1
|
Pei J, Andreeva A, Chuguransky S, Lázaro Pinto B, Paysan-Lafosse T, Dustin Schaeffer R, Bateman A, Cong Q, Grishin NV. Bridging the Gap between Sequence and Structure Classifications of Proteins with AlphaFold Models. J Mol Biol 2024; 436:168764. [PMID: 39197652 DOI: 10.1016/j.jmb.2024.168764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Classification of protein domains based on homology and structural similarity serves as a fundamental tool to gain biological insights into protein function. Recent advancements in protein structure prediction, exemplified by AlphaFold, have revolutionized the availability of protein structural data. We focus on classifying about 9000 Pfam families into ECOD (Evolutionary Classification of Domains) by using predicted AlphaFold models and the DPAM (Domain Parser for AlphaFold Models) tool. Our results offer insights into their homologous relationships and domain boundaries. More than half of these Pfam families contain DPAM domains that can be confidently assigned to the ECOD hierarchy. Most assigned domains belong to highly populated folds such as Immunoglobulin-like (IgL), Armadillo (ARM), helix-turn-helix (HTH), and Src homology 3 (SH3). A large fraction of DPAM domains, however, cannot be confidently assigned to ECOD homologous groups. These unassigned domains exhibit statistically different characteristics, including shorter average length, fewer secondary structure elements, and more abundant transmembrane segments. They could potentially define novel families remotely related to domains with known structures or novel superfamilies and folds. Manual scrutiny of a subset of these domains revealed an abundance of internal duplications and recurring structural motifs. Exploring sequence and structural features such as disulfide bond patterns, metal-binding sites, and enzyme active sites helped uncover novel structural folds as well as remote evolutionary relationships. By bridging the gap between sequence-based Pfam and structure-based ECOD domain classifications, our study contributes to a more comprehensive understanding of the protein universe by providing structural and functional insights into previously uncharacterized proteins.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Antonina Andreeva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Sara Chuguransky
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Beatriz Lázaro Pinto
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Typhaine Paysan-Lafosse
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - R Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK.
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Butcher SE. A left-handed RNA quadruplex directs gene silencing. Trends Biochem Sci 2024; 49:387-390. [PMID: 38368181 PMCID: PMC11069436 DOI: 10.1016/j.tibs.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Poly(UG) or 'pUG' dinucleotide repeats direct gene silencing in Caenorhabditis elegans by adopting an unusual quadruplex structure. Humans have thousands of pUG sequences and proteins that interact with them. The pUG fold reveals new aspects of gene regulation and RNA folding, highlighting how a simple sequence can encode a complex structure.
Collapse
Affiliation(s)
- Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Manage KI, Rogers AK, Wallis DC, Uebel CJ, Anderson DC, Nguyen DAH, Arca K, Brown KC, Cordeiro Rodrigues RJ, de Albuquerque BF, Ketting RF, Montgomery TA, Phillips CM. A tudor domain protein, SIMR-1, promotes siRNA production at piRNA-targeted mRNAs in C. elegans. eLife 2020; 9:56731. [PMID: 32338603 PMCID: PMC7255803 DOI: 10.7554/elife.56731] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
piRNAs play a critical role in the regulation of transposons and other germline genes. In Caenorhabditis elegans, regulation of piRNA target genes is mediated by the mutator complex, which synthesizes high levels of siRNAs through the activity of an RNA-dependent RNA polymerase. However, the steps between mRNA recognition by the piRNA pathway and siRNA amplification by the mutator complex are unknown. Here, we identify the Tudor domain protein, SIMR-1, as acting downstream of piRNA production and upstream of mutator complex-dependent siRNA biogenesis. Interestingly, SIMR-1 also localizes to distinct subcellular foci adjacent to P granules and Mutator foci, two phase-separated condensates that are the sites of piRNA-dependent mRNA recognition and mutator complex-dependent siRNA amplification, respectively. Thus, our data suggests a role for multiple perinuclear condensates in organizing the piRNA pathway and promoting mRNA regulation by the mutator complex. In the biological world, a process known as RNA interference helps cells to switch genes on and off and to defend themselves against harmful genetic material. This mechanism works by deactivating RNA sequences, the molecular templates cells can use to create proteins. Overall, RNA interference relies on the cell creating small RNA molecules that can target and inhibit the harmful RNA sequences that need to be silenced. More precisely, in round worms such as Caenorhabditis elegans, RNA interference happens in two steps. First, primary small RNAs identify the target sequences, which are then combatted by newly synthetised, secondary small RNAs. A number of proteins are also involved in both steps of the process. RNA interference is particularly important to preserve fertility, guarding sex cells against ‘rogue’ segments of genetic information that could be passed on to the next generation. In future sex cells, the proteins involved in RNA interference cluster together, forming a structure called a germ granule. Yet, little is known about the roles and identity of these proteins. To fill this knowledge gap, Manage et al. focused on the second stage of the RNA interference pathway in the germ granules of C. elegans, examining the molecules that physically interact with a key protein. This work revealed a new protein called SIMR-1. Looking into the role of SIMR-1 showed that the protein is required to amplify secondary small RNAs, but not to identify target sequences. However, it only promotes the creation of secondary small RNAs if a specific subtype of primary small RNAs have recognized the target RNAs for silencing. Further experiments also showed that within the germ granule, SIMR-1 is present in a separate substructure different from any compartment previously identified. This suggests that each substep of the RNA interference process takes place at a different location in the granule. In both C. elegans and humans, disruptions in the RNA interference pathway can lead to conditions such as cancer or infertility. Dissecting the roles of the proteins involved in this process in roundworms may help to better grasp how this process unfolds in mammals, and how it could be corrected in the case of disease.
Collapse
Affiliation(s)
- Kevin I Manage
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Alicia K Rogers
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Dylan C Wallis
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Celja J Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Dorian C Anderson
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Dieu An H Nguyen
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Katerina Arca
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Kristen C Brown
- Department of Biology, Colorado State University, Fort Collins, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, United States
| | - Ricardo J Cordeiro Rodrigues
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Mainz, Germany.,International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, Mainz, Germany
| | | | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Mainz, Germany
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, United States
| | - Carolyn Marie Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| |
Collapse
|
4
|
Wallis DC, Nguyen DAH, Uebel CJ, Phillips CM. Visualization and Quantification of Transposon Activity in Caenorhabditis elegans RNAi Pathway Mutants. G3 (BETHESDA, MD.) 2019; 9:3825-3832. [PMID: 31533956 PMCID: PMC6829131 DOI: 10.1534/g3.119.400639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
RNA silencing pathways play critical roles in maintaining quiescence of transposons in germ cells to promote genome integrity. However the precise mechanism by which different types of transposons are recognized by these pathways is not fully understood. Furthermore, the location in the germline where this transposition occurs after disruption of transposon silencing was previously unknown. Here we utilize the spatial and temporal organization of the Caenorhabditis elegans germline to demonstrate that transposition of DNA transposons in RNA silencing pathway mutants occur in all stages of adult germ cells. We further demonstrate that the double-strand breaks generated by transposons can restore homologous recombination in a mutant defective for the generation of meiosis-specific double-strand breaks. Finally, we detected clear differences in transposase expression and transposon excision between distinct branches of the RNA silencing pathway, emphasizing that there are multiple mechanisms by which transposons can be recognized and routed for small-RNA-mediated silencing.
Collapse
Affiliation(s)
- Dylan C Wallis
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Dieu An H Nguyen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Celja J Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
5
|
Braukmann F, Jordan D, Miska E. Artificial and natural RNA interactions between bacteria and C. elegans. RNA Biol 2017; 14:415-420. [PMID: 28332918 DOI: 10.1080/15476286.2017.1297912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nineteen years after Lisa Timmons and Andy Fire first described RNA transfer from bacteria to C. elegans in an experimental setting 48 the biologic role of this trans-kingdom RNA-based communication remains unknown. Here we summarize our current understanding on the mechanism and potential role of such social RNA.
Collapse
Affiliation(s)
- Fabian Braukmann
- a Gurdon Institute, University of Cambridge , Cambridge , UK.,b Department of Genetics , University of Cambridge , Cambridge , UK
| | - David Jordan
- a Gurdon Institute, University of Cambridge , Cambridge , UK.,b Department of Genetics , University of Cambridge , Cambridge , UK
| | - Eric Miska
- a Gurdon Institute, University of Cambridge , Cambridge , UK.,b Department of Genetics , University of Cambridge , Cambridge , UK.,c Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus, Cambridge , UK
| |
Collapse
|
6
|
Abstract
Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal.
Collapse
Affiliation(s)
- Lena M Kutscher
- Laboratory of Developmental Genetics, The Rockefeller University, New York NY 10065, USA.
| | | |
Collapse
|
7
|
Gao Q, Tancredi SE, Thompson GJ. Identification of mycosis-related genes in the eastern subterranean termite by suppression subtractive hybridization. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 80:63-76. [PMID: 22549993 DOI: 10.1002/arch.21026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Eastern subterranean termite Reticulitermes flavipes (Isoptera, Rhinotermitidae) is a cosmopolitan, structural pest that is the target of research into termite innate immunity. In this study, we use suppression subtractive hybridization to construct a normalized cDNA library of genes excessively expressed upon fungal infection. At 24 h postinfection with Metarhizium anisopliae, the library revealed 182 expressed sequence tag (EST) clones that potentially represent immune responsive genes. The nucleotide sequence from a majority (97%) of ESTs assembled into a small number (n = 13) of contiguous sequences, with the remainder (n = 6) representing singletons. Our screen therefore captured as many as 19 different mRNAs highly expressed in response to the fungal pathogen at this time. Primary sequencing of all loci revealed that approximately half (n = 10) contained open reading frames with significant similarity to known proteins. These clones represent nuclear and mitochondrial coding genes, as well as putative long noncoding RNA genes. Quantitative polymerase chain reaction analysis of coding genes on independently infected groups of worker termites confirms in each case that the transcripts identified from the library are up-regulated postfungal infection. The genes identified here are relevant to future studies on termite biocontrol and social insect immunity.
Collapse
Affiliation(s)
- Qi Gao
- Department of Biology, Western University, London, Canada
| | | | | |
Collapse
|
8
|
Linheiro RS, Bergman CM. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster. PLoS One 2012; 7:e30008. [PMID: 22347367 PMCID: PMC3276498 DOI: 10.1371/journal.pone.0030008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/11/2011] [Indexed: 12/20/2022] Open
Abstract
Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.
Collapse
Affiliation(s)
- Raquel S. Linheiro
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Casey M. Bergman
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
10
|
Linheiro RS, Bergman CM. Testing the palindromic target site model for DNA transposon insertion using the Drosophila melanogaster P-element. Nucleic Acids Res 2008; 36:6199-208. [PMID: 18829720 PMCID: PMC2577343 DOI: 10.1093/nar/gkn563] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the molecular mechanisms that influence transposable element target site preferences is a fundamental challenge in functional and evolutionary genomics. Large-scale transposon insertion projects provide excellent material to study target site preferences in the absence of confounding effects of post-insertion evolutionary change. Growing evidence from a wide variety of prokaryotes and eukaryotes indicates that DNA transposons recognize staggered-cut palindromic target site motifs (TSMs). Here, we use over 10 000 accurately mapped P-element insertions in the Drosophila melanogaster genome to test predictions of the staggered-cut palindromic target site model for DNA transposon insertion. We provide evidence that the P-element targets a 14-bp palindromic motif that can be identified at the primary sequence level, which predicts the local spacing, hotspots and strand orientation of P-element insertions. Intriguingly, we find that the although P-element destroys the complete 14-bp target site upon insertion, the terminal three nucleotides of the P-element inverted repeats complement and restore the original TSM, suggesting a mechanistic link between transposon target sites and their terminal inverted repeats. Finally, we discuss how the staggered-cut palindromic target site model can be used to assess the accuracy of genome mappings for annotated P-element insertions.
Collapse
Affiliation(s)
- Raquel S Linheiro
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | |
Collapse
|
11
|
Chen CCG, Simard MJ, Tabara H, Brownell DR, McCollough JA, Mello CC. A member of the polymerase beta nucleotidyltransferase superfamily is required for RNA interference in C. elegans. Curr Biol 2005; 15:378-83. [PMID: 15723801 DOI: 10.1016/j.cub.2005.01.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/04/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
RNA interference (RNAi) is an ancient, highly conserved mechanism in which small RNA molecules (siRNAs) guide the sequence-specific silencing of gene expression . Several silencing machinery protein components have been identified, including helicases, RNase-related proteins, double- and single-stranded RNA binding proteins, and RNA-dependent RNA polymerase-related proteins . Work on these factors has led to the revelation that RNAi mechanisms intersect with cellular pathways required for development and fertility . Despite rapid progress in understanding key steps in the RNAi pathway, it is clear that many factors required for both RNAi and related developmental mechanisms have not yet been identified. Here, we report the characterization of the C. elegans gene rde-3. Genetic analysis of presumptive null alleles indicates that rde-3 is required for siRNA accumulation and for efficient RNAi in all tissues, and it is essential for fertility and viability at high temperatures. RDE-3 contains conserved domains found in the polymerase beta nucleotidyltransferase superfamily, which includes conventional poly(A) polymerases, 2'-5' oligoadenylate synthetase (OAS), and yeast Trf4p . These findings implicate a new enzymatic modality in RNAi and suggest possible models for the role of RDE-3 in the RNAi mechanism.
Collapse
Affiliation(s)
- Chun-Chieh G Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
12
|
Almeida CA, Tardiff DF, De Luca JP. An introductory bioinformatics exercise to reinforce gene structure and expression and analyze the relationship between gene and protein sequences. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 32:239-245. [PMID: 21706731 DOI: 10.1002/bmb.2004.494032040373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have developed an introductory bioinformatics exercise for sophomore biology and biochemistry students that reinforces the understanding of the structure of a gene and the principles and events involved in its expression. In addition, the activity illustrates the severe effect mutations in a gene sequence can have on the protein product. Students search GenBank for the wild-type nucleotide sequence of the Caenorhabditis elegans unc-22 gene, the amino acid sequence of its gene product, and the nucleotide sequence of the transposon Tc5. The nucleotide sequences are manipulated using two programs in the Lasergene® software package from DNASTAR®. The first program, EditSeq®, enables students to experience the meticulous process required to precisely locate and remove intron sequences from the wild-type unc-22 allele to generate a cDNA sequence. The unc-22(r466) allele is generated by inserting the sequence of the transposon Tc5 into the appropriate location of the third exon in unc-22. The open reading frames of both cDNAs are located and then translated. MegAlign®, the second program, aligns the wild-type sequence of the UNC-22 protein and the wild-type and mutant protein sequences that were constructed. The degree of sequence similarity between the aligned proteins allows students to verify their success in processing the gene, as well as to visualize the truncated protein product from the Tc5 mutant allele. Student feedback and possible modifications to the exercise as well as supplemental exercises are also discussed.
Collapse
Affiliation(s)
- Craig A Almeida
- Biochemistry Program, Stonehill College, Easton, Massachusetts 02357; Biology Department, Stonehill College, Easton, Massachusetts 02357.
| | | | | |
Collapse
|
13
|
Rizzon C, Martin E, Marais G, Duret L, Ségalat L, Biémont C. Patterns of Selection Against Transposons Inferred From the Distribution of Tc1, Tc3 and Tc5 Insertions in the mut-7 Line of the Nematode Caenorhabditis elegans. Genetics 2003; 165:1127-35. [PMID: 14668370 PMCID: PMC1462815 DOI: 10.1093/genetics/165.3.1127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
To identify the factors (selective or mutational) that affect the distribution of transposable elements (TEs) within a genome, it is necessary to compare the pattern of newly arising element insertions to the pattern of element insertions that have been fixed in a population. To do this, we analyzed the distribution of recent mutant insertions of the Tc1, Tc3, and Tc5 elements in a mut-7 background of the nematode Caenorhabditis elegans and compared it to the distribution of element insertions (presumably fixed) within the sequenced genome. Tc1 elements preferentially insert in regions with high recombination rates, whereas Tc3 and Tc5 do not. Although Tc1 and Tc3 both insert in TA dinucleotides, there is no clear relationship between the frequency of insertions and the TA dinucleotide density. There is a strong selection against TE insertions within coding regions: the probability that a TE will be fixed is at least 31 times lower in coding regions than in noncoding regions. Contrary to the prediction of theoretical models, we found that the selective pressure against TE insertions does not increase with the recombination rate. These findings indicate that the distribution of these three transposon families in the genome of C. elegans is determined essentially by just two factors: the pattern of insertions, which is a characteristic of each family, and the selection against insertions within coding regions.
Collapse
Affiliation(s)
- Carène Rizzon
- Biométrie, Biologie Evolutive, UMR 5558, Université Lyon 1, 69622 Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
14
|
Fischer SEJ, Wienholds E, Plasterk RHA. Continuous exchange of sequence information between dispersed Tc1 transposons in the Caenorhabditis elegans genome. Genetics 2003; 164:127-34. [PMID: 12750326 PMCID: PMC1462561 DOI: 10.1093/genetics/164.1.127] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a genome-wide analysis of the active transposons in Caenorhabditis elegans we determined the localization and sequence of all copies of each of the six active transposon families. Most copies of the most active transposons, Tc1 and Tc3, are intact but individually have a unique sequence, because of unique patterns of single-nucleotide polymorphisms. The sequence of each of the 32 Tc1 elements is invariant in the C. elegans strain N2, which has no germline transposition. However, at the same 32 Tc1 loci in strains with germline transposition, Tc1 elements can acquire the sequence of Tc1 elements elsewhere in the N2 genome or a chimeric sequence derived from two dispersed Tc1 elements. We hypothesize that during double-strand-break repair after Tc1 excision, the template for repair can switch from the Tc1 element on the sister chromatid or homologous chromosome to a Tc1 copy elsewhere in the genome. Thus, the population of active transposable elements in C. elegans is highly dynamic because of a continuous exchange of sequence information between individual copies, potentially allowing a higher evolution rate than that found in endogenous genes.
Collapse
Affiliation(s)
- Sylvia E J Fischer
- Hubrecht Laboratory, Center for Biomedical Genetics, 3584 CT Utrecht, The Netherlands
| | | | | |
Collapse
|
15
|
Suzuki Y, Morris GA, Han M, Wood WB. A cuticle collagen encoded by the lon-3 gene may be a target of TGF-beta signaling in determining Caenorhabditis elegans body shape. Genetics 2002; 162:1631-9. [PMID: 12524338 PMCID: PMC1462364 DOI: 10.1093/genetics/162.4.1631] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The signaling pathway initiated by the TGF-beta family member DBL-1 in Caenorhabditis elegans controls body shape in a dose-dependent manner. Loss-of-function (lf) mutations in the dbl-1 gene cause a short, small body (Sma phenotype), whereas overexpression of dbl-1 causes a long body (Lon phenotype). To understand the cellular mechanisms underlying these phenotypes, we have isolated suppressors of the Sma phenotype resulting from a dbl-1(lf) mutation. Two of these suppressors are mutations in the lon-3 gene, of which four additional alleles are known. We show that lon-3 encodes a collagen that is a component of the C. elegans cuticle. Genetic and reporter-gene expression analyses suggest that lon-3 is involved in determination of body shape and is post-transcriptionally regulated by the dbl-1 pathway. These results support the possibility that TGF-beta signaling controls C. elegans body shape by regulating cuticle composition.
Collapse
Affiliation(s)
- Yo Suzuki
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|
16
|
Martin E, Laloux H, Couette G, Alvarez T, Bessou C, Hauser O, Sookhareea S, Labouesse M, Ségalat L. Identification of 1088 New Transposon Insertions of Caenorhabditis elegans: A Pilot Study Toward Large-Scale Screens. Genetics 2002; 162:521-4. [PMID: 12242258 PMCID: PMC1462269 DOI: 10.1093/genetics/162.1.521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
We explored the feasibility of a strategy based on transposons to generate identified mutants of most Caenorhabditis elegans genes. A total of 1088 random new insertions of C. elegans transposons Tc1, Tc3, and Tc5 were identified by anchored PCR, some of which result in a mutant phenotype.
Collapse
Affiliation(s)
- Edwige Martin
- CGMC, CNRS-UMR 5534, Université Lyon1, 69100 Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Turcotte K, Bureau T. Phylogenetic analysis reveals stowaway-like elements may represent a fourth family of the IS630-Tc1-mariner superfamily. Genome 2002; 45:82-90. [PMID: 11908672 DOI: 10.1139/g01-127] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genomes of plants, like virtually all other eukaryotic organisms, harbor a diverse array of mobile elements, or transposons. In terms of numbers, the predominant type of transposons in many plants is the miniature inverted-repeat transposable element (MITE). There are three archetypal MITEs, known as Tourist, Stowaway, and Emigrant, each of which can be defined by a specific terminal inverted-repeat (TIR) sequence signature. Although their presence was known for over a decade, only recently have open reading frames (ORFs) been identified that correspond to putative transposases for each of the archetypes. We have identified two Stowaway elements that encode a putative transposase and are similar to members of the previously characterized IS630-Tc1-mariner superfamily. In this report, we provide a high-resolution phylogenetic analysis of the evolutionary relationship between Stowaway, Emigrant, and members of the IS630-Tc1-mariner superfamily. We show that although Emigrant is closely related to the pogo-like family of elements, Stowaway may represent a novel family. Integration of our results with previously published data leads to the conclusion that the three main types of MITEs have different evolutionary histories despite similarity in structure.
Collapse
Affiliation(s)
- Kime Turcotte
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
18
|
Abstract
Members of the Tourist family of miniature inverted-repeat transposable elements (MITEs) are very abundant among a wide variety of plants, are frequently found associated with normal plant genes, and thus are thought to be important players in the organization and evolution of plant genomes. In Arabidopsis, the recent discovery of a Tourist member harboring a putative transposase has shed new light on the mobility and evolution of MITEs. Here, we analyze a family of Tourist transposons endogenous to the genome of the nematode Caenorhabditis elegans (Bristol N2). One member of this large family is 7568 bp in length, harbors an ORF similar to the putative Tourist transposase from Arabidopsis, and is related to the IS5 family of bacterial insertion sequences (IS). Using database searches, we found expressed sequence tags (ESTs) similar to the putative Tourist transposases in plants, insects, and vertebrates. Taken together, our data suggest that Tourist-like and IS5-like transposons form a superfamily of potentially active elements ubiquitous to prokaryotic and eukaryotic genomes.
Collapse
Affiliation(s)
- Q H Le
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | |
Collapse
|
19
|
Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2001; 2:110-9. [PMID: 11253050 DOI: 10.1038/35052556] [Citation(s) in RCA: 541] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Imagine being able to knock out your favourite gene with only a day's work. Not just in one model system, but in virtually any organism: plants, flies, mice or cultured cells. This sort of experimental dream might one day become reality as we learn to harness the power of RNA interference, the process by which double-stranded RNA induces the silencing of homologous endogenous genes. How this phenomenon works is slowly becoming clear, and might help us to develop an effortless tool to probe gene function in cells and animals.
Collapse
Affiliation(s)
- S M Hammond
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
20
|
Duret L, Marais G, Biémont C. Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans. Genetics 2000; 156:1661-9. [PMID: 11102365 PMCID: PMC1461346 DOI: 10.1093/genetics/156.4.1661] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyzed the distribution of transposable elements (TEs: transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of the nematode Caenorhabditis elegans. The density of transposons (DNA-based elements) along the chromosomes was found to be positively correlated with recombination rate, but this relationship was not observed for LTR or non-LTR retrotransposons (RNA-based elements). Gene (coding region) density is higher in regions of low recombination rate. However, the lower TE density in these regions is not due to the counterselection of TE insertions within exons since the same positive correlation between TE density and recombination rate was found in noncoding regions (both in introns and intergenic DNA). These data are not compatible with a global model of selection acting against TE insertions, for which an accumulation of elements in regions of reduced recombination is expected. We also found no evidence for a stronger selection against TE insertions on the X chromosome compared to the autosomes. The difference in distribution of the DNA and RNA-based elements along the chromosomes in relation to recombination rate can be explained by differences in the transposition processes.
Collapse
Affiliation(s)
- L Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, 69622 Villeurbanne Cedex, France.
| | | | | |
Collapse
|
21
|
Feschotte C, Mouchès C. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol 2000; 17:730-7. [PMID: 10779533 DOI: 10.1093/oxfordjournals.molbev.a026351] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sequence similarities exist between terminal inverted repeats (TIRs) of some miniature inverted-repeat transposable element (MITE) families isolated from a wide range of organisms, including plants, insects, and humans, and TIRs of DNA transposons from the pogo family. We present here evidence that one of these MITE families, previously described for Arabidopsis thaliana, is derived from a larger element encoding a putative transposase. We have named this novel class II transposon Lemi1. We show that its putative product is related to transposases of the Tc1/mariner superfamily, being closer to the pogo family. A similar truncated element was found in a tomato DNA sequence, indicating an ancient origin and/or horizontal transfer for this family of elements. These results are reminiscent of those recently reported for the human genome, where other members of the pogo family, named Tiggers, are believed to be responsible for the generation of abundant MITE-like elements in an early primate ancestor. These results further suggest that some MITE families, which are highly reiterated in plant, insect, and human genomes, could have arisen from a similar mechanism, implicating pogo-like elements.
Collapse
Affiliation(s)
- C Feschotte
- Laboratoire Ecologie Moléculaire et Faculté Sciences et Techniques Côte-Basque, Université de Pau et des Pays de l'Adour, Pau, France
| | | |
Collapse
|
22
|
Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 1999; 99:123-32. [PMID: 10535731 DOI: 10.1016/s0092-8674(00)81644-x] [Citation(s) in RCA: 921] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Double-stranded (ds) RNA can induce sequence-specific inhibition of gene function in several organisms. However, both the mechanism and the physiological role of the interference process remain mysterious. In order to study the interference process, we have selected C. elegans mutants resistant to dsRNA-mediated interference (RNAi). Two loci, rde-1 and rde-4, are defined by mutants strongly resistant to RNAi but with no obvious defects in growth or development. We show that rde-1 is a member of the piwi/sting/argonaute/zwille/eIF2C gene family conserved from plants to vertebrates. Interestingly, several, but not all, RNAi-deficient strains exhibit mobilization of the endogenous transposons. We discuss implications for the mechanism of RNAi and the possibility that one natural function of RNAi is transposon silencing.
Collapse
Affiliation(s)
- H Tabara
- Department of Cell Biology, Program in Molecular Medicine, University of Massachusetts Cancer Center, Worcester 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 1999; 99:133-41. [PMID: 10535732 DOI: 10.1016/s0092-8674(00)81645-1] [Citation(s) in RCA: 511] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While all known natural isolates of C. elegans contain multiple copies of the Tc1 transposon, which are active in the soma, Tc1 transposition is fully silenced in the germline of many strains. We mutagenized one such silenced strain and isolated mutants in which Tc1 had been activated in the germline ("mutators"). Interestingly, many other transposons of unrelated sequence had also become active. Most of these mutants are resistant to RNA interference (RNAi). We found one of the mutated genes, mut-7, to encode a protein with homology to RNaseD. This provides support for the notion that RNAi works by dsRNA-directed, enzymatic RNA degradation. We propose a model in which MUT-7, guided by transposon-derived dsRNA, represses transposition by degrading transposon-specific messengers, thus preventing transposase production and transposition.
Collapse
Affiliation(s)
- R F Ketting
- Division of Molecular Biology, The Netherlands Cancer Institute, Center for Biomedical Genetics, Amsterdam
| | | | | | | |
Collapse
|
24
|
Wang H, Hartswood E, Finnegan DJ. Pogo transposase contains a putative helix-turn-helix DNA binding domain that recognises a 12 bp sequence within the terminal inverted repeats. Nucleic Acids Res 1999; 27:455-61. [PMID: 9862965 PMCID: PMC148200 DOI: 10.1093/nar/27.2.455] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pogo is a transposable element with short terminal inverted repeats. It contains two open reading frames that are joined by splicing and code for the putative pogo transposase, the sequence of which indicates that it is related to the transposases of members of the Tc1/mariner family as well as proteins that have no known transposase activity including the centromere binding protein CENP-B. We have shown that the N-terminal region of pogo transposase binds in a sequence-specific manner to the ends of pogo and have identified residues essential for this. The results are consistent with a prediction that DNA binding is due to a helix-turn-helix motif within this region. The transposase recognises a 12 bp sequence, two copies of which are present at each end of pogo DNA. The outer two copies occur as inverted repeats 14 nucleotides from each end of the element, and contain a single base mismatch and indicate the inverted repeats of pogo are 26 nucleotides long. The inner copies occur as direct repeats, also with a single mismatch.
Collapse
Affiliation(s)
- H Wang
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
25
|
Rezsohazy R, van Luenen HG, Durbin RM, Plasterk RH. Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Res 1997; 25:4048-54. [PMID: 9321656 PMCID: PMC147001 DOI: 10.1093/nar/25.20.4048] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have found a novel transposon in the genome of Caenorhabditis elegans. Tc7 is a 921 bp element, made up of two 345 bp inverted repeats separated by a unique, internal sequence. Tc7 does not contain an open reading frame. The outer 38 bp of the inverted repeat show 36 matches with the outer 38 bp of Tc1. This region of Tc1 contains the Tc1-transposase binding site. Furthermore, Tc7 is flanked by TA dinucleotides, just like Tc1, which presumably correspond to the target duplication generated upon integration. Since Tc7 does not encode its own transposase but contains the Tc1-transposase binding site at its extremities, we tested the ability of Tc7 to jump upon forced expression of Tc1 transposase in somatic cells. Under these conditions Tc7 jumps at a frequency similar to Tc1. The target site choice of Tc7 is identical to that of Tc1. These data suggest that Tc7 shares with Tc1 all the sequences minimally required to parasitize upon the Tc1 transposition machinery. The genomic distribution of Tc7 shows a striking clustering on the X chromosome where two thirds of the elements (20 out of 33) are located. Related transposons in C. elegans do not show this asymmetric distribution.
Collapse
Affiliation(s)
- R Rezsohazy
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
26
|
Oosumi T, Belknap WR. Characterization of the Sol3 family of nonautonomous transposable elements in tomato and potato. J Mol Evol 1997; 45:137-44. [PMID: 9236273 DOI: 10.1007/pl00006213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sol3 transposons are mobile elements defined by long terminal inverted repeats which are found in tomato and potato. Members of the Sol3 family have been isolated from a variety of solanaceous species including Solanum tuberosum (potato), S. demissum, S. chacoense, Lycopersicon esculentum (tomato), and L. hirsutum. While highly conserved elements are found within different species, Sol3 terminal inverted repeats can also flank unrelated sequences. Southern blot analysis indicates that Sol3 elements are less prevalent in the potato (approximately 50 copies) than in the tomato (>100 copies) genome. No Sol3-hybridizing sequences were observed in tobacco. While a number of Sol3 elements ranging in size from 500 bp to 2 kbp were sequenced, no transposase coding domains could be identified within the internal regions of the elements. The data suggest that the Sol3 represent a heterogeneous family of nonautonomous transposable elements associated with an as-yet-unidentified autonomous transposon.
Collapse
Affiliation(s)
- T Oosumi
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | | |
Collapse
|
27
|
Devine SE, Chissoe SL, Eby Y, Wilson RK, Boeke JD. A transposon-based strategy for sequencing repetitive DNA in eukaryotic genomes. Genome Res 1997; 7:551-63. [PMID: 9149950 PMCID: PMC310657 DOI: 10.1101/gr.7.5.551] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Repetitive DNA is a significant component of eukaryotic genomes. We have developed a strategy to efficiently and accurately sequence repetitive DNA in the nematode Caenorhabditis elegans using integrated artificial transposons and automated fluorescent sequencing. Mapping and assembly tools represent important components of this strategy and facilitate sequence assembly in complex regions. We have applied the strategy to several cosmid assembly gaps resulting from repetitive DNA and have accurately recovered the sequences of these regions. Analysis of these regions revealed six novel transposon-like repetitive elements, IR-1, IR-2, IR-3, IR-4, IR-5, and TR-1. Each of these elements represents a middle-repetitive DNA family in C. elegans containing at least 3-140 copies per genome. Copies of IR-1, IR-2, IR-4, and IR-5 are located on all (or most) of the six nematode chromosomes, whereas IR-3 is predominantly located on chromosome X. These elements are almost exclusively interspersed between predicted genes or within the predicted introns of these genes, with the exception of a single IR-5 element, which is located within a predicted exon. IR-1, IR-2, and IR-3 are flanked by short sequence duplications resembling the target site duplications of transposons. We have established a website database (http:(/)/www.welch.jhu.edu/approximately devine/RepDNAdb.html) to track and cross-reference these transposon-like repetitive elements that contains detailed information on individual element copies and provides links to appropriate GenBank records. This set of tools may be used to sequence, track, and study repetitive DNA in model organisms and humans.
Collapse
Affiliation(s)
- S E Devine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
28
|
Robertson HM. Members of the pogo superfamily of DNA-mediated transposons in the human genome. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:761-6. [PMID: 8917322 DOI: 10.1007/bf02173985] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A new superfamily of transposons from fungi, nematodes, and flies related to the pogo element of Drosophila melanogaster was recognized that represents a branch of the extended superfamily of transposase and integrase proteins sharing a common D.D35E catalytic domain. Searches of human sequences in the public databases for similarity to this domain revealed at least two members of this new superfamily, with many highly mutated copies, in the human genome. A full-length consensus was constructed for one of them, which includes the MER37 medium reiteration frequency sequence recognized previously, from 343 human sequence accessions (261 of which are unique). Most of these were Expressed Sequence Tags, some were Sequence-Tagged Sites, and a few are from long genomic sequences. The 2417 bp consensus has the hallmarks of a pogo superfamily transposon, including 12 bp inverted terminal repeats, and encodes two long open reading frames. The first ORF encodes a polypeptide with 42% amino acid sequence identity to pogo in the D.D35E region. The second element shows 49% amino acid sequence identity with the first, and 40% with pogo in this region. These elements coincide with those described recently as Tigger1 and Tigger2, respectively. These transposons appear to have been active 80-90 Myr ago in the genome of an early primate or primate ancestor.
Collapse
Affiliation(s)
- H M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign 61801, USA
| |
Collapse
|
29
|
Oosumi T, Garlick B, Belknap WR. Identification of putative nonautonomous transposable elements associated with several transposon families in Caenorhabditis elegans. J Mol Evol 1996; 43:11-8. [PMID: 8660424 DOI: 10.1007/bf02352294] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Putative nonautonomous transposable elements related to the autonomous transposons Tc1, Tc2, Tc5, and mariner were identified in the C. elegans database by computational analysis. These elements are found throughout the C. elegans genome and are defined by terminal inverted repeats with regions of sequence similarity, or identity, to the autonomous transposons. Similarity between loci containing related nonautonomous elements ends at, or near, the boundaries of the terminal inverted repeats. In most cases the terminal inverted repeats of the putative nonautonomous transposable elements are flanked by potential target-site duplications consistent with the associated autonomous elements. The nonautonomous elements identified vary considerably in size (from 100 bp to 1.5 kb in length) and copy number in the available database and are localized to introns and flanking regions of a wide variety of C. elegans genes.
Collapse
Affiliation(s)
- T Oosumi
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| | | | | |
Collapse
|
30
|
Affiliation(s)
- R H Plasterk
- Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Oosumi T, Garlick B, Belknap WR. Identification and characterization of putative transposable DNA elements in solanaceous plants and Caenorhabditis elegans. Proc Natl Acad Sci U S A 1995; 92:8886-90. [PMID: 7568037 PMCID: PMC41072 DOI: 10.1073/pnas.92.19.8886] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several families of putative transposable elements (TrEs) in both solanaceous plants and Caenorhabditis elegans have been identified by screening the DNA data base for inverted repeated domains present in multiple copies in the genome. The elements are localized within intron and flanking regions of many genes. These elements consist of two inverted repeats flanking sequences ranging from 5 bp to > 500 bp. Identification of multiple elements in which sequence conservation includes both the flanking and internal regions implies that these TrEs are capable of duplicative transposition. Two of the elements were identified in promoter regions of the tomato (Lycoperiscon esculentum) polygalacturonase and potato (Solanum tuberosum) Win1 genes. The element in the polygalacturonase promoter spans a known regulatory region. In both cases, ancestral DNA sequences, which represent potential recombination target sequences prior to insertion of the elements, have been cloned from related species. The sequences of the inverted repeated domains in plants and C. elegans show a high degree of phylogenetic conservation. While frequency of the different elements is variable, some are present in very high copy number. A member of a single C. elegans TrE family is observed approximately once every 20 kb in the genome. The abundance of the described TrEs suggests utility in the genomic analysis of these and related organisms.
Collapse
Affiliation(s)
- T Oosumi
- U.S. Department of Agriculture, Western Regional Research Center, Albany, CA 94710, USA
| | | | | |
Collapse
|
32
|
|