of a large single copy (LSC) of 88,841 bp, a small single copy (SSC) of 20,294 bp, and two identical inverted repeat (IR) regions of 25,591 bp each. The genome contains 114 unique genes, of which 17 genes are duplicated in the IRs. In addition, many open reading frames (ORFs) and hypothetical chloroplast reading frames (ycfs) with unknown functions were deduced. Compared to the chloroplast genomes from 8 other dicot plants, the cotton chloroplast genome showed a high degree of similarity of the overall structure, gene organization, and gene content. Furthermore, the sequences of the genes showed high degrees of identity at the DNA and amino acid levels. The cotton chloroplast genome was somewhat longer than the chloroplast genomes of most of the other dicot plants compared here. However, this elongation of the cotton chloroplast genome was found to be due mainly to expansions of the intergenic regions and introns (non-coding DNA). Moreover, these expansions occurred predominantly in the LSC and SSC regions.
Collapse
|
11
|
Aagesen L, Petersen G, Seberg O. Sequence length variation, indel costs, and congruence in sensitivity analysis. Cladistics 2005; 21:15-30. [DOI: 10.1111/j.1096-0031.2005.00053.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Shahid Masood M, Nishikawa T, Fukuoka SI, Njenga PK, Tsudzuki T, Kadowaki KI. The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 2004; 340:133-9. [PMID: 15556301 DOI: 10.1016/j.gene.2004.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 05/15/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
We determined the complete nucleotide sequence of the chloroplast genome of wild rice, Oryza nivara and compared it with the corresponding published sequence of relative cultivated rice, Oryza sativa. The genome was 134,494 bp long with a large single-copy region of 80,544 bp, a small single-copy region of 12,346 bp and two inverted repeats of 20,802 bp each. The overall A+T content was 61.0%. The O. nivara chloroplast genome encoded identical functional genes to O. sativa in the same order along the genome. On the other hand, detailed analysis revealed 57 insertion, 61 deletion and 159 base substitution events in the entire chloroplast genome of O. nivara. Among substitutions, transversions were much higher than transitions with the former even more frequent than the latter in the coding region. Most of the insertions/deletions were single-base but a few large length mutations were also detected. The frequency of insertion/deletion events was more in the coding region within inverted repeats. In contrast, a very few substitution events were identified in the coding region. Polymorphism was observed among rice cultivars at loci of large insertion/deletion events. This is the first report describing comparative and genome wide chloroplast analysis between a wild and cultivated crop.
Collapse
Affiliation(s)
- M Shahid Masood
- Molecular Biodiversity Laboratory, Genetic Diversity Department, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Ibaraki, Tsukuba 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Calsa Júnior T, Carraro DM, Benatti MR, Barbosa AC, Kitajima JP, Carrer H. Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome. Curr Genet 2004; 46:366-73. [PMID: 15526204 DOI: 10.1007/s00294-004-0542-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/30/2004] [Accepted: 10/03/2004] [Indexed: 11/29/2022]
Abstract
The complete nucleotide sequence of the chloroplast genome of sugarcane (Saccharum officinarum) was determined. It consists of 141,182 base-pairs (bp), containing a pair of inverted repeat regions (IR(A), IR(B)) of 22,794 bp each. The IR(A) and IR(B) sequences separate a small single copy region (12,546 bp) and a large single copy (83,048 bp) region. The gene content and relative arrangement of the 116 identified genes (82 peptide-encoding genes, four ribosomal RNA genes, 30 tRNA genes), with the 16 ycf genes, are highly similar to maize. Editing events, defined as C-to-U transitions in the mRNA sequences, were comparable with those observed in maize, rice and wheat. The conservation of gene organization and mRNA editing suggests a common ancestor for the sugarcane and maize plastomes. These data provide the basis for functional analysis of plastid genes and plastid metabolism within the Poaceae. The sugarcane chloroplast DNA sequence is available at GenBank under accession NC005878.
Collapse
Affiliation(s)
- Tercilio Calsa Júnior
- ESALQ/Universidade de São Paulo, Av. Pádua Dias 11, Piracicaba, 13418-900 São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Gülbitti-Onarici S, Sümer S, Aytekin M. Restriction Site Variation of the Intergenic Spacer Region in Chloroplast Genome of Some Wild Wheat Species in Turkey. BIOTECHNOL BIOTEC EQ 2003. [DOI: 10.1080/13102818.2003.10817075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
15
|
Ogihara Y, Ohsawa T. Molecular analysis of the complete set of length mutations found in the plastomes of Triticum-Aegilops species. Genome 2002; 45:956-62. [PMID: 12416629 DOI: 10.1139/g02-046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Precise location and nature of each of 14 length mutations detected among chloroplast DNAs of Triticum-Aegilops species by RFLP analysis were determined at the nucleotide sequence level. Each mutation was compared with at least three non-mutated wild-type plastomes as standards. These 14 length mutations were classified into 4 duplications and 10 deletions. One duplication occurred in the small single-copy region close to the border of the inverted repeat, and the remaining 13 length mutations took place in the large single-copy region. All length mutations occurred in the intergenic regions, suggesting that these length mutations do not affect plastid gene expression. Saltatory replication was the cause of all duplications, whereas intramolecular recombination mediated by short direct repeats played a substantial role in the deletions. Recurrent occurrences of certain deletion events were found in some AT-rich regions, which constituted hot spots for deletion. Out of four hypervariable regions detected among the grass plastomes, two (downstream of rbcL and a tRNA gene accumulated region) were still active after differentiation of Triticum and Aegilops complex.
Collapse
Affiliation(s)
- Y Ogihara
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan.
| | | |
Collapse
|
16
|
Preservation of Nuclear but not Chloroplast DNA in Archaeological Assemblages of Charred Wheat Grains. ACTA ACUST UNITED AC 2002. [DOI: 10.1080/1358612021000010659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. THE PLANT CELL 1999; 11:1769-1784. [PMID: 10488242 PMCID: PMC144304 DOI: 10.1105/tpc.11.9.1769] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 x 10(3) full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial "return ticket from genomic obesity."
Collapse
Affiliation(s)
- CM Vicient
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
18
|
Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. THE PLANT CELL 1999; 11:1769-1784. [PMID: 10488242 DOI: 10.2307/3871053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 x 10(3) full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial "return ticket from genomic obesity."
Collapse
Affiliation(s)
- CM Vicient
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
19
|
Yonemori K, Kanzaki S, Parfitt DE, Utsunomiya N, Subhadrabandhu S, Sugiura A. Phylogenetic relationship of Diospyros kaki (persimmon) to Diospyros spp. (Ebenaceae) of Thailand and four temperate zone Diospyros spp. from an analysis of RFLP variation in amplified cpDNA. Genome 1998. [DOI: 10.1139/g97-106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relationships among 17 Diospyros species from Thailand, with particular emphasis on the relationship of these species to temperate Diospyros species, including Diospyros kaki, were studied, using 81 cpDNA restriction site mutations detected in the 3.2- and 2.1-kb regions of amplified cpDNA and six different length mutations detected in the 2.1-kb region of amplified cpDNA. Parsimony and neighbor-joining analyses were conducted to identify relationships among species. Three temperate zone species, D. kaki, Diospyros lotus, and Diospyros virginiana, were monophyletic with one subtropical species, Diospyros ehretioides, suggesting a close evolutionary relationship among them. An immediate common progenitor for D. kaki and D. virginiana is suggested from cpDNA homology and the polyploidized karyotypes of both species. Our results did not support Ng's hypothesis that Diospyros glandulosa (synonym Diospyros roxburghii) is the progenitor of D. kaki. Two species, Diospyros rhodocalyx and Diospyros confertiflora, were so distant from the remaining species that additional study is needed to determine whether they should be placed in the same genus.Key words: cpDNA, Diospyros, PCR, phylogeny, persimmon, RFLP, taxonomy.
Collapse
|
20
|
Kojima T, Ogihara Y. High-resolution RFLP map of the long arm of chromosome 5A in wheats and its synteny among cereals. Genes Genet Syst 1998. [DOI: 10.1266/ggs.73.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Toshio Kojima
- Kihara Institute for Biological Research, Yokohama City University
| | - Yasunari Ogihara
- Kihara Institute for Biological Research, Yokohama City University
| |
Collapse
|
21
|
Wang GZ, Miyashita NT, Tsunewaki K. Plasmon analyses of Triticum (wheat) and Aegilops: PCR-single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc Natl Acad Sci U S A 1997; 94:14570-7. [PMID: 9405654 PMCID: PMC25058 DOI: 10.1073/pnas.94.26.14570] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate phylogenetic relationships among plasmons in Triticum and Aegilops, PCR-single-strand conformational polymorphism (PCR-SSCP) analyses were made of 14.0-kb chloroplast (ct) and 13. 7-kb mitochondrial (mt)DNA regions that were isolated from 46 alloplasmic wheat lines and one euplasmic line. These plasmons represent 31 species of the two genera. The ct and mtDNA regions included 10 and 9 structural genes, respectively. A total of 177 bands were detected, of which 40.6% were variable. The proportion of variable bands in ctDNA (51.1%) was higher than that of mtDNA (28. 9%). The phylogenetic trees of plasmons, derived by two different models, indicate a common picture of plasmon divergence in the two genera and suggest three major groups of plasmons (Einkorn, Triticum, and Aegilops). Because of uniparental plasmon transmission, the maternal parents of all but one polyploid species were identified. Only one Aegilops species, Ae. speltoides, was included in the Triticum group, suggesting that this species is the plasmon and B and G genome donor of all polyploid wheats. ctDNA variations were more intimately correlated with vegetative characters, whereas mtDNA variations were more closely correlated with reproductive characters. Plasmon divergence among the diploids of the two genera largely paralleled genome divergence. The relative times of origin of the polyploid species were inferred from genetic distances from their putative maternal parents.
Collapse
Affiliation(s)
- G Z Wang
- Department of Bioscience, Fukui Prefectural University, 4-1-1, Kenjyojima, Matsuoka, Yoshida-gun, Fukui 910-11, Japan
| | | | | |
Collapse
|
22
|
Kelchner SA, Clark LG. Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol Phylogenet Evol 1997; 8:385-97. [PMID: 9417896 DOI: 10.1006/mpev.1997.0432] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phylogenetic relationships within Chusquea, a diverse genus of neotropical woody bamboos, and among selected members of the Bambusoideae were explored using rpl16 intron sequence data from the chloroplast genome. Mechanisms of mutation, including slipped-strand mispairing, secondary structure, minute inversions, and base substitutions, were examined within the rpl16 intron, and their effects on sequence alignment and phylogenetic analysis were investigated. Thirty-five bamboo sequences were generated and two separate matrices were analyzed using maximum parsimony. In the first, 23 sequences from Chusquea, 1 of Neurolepis, and 3 outgroups were included. Neurolepis was supported as sister to Chusquea, Chusquea was strongly supported as a monophyletic lineage, and three species of Chusquea subg. Rettbergia were resolved as the most basal clade within the genus. In the second analysis, 15 sequences, 14 from across the subfamily and 1 outgroup, were included. A Bambusoideae clade was recovered with the Olyreae/Parianeae (herbaceous bamboos) and the Bambuseae (woody bamboos) each supported as monophyletic. Two clades corresponding to temperate and tropical woody bamboos were derived within the Bambuseae and the tropical taxa were further split into New World and Old World clades. The rpl16 intron in bamboos was found to be susceptible to frequent length mutations of multiple origins, nonindependent character evolution, and regions of high mutability, all of which created difficulties in alignment and phylogenetic analysis; nonetheless the rpl16 intron is phylogenetically informative at the inter- and intrageneric levels in bamboos.
Collapse
Affiliation(s)
- S A Kelchner
- Department of Botany, Iowa State University, Ames 50011-1020, USA
| | | |
Collapse
|
23
|
Parfitt DE, Badenes ML. Phylogeny of the genus Pistacia as determined from analysis of the chloroplast genome. Proc Natl Acad Sci U S A 1997; 94:7987-92. [PMID: 9223300 PMCID: PMC21542 DOI: 10.1073/pnas.94.15.7987] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Classification within the genus Pistacia has been based on leaf morphology and geographical distribution. Molecular genetic tools (PCR amplification followed by restriction analysis of a 3.2-kb region of variable chloroplast DNA, and restriction fragment length polymorphism analysis of the Pistacia cpDNA with tobacco chloroplast DNA probes) provided a new set of variables to study the phylogenetic relationships of 10 Pistacia species. Both parsimony and cluster analyses were used to divide the genus into two major groups. P. vera was determined to be the least derived species. P. weinmannifolia, an Asian species, is most closely related to P. texana and P. mexicana, New World species. These three species share a common origin, suggesting that a common ancestor of P. texana and P. mexicana originated in Asia. P. integerrima and P. chinensis were shown to be distinct whereas the pairs of species were monophyletic within each of two tertiary groups, P. vera:P. khinjuk and P. mexicana:P. texana. An evolutionary trend from large to small nuts and leaves with few, large leaflets to many, small leaflets was supported. The genus Pistacia was shown to have a low chloroplast DNA mutation rate: 0.05-0.16 times that expected of annual plants.
Collapse
Affiliation(s)
- D E Parfitt
- Department of Pomology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
24
|
Ohsako T, Wang GZ, Miyashita NT. Polymerase chain reaction-single strand conformational polymorphism analysis of intra- and interspecific variations in organellar DNA regions of Aegilops mutica and related species. Genes Genet Syst 1996; 71:281-92. [PMID: 9037775 DOI: 10.1266/ggs.71.281] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In order to study the phylogeny of Aegilops mutica in the genera of Triticum and Aegilops, variations in chloroplast and mitochondrial DNA regions were investigated by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) analysis. Nine lines, each of Ae. mutica and Ae. speltoides, were studied together with nine other Triticum and Aegilops species, including T. aestivum. By analyzing 9.7-kb chloroplast and 13.1-kb mitochondrial DNA regions, a total of 268 bands were detected, of which 176 (65.7%) showed variation within and/or between species. The level of intraspecific variation of Ae. mutica was lower than that of Ae. speltoides. The low level of the intraspecific variation of Ae. mutica was contrary to the expectation from previous studies on morphological and cytolo-gical characters. In the phylogenetic trees based on SSCP, Ae. mutica, Ae. speltoides and the other four species of the section Sitopsis (the subsection Emarginata) were separated into three different clusters. In addition, T. aestivum was included in the cluster of Ae. speltoides in the phylogenetic trees. This result suggests that Ae. speltoides is the cytoplasmic donor of common wheat.
Collapse
Affiliation(s)
- T Ohsako
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Japan
| | | | | |
Collapse
|
25
|
Xu HH, Tabita FR. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl Environ Microbiol 1996; 62:1913-21. [PMID: 8787390 PMCID: PMC167970 DOI: 10.1128/aem.62.6.1913-1921.1996] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Carbon dioxide fixation is carried out primarily through the Calvin-Benson-Bassham reductive pentose phosphate cycle, in which ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) is the key enzyme. The primary structure of the large subunit of form I RubisCO is well conserved; however, four distinct types, A, B, C, and D, may be distinguished, with types A and B and types C and D more closely related to one another. To better understand the environmental regulation of RubisCO in Lake Erie phytoplanktonic microorganisms, we have isolated total RNA and DNA from four Lake Erie sampling sites. Probes prepared from RubisCO large-subunit genes (rbcL) of the freshwater cyanobacterium Synechococcus sp. strain PCC6301 (representative of type IB) and the diatom Cylindrotheca sp. strain N1 (representative of type ID) were hybridized to the isolated RNA and DNA. To quantitate rbcL gene expression for each sample, the amount of gene expression per gene dose (i.e., the amount of mRNA divided by the amount of target DNA) was determined. With a limited number of sampling sites, it appeared that type ID (diatom) rbcL gene expression per gene dose decreased as the sampling sites shifted toward open water. By contrast, a similar trend was not observed for cyanobacterial (type IB) rbcL gene expression per gene dose. Complementary DNA specific for rbcL was synthesized from Lake Erie RNA samples and used as a template for PCR amplification of portions of various rbcL genes. Thus far, a total of 21 clones of rbcL genes derived from mRNA have been obtained and completely sequenced from the Ballast Island site. For surface water samples, deduced amino acid sequences of five of six clones appeared to be representative of green algae. In contrast, six of nine sequenced rbcL clones from 10-m-deep samples were of chromophytic and rhodophytic lineages. At 5 m deep, the active CO2-fixing planktonic organisms represented a diverse group, including organisms related to Chlorella ellipsoidea, Cylindrotheca sp. strain N1, and Olisthodiscus luteus. Although many more samplings at diverse sites must be accomplished, the discovery of distinctly different sequences of rbcL mRNA at different water depths suggests that there is a stratification of active CO2-fixing organisms in western Lake Erie.
Collapse
Affiliation(s)
- H H Xu
- Department of Microbiology, Ohio State University, Columbus 43210-1292, USA
| | | |
Collapse
|
26
|
Luo H, Boutry M. Phylogenetic relationships within Hevea brasiliensis as deduced from a polymorphic mitochondrial DNA region. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:876-884. [PMID: 24169972 DOI: 10.1007/bf00223895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/1995] [Accepted: 03/24/1995] [Indexed: 06/02/2023]
Abstract
We have cloned a 4.5-kb mtDNA fragment showing a high RFLP polymorphism between various Hevea genotypes. Subcloning and sequencing of a 1.4-kb segment of this clone allowed us to design PCR amplification primers to isolate homologous mtDNA segments of about 0.9 kb from 23 representative genotypes of Hevea. Complete sequences from 4 genotypes showed between 6.7% and 20.2% of nucleotide diversity, suggesting the presence of a hypervariable, or hotspot, region. A sequence of 345 nucleotides within this region was determined for the 23 genotypes. The phylogenetic relationships inferred from the sequence comparison are in general agreement with the results obtained from mtDNA RFLP analysis, indicating that this polymorphic mtDNA region is a useful molecular marker for phylogenetic analysis within Hevea.
Collapse
Affiliation(s)
- H Luo
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Place Croix du Sud 2-20, B-1348, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
27
|
Badenes ML, Parfitt DE. Phylogenetic relationships of cultivated Prunus species from an analysis of chloroplast DNA variation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:1035-1041. [PMID: 24173059 DOI: 10.1007/bf00222918] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/1994] [Accepted: 12/08/1994] [Indexed: 06/02/2023]
Abstract
Chloroplast DNA (cpDNA) restriction-site mutations in seven cultivated Prunus species were compared to establish the phylogenetic relationships among them. Mutations were detected in 3.2-kb and 2.1-kb amplified regions of variable cpDNA, cut with 21 and 10 restriction endonucleases, respectively, to reveal polymorphisms. Parsimony and cluster analyses were performed. The species pairs P. persica-P. dulcis, P. domestica-P. salicina, and P.cerasus-P. fruticosa were completely monophyletic. All of the species were grouped with conventional subgenus classifications. The subgenus Cerasus was the most diverged. Cerasus ancestors separated from the remainder of Prunus relatively early in the development of the genus. P. persica-P. dulcis, P. domestica-P. salicina and P. armeniaca formed a second monophyletic group. Prunophora species were less diverged than Amygdalus species. The results also suggest that the rate of mutation in Cerasus spp. chloroplast genomes is significantly greater than for the other subgenera sampled.
Collapse
Affiliation(s)
- M L Badenes
- Department of Pomology, University of California, 95616, Davis, CA, USA
| | | |
Collapse
|
28
|
Miyashita NT, Mori N, Tsunewaki K. Molecular variation in chloroplast DNA regions in ancestral species of wheat. Genetics 1994; 137:883-9. [PMID: 7916310 PMCID: PMC1206048 DOI: 10.1093/genetics/137.3.883] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Restriction map variation in two 5-6-kb chloroplast DNA regions of five diploid Aegilops species in the section Sitopsis and two wild tetraploid wheats, Triticum dicoccoides and Triticum araraticum, was investigated with a battery of four-cutter restriction enzymes. A single accession each of Triticum durum, Triticum timopheevi and Triticum aestivum was included as a reference. More than 250 restriction sites were scored, of which only seven sites were found polymorphic in Aegilops speltoides. No restriction site polymorphisms were detected in all of the other diploid and tetraploid species. In addition, six insertion/deletion polymorphisms were detected, but they were mostly unique or species-specific. Estimated nucleotide diversity was 0.0006 for A. speltoides, and 0.0000 for all the other investigated species. In A. speltoides, none of Tajima's D values was significant, indicating no clear deviation from the neutrality of molecular polymorphisms. Significant non-random association was detected for three combinations out of 10 possible pairs between polymorphic restriction sites in A. speltoides. Phylogenetic relationship among all the plastotypes (plastid genotype) suggested the diphyletic origin of T. dicoccoides and T. araraticum. A plastotype of one A. speltoides accession was identical to the major type of T. araraticum (T. timopheevi inclusively). Three of the plastotypes found in the Sitopsis species are very similar, but not identical, to that of T. dicoccoides, T. durum and T. aestivum.
Collapse
Affiliation(s)
- N T Miyashita
- Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan
| | | | | |
Collapse
|
29
|
van Ham RC, Hart H, Mes TH, Sandbrink JM. Molecular evolution of noncoding regions of the chloroplast genome in the Crassulaceae and related species. Curr Genet 1994; 25:558-66. [PMID: 8082209 DOI: 10.1007/bf00351678] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Universal primers were used for PCR amplification of three noncoding regions of chloroplast DNA (cpDNA) in order to study sequence-length variation in the Crassulaceae and in related species. Several length mutations were observed that are of diagnostic value for evolutionary relationships in the Crassulaceae and the Saxifragaceae. Length variation and sequence divergence in the intergenic spacer between the trnL (UAA) 3' exon and the trnF (GAA) gene among 15 species were studied in detail by nucleotide-sequence analysis. A total of 50 insertion/deletion mutations were observed, accounting for a spacer-length variation in the range of 228-360 bp. Eighteen short direct repeat motifs (4-11 bp) and two inverted repeat motifs (7-11 bp) were found to be associated with length variation. Phylogenetic analysis of the sequence data indicated a pattern of relationships that was largely consistent with a previous analysis of cpDNA restriction-site variation. Evaluation of the level of homoplasy in insertion/deletion mutations within a phylogenetic framework revealed that only 1 out of 34 length mutations longer than 2 bp must have had multiple origins. The feasibility of the noncoding chloroplast DNA regions for molecular evolutionary studies is discussed.
Collapse
Affiliation(s)
- R C van Ham
- Department of Plant Ecology and Evolutionary Biology, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
30
|
Morton BR, Clegg MT. A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae). Curr Genet 1993; 24:357-65. [PMID: 8252646 DOI: 10.1007/bf00336789] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The noncoding DNA region of the chloroplast genome, flanked by the genes rbcL and psaI (ORF36), has been sequenced for seven species of the grass family (Poaceae). This region had previously been observed as a hotspot area for length mutations. Sequence comparison reveals that short duplications, probably resulting from slipped-strand mispairing, account for many small length differences between sequences but that major mutational hotspots are localized in three small areas, two of which show potential secondary structure. Mutation in one of these hotspots appears to be a result of more complex recombination events. All seven species contain a pseudogene for rpl23 and evidence is presented that this pseudogene is being maintained by gene conversion with the functional gene. Different transition/transversion biases and AT contents between the pseudogene and the surrounding noncoding sequences are noted. In the subfamily Panicoideae there is a deletion in which almost 1 kb of ancestral sequence, including the 3' end of the rpl23 pseudogene, has been replaced by a non-homologous 60-base sequence of unknown origin. Two other deletions of almost the same region have occurred in the grass family. The deleted noncoding region has mutational and compositional properties similar to the rbcL coding sequence and the rpl23 pseudogene. The three independent deletions, as well as the pattern of mutation in the localized hotspots, indicate that such noncoding DNA may be misleading for studies of phylogenetic inference.
Collapse
Affiliation(s)
- B R Morton
- Department of Botany and Plant Sciences, University of California, Riverside 92521
| | | |
Collapse
|
31
|
Ogihara Y, Terachi T, Sasakuma T. Structural analysis of length mutations in a hot-spot region of wheat chloroplast DNAs. Curr Genet 1992; 22:251-8. [PMID: 1339325 DOI: 10.1007/bf00351733] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hot-spot region related to length mutations in the chloroplast genome of the wheat group was precisely analyzed at the DNA sequence level. This region, located downstream from the rbcL gene, was highly enriched in A + T, and contained a number of direct and inverted repeats. Many deletions/insertions were observed in the region. In most deletions/insertions of multiple nucleotides, short repeated sequences were found at the mutation points. Furthermore, a pair of short repeated sequences was also observed at the border of the translocated gene. A sequence homologous with ORF512 of tobacco cpDNA was truncated in cpDNAs of the wheat group and found only in the mitochondrial DNA of Ae. crassa, suggesting the inter-organellar translocation of this sequence. Mechanisms that could generate structural alterations of the chloroplast genome in the wheat group are discussed.
Collapse
Affiliation(s)
- Y Ogihara
- Kihara Institute for Biological Research, Yokohama City University, Japan
| | | | | |
Collapse
|
32
|
Ikeda TM, Terachi T, Tsunewaki K. Variations in chloroplast proteins and nucleotide sequences of three chloroplast genes in Triticum and Aegilops. IDENGAKU ZASSHI 1992; 67:111-23. [PMID: 1388032 DOI: 10.1266/jjg.67.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two alloplasmic wheat lines having the same common wheat nucleus but the cytoplasms of Aegilops crassa and Ae. columnaris together with the corresponding normal line (control) were used in the two-dimensional gel electrophoresis of soluble and thylakoid membrane proteins of the chloroplast. Three chloroplast polypeptides: the Rubisco large subunit, the beta subunit of ATP synthase, and an unidentified 31 kDa protein, differed in the common wheat and two Aegilops cytoplasms. Three chloroplast genes, atpB, atpE and trnM, that respectively encode the beta and epsilon subunits of ATP synthase and tRNA(met), were sequenced. The atpB gene differed by two synonymous base substitutions, whereas the other two genes were identical in the two Aegilops cytoplasms. From the predicted amino acid sequences, the beta subunits of the ATP synthase in the Aegilops cytoplasms were assumed to have three amino acid substitutions: Ala by Val, Asp- by Ala, and Gln by Lys+, in contrast to the cytoplasm of common wheat. This accounts for the difference in pI values found for the common wheat and Aegilops cytoplasms. The two base substitutions for the atpE genes of common wheat and the Aegilops cytoplasms were synonymous. The differences detected in the genes encoding the two subunits of ATP synthase do not appear to be ascribable to the differences in phenotypic effects for the common wheat and Aegilops cytoplasms. The base substitution rate of the atpB-atpE-trnM gene cluster was similar to that of the rbcL gene. From the rate for the atpB gene alone, evolutionary divergence of the wheat-Aegilops complex is assumed to have begun ca. 3.0 x 10(6) years ago, as compared to ca. 8.0 x 10(6) years ago for the divergence of the wheat-Aegilops complex and barley.
Collapse
Affiliation(s)
- T M Ikeda
- Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan
| | | | | |
Collapse
|
33
|
IKEDA TM, TERACHI T, TSUNEWAKI K. Variations in chloroplast proteins and nucleotide sequences of three chloroplast genes in Triticum and Aegilops. Genes Genet Syst 1992. [DOI: 10.1266/ggs.67.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|