1
|
Dever TE, Ivanov IP, Sachs MS. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu Rev Genet 2020; 54:237-264. [PMID: 32870728 DOI: 10.1146/annurev-genet-112618-043822] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
2
|
Khitun A, Ness TJ, Slavoff SA. Small open reading frames and cellular stress responses. Mol Omics 2019; 15:108-116. [PMID: 30810554 DOI: 10.1039/c8mo00283e] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small open reading frames (smORFs) encoding polypeptides of less than 100 amino acids in eukaryotes (50 amino acids in prokaryotes) were historically excluded from genome annotation. However, recent advances in genomics, ribosome footprinting, and proteomics have revealed thousands of translated smORFs in genomes spanning evolutionary space. These smORFs can encode functional polypeptides, or act as cis-translational regulators. Herein we review evidence that some smORF-encoded polypeptides (SEPs) participate in stress responses in both prokaryotes and eukaryotes, and that some upstream ORFs (uORFs) regulate stress-responsive translation of downstream cistrons in eukaryotic cells. These studies provide insight into a regulated subclass of smORFs and suggest that at least some SEPs may participate in maintenance of cellular homeostasis under stress.
Collapse
Affiliation(s)
- Alexandra Khitun
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA. and Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Travis J Ness
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA. and Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Sarah A Slavoff
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA. and Department of Chemistry, Yale University, New Haven, CT 06520, USA and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Increased freedom of movement in the nascent chain results in dynamic changes in the structure of the SecM arrest motif. Biosci Rep 2019; 39:BSR20181246. [PMID: 30563926 PMCID: PMC6340945 DOI: 10.1042/bsr20181246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Ribosomes are responsible for the synthesis of all cellular proteins. Due to the diversity of sequence and properties, it was initially believed that translating nascent chains would travel unhindered through the ribosome exit tunnel, however a small but increasing number of proteins have been identified that interact with the exit tunnel to induce translational arrest, Escherichia coli (E. coli) secretion monitor (SecM) is one such stalling peptide. How and why these peptides interact with the exit tunnel is not fully understood, however key features required for stalling appear to be an essential peptide arrest motif at the C-terminus and compaction of the nascent chain within the exit tunnel upon stalling. Mutagenesis of the SecM arrest sequence has identified three conservative point mutations that can retain a degree of stalling in this highly conserved sequence. This level of stalling is further increased when coupled with mutation of a non-essential arrest motif residue P153A. Further analysis of these mutants by pegylation assays indicates that this increase in stalling activity during translation is due to the ability of the P153A mutation to reintroduce compaction of the nascent chain within the exit tunnel possibly due to the improved flexibility of the nascent chain provided by the removal of a restrictive proline residue. The data presented here suggest that arrest sequences may be more prevalent and less highly conserved than previously thought, and highlight the significance of the interactions between the nascent chain and the exit tunnel to affecting translation arrest.
Collapse
|
4
|
Wu C, Wei J, Lin PJ, Tu L, Deutsch C, Johnson AE, Sachs MS. Arginine changes the conformation of the arginine attenuator peptide relative to the ribosome tunnel. J Mol Biol 2012; 416:518-33. [PMID: 22244852 DOI: 10.1016/j.jmb.2011.12.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/13/2011] [Accepted: 12/30/2011] [Indexed: 11/26/2022]
Abstract
The fungal arginine attenuator peptide (AAP) is a regulatory peptide that controls ribosome function. As a nascent peptide within the ribosome exit tunnel, it acts to stall ribosomes in response to arginine (Arg). We used three approaches to probe the molecular basis for stalling. First, PEGylation assays revealed that the AAP did not undergo overall compaction in the tunnel in response to Arg. Second, site-specific photocross-linking showed that Arg altered the conformation of the wild-type AAP, but not of nonfunctional mutants, with respect to the tunnel. Third, using time-resolved spectral measurements with a fluorescent probe placed in the nascent AAP, we detected sequence-specific changes in the disposition of the AAP near the peptidyltransferase center in response to Arg. These data provide evidence that an Arg-induced change in AAP conformation and/or environment in the ribosome tunnel is important for stalling.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Nascent polypeptide sequences that influence ribosome function. Curr Opin Microbiol 2011; 14:160-6. [PMID: 21342782 DOI: 10.1016/j.mib.2011.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
Abstract
Ribosomes catalyze protein synthesis using transfer RNAs and auxiliary proteins. Historically, ribosomes have been considered nonspecific translational machines, having no regulatory functions. However, a new class of regulatory mechanisms has been discovered that is based on interactions occurring within the ribosomal peptide exit tunnel that result in ribosome stalling during translation of an appropriate mRNA segment. These discoveries reveal an unexpectedly dynamic role ribosomes play in regulating their own activity. By using nascent leader peptides in combination with bound specific amino acids or antibiotics, ribosome functions can be altered significantly resulting in regulated expression of downstream coding regions. This review summarizes relevant findings in recent articles and outlines our current understanding of nascent peptide-induced ribosome stalling in regulating gene expression.
Collapse
|
6
|
Bhushan S, Meyer H, Starosta AL, Becker T, Mielke T, Berninghausen O, Sattler M, Wilson DN, Beckmann R. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Mol Cell 2010; 40:138-46. [PMID: 20932481 DOI: 10.1016/j.molcel.2010.09.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/28/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
Specific regulatory nascent chains establish direct interactions with the ribosomal tunnel, leading to translational stalling. Despite a wealth of biochemical data, structural insight into the mechanism of translational stalling in eukaryotes is still lacking. Here we use cryo-electron microscopy to visualize eukaryotic ribosomes stalled during the translation of two diverse regulatory peptides: the fungal arginine attenuator peptide (AAP) and the human cytomegalovirus (hCMV) gp48 upstream open reading frame 2 (uORF2). The C terminus of the AAP appears to be compacted adjacent to the peptidyl transferase center (PTC). Both nascent chains interact with ribosomal proteins L4 and L17 at tunnel constriction in a distinct fashion. Significant changes at the PTC were observed: the eukaryotic-specific loop of ribosomal protein L10e establishes direct contact with the CCA end of the peptidyl-tRNA (P-tRNA), which may be critical for silencing of the PTC during translational stalling. Our findings provide direct structural insight into two distinct eukaryotic stalling processes.
Collapse
Affiliation(s)
- Shashi Bhushan
- Gene Center and Department of Biochemistry and Center for integrated Protein Science Munich, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Spevak CC, Ivanov IP, Sachs MS. Sequence requirements for ribosome stalling by the arginine attenuator peptide. J Biol Chem 2010; 285:40933-42. [PMID: 20884617 DOI: 10.1074/jbc.m110.164152] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5' regions of eukaryotic mRNAs often contain upstream open reading frames (uORFs). The Neurospora crassa arg-2 uORF encodes the 24-residue arginine attenuator peptide (AAP). This regulatory uORF-encoded peptide, which is evolutionarily conserved in fungal transcripts specifying an arginine biosynthetic enzyme, functions as a nascent peptide within the ribosomal tunnel and negatively regulates gene expression. The nascent AAP causes ribosomes to stall at the uORF stop codon in response to arginine, thus, blocking ribosomes from reaching the ARG-2 initiation codon. Here scanning mutagenesis with alanine and proline was performed to systematically determine which AAP residues were important for conferring regulation. Changing many of the most highly conserved residues (Asp-12, Tyr-13, Lys-14, and Trp-19) abolished regulatory function. The minimal functional domain of the AAP was determined by positioning AAP sequences internally within a large polypeptide. Pulse-chase analyses revealed that residues 9-20 of the AAP composed the minimal domain that was sufficient to confer regulatory function. An extensive analysis of predicted fungal AAPs revealed that the minimal functional domain of the N. crassa AAP corresponded closely to the region that was most highly conserved among the fungi. We also observed that the tripeptide RGD could function similarly to arginine in triggering AAP-mediated ribosome stalling. These studies provide a better understanding of the elements required for a nascent peptide and a small regulatory molecule to control translational processes.
Collapse
Affiliation(s)
- Christina C Spevak
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
8
|
Hood HM, Neafsey DE, Galagan J, Sachs MS. Evolutionary roles of upstream open reading frames in mediating gene regulation in fungi. Annu Rev Microbiol 2009; 63:385-409. [PMID: 19514854 DOI: 10.1146/annurev.micro.62.081307.162835] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Upstream open reading frames (uORFs) are frequently present in the 5'-leader regions of fungal mRNAs. They can affect translation by controlling the ability of ribosomes that scan from the mRNA 5' end to reach the downstream genic reading frame. The translation of uORFs can also affect mRNA stability. For several genes, including Saccharomyces cerevisiae GCN4, S. cerevisiae CPA1, and Neurospora crassa arg-2, regulation by uORFs controls expression in response to specific physiological signals. The roles of many uORFs that are identified by genome-level approaches, as have been initiated for Saccharomyces, Aspergillus, and Cryptococcus species, remain to be determined. Some uORFs may have regulatory roles, while others may exist to insulate the genic reading frame from the negative impacts of upstream translation start sites in the mRNA 5' leader.
Collapse
Affiliation(s)
- Heather M Hood
- Department of Science and Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
9
|
Hood HM, Spevak CC, Sachs MS. Evolutionary changes in the fungal carbamoyl-phosphate synthetase small subunit gene and its associated upstream open reading frame. Fungal Genet Biol 2006; 44:93-104. [PMID: 16979358 DOI: 10.1016/j.fgb.2006.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 07/11/2006] [Accepted: 07/19/2006] [Indexed: 11/28/2022]
Abstract
The Neurospora crassa arg-2 and the Saccharomyces cerevisiae ortholog CPA1 encode the arginine-specific carbamoyl-phosphate synthetase (CPS-A) small subunit. Arginine decreases synthesis of this subunit through the action of a 5' upstream open reading frame in the mRNA that encodes a cis-regulatory element, the arginine attenuator peptide (AAP), which stalls ribosomes in response to arginine. We performed a comparative analysis of the genomic structure and predicted peptide sequence of the AAP and CPS-A small subunit across many fungi. Differences at the genomic level included variation in intron number and position within the AAP and CPS-A coding regions and differences in known regulatory motifs. Although differences exist in AAP sequence, there were three absolutely conserved amino acid residues in the predicted peptide, including an aspartic acid crucial for arginine-dependent regulation of arg-2 and CPA1. A diverged Basidiomycete AAP was shown to retain function as an Arg-specific negative regulator of translation.
Collapse
Affiliation(s)
- Heather M Hood
- Department of Environmental and Biomolecular Systems, Oregon Health & Science University, Beaverton, OR 97006-8921, USA
| | | | | |
Collapse
|
10
|
Woolhead CA, Johnson AE, Bernstein HD. Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol Cell 2006; 22:587-98. [PMID: 16762832 DOI: 10.1016/j.molcel.2006.05.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/16/2006] [Accepted: 05/16/2006] [Indexed: 11/27/2022]
Abstract
When the export of E. coli SecM is blocked, a 17 amino acid motif near the C terminus of the protein induces a translation arrest from within the ribosome tunnel. Here we used a recently described application of fluorescence resonance energy transfer (FRET) to gain insight into the mechanism of translation arrest. We found that the SecM C terminus adopted a compact conformation upon synthesis of the arrest motif. This conformational change did not occur spontaneously, but rather was induced by the ribosome. Translation arrest required both compaction of the SecM C terminus and the presence of key residues in the arrest motif. Further analysis showed that the arrested peptidyl-tRNA was resistant to puromycin treatment and revealed additional changes in the ribosome-nascent SecM complex. Based on these observations, we propose that translation arrest results from a series of reciprocal interactions between the ribosome and the C terminus of the nascent SecM polypeptide.
Collapse
Affiliation(s)
- Cheryl A Woolhead
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
11
|
Gaba A, Jacobson A, Sachs MS. Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense-mediated mRNA decay. Mol Cell 2005; 20:449-60. [PMID: 16285926 DOI: 10.1016/j.molcel.2005.09.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 08/10/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Saccharomyces cerevisiae CPA1 mRNA contains an upstream open reading frame (uORF) encoding the arginine attenuator peptide (AAP). Negative translational regulation of CPA1 occurs when the nascent AAP responds to arginine (Arg) by stalling ribosomes at the uORF termination codon. CPA1 expression is also controlled by nonsense-mediated mRNA decay (NMD). Using wild-type and decay-defective strains expressing CPA1-LUC, we determined how this uORF contributes to NMD control. Arg addition to media rapidly destabilized the CPA1 transcript in wild-type but not upf1delta cells. The wild-type uORF exerted translational control and induced NMD of CPA1-LUC; the mutated D13N uORF, which eliminates stalling and regulation, did not. Thus, regulation by NMD was not governed simply by ribosomes encountering the uORF terminator but appeared dependent on the AAP's ribosome-stalling ability. Improving the D13N uORF initiation context also promoted NMD. Hence, NMD appears to be triggered by increased ribosomal occupancy of the uORF termination codon.
Collapse
Affiliation(s)
- Anthony Gaba
- Department of Environmental and Biomolecular Systems, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
12
|
Fang P, Spevak CC, Wu C, Sachs MS. A nascent polypeptide domain that can regulate translation elongation. Proc Natl Acad Sci U S A 2004; 101:4059-64. [PMID: 15020769 PMCID: PMC384695 DOI: 10.1073/pnas.0400554101] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionarily conserved fungal arginine attenuator peptide (AAP), as a nascent peptide, stalls the translating ribosome in response to the presence of a high concentration of the amino acid arginine. Here we examine whether the AAP maintains regulatory function in fungal, plant, and animal cell-free translation systems when placed as a domain near the N terminus or internally within a large polypeptide. Pulse-chase analyses of the radiolabeled polypeptides synthesized in these systems indicated that wild-type AAP functions at either position to stall polypeptide synthesis in response to arginine. Toeprint analyses performed to map the positions of stalled ribosomes on transcripts introduced into the fungal system revealed that ribosome stalling required translation of the AAP coding sequence. The positions of the stalled ribosomes were consistent with the sizes of the radiolabeled polypeptide intermediates. These findings demonstrate that an internal polypeptide domain in a nascent chain can regulate eukaryotic translational elongation in response to a small molecule. Apparently the peptide-sensing features are conserved in fungal, plant, and animal ribosomes. These data provide precedents for translational strategies that would allow domains within nascent polypeptide chains to modulate gene expression.
Collapse
Affiliation(s)
- Peng Fang
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, OR 97006-8921, USA
| | | | | | | |
Collapse
|
13
|
Kato S, Ohmido N, Fukui K. Development of a quantitative pachytene chromosome map in Oryza sativa by imaging methods. Genes Genet Syst 2003; 78:155-61. [PMID: 12773815 DOI: 10.1266/ggs.78.155] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A higher GC content region of an Oryza sativa chromosome can be specifically visualized by double staining with propidium iodide (PI) and 4, 6-diamidino-2-phenylindole (DAPI). This procedure allows identification of chromosome 9 from the other rice chromosomes at the pachytene stage. Using rice chromosome 9 as a model, an imaging method to construct a pachytene chromosomal map was developed by quantifying the fluorescence profile (FP) of each chromomere. The pachytene map of chromosome 9 consists of twenty-two chromomeres including four chromomeres within the nucleolar organizing region (NOR) and satellite region. The pachytene map was compared with the corresponding somatic prometaphase map and the linkage map. The differences among the three maps indicate that each map depicts specific biological information, which is difficult to be substituted by the other maps.
Collapse
Affiliation(s)
- Seiji Kato
- Laboratory of Rice Genetic Engineering, National Agricultural Research Center, Hokuriku Research Center, Joetsu, Japan
| | | | | |
Collapse
|
14
|
Fang P, Wang Z, Sachs MS. Evolutionarily Conserved Features of the Arginine Attenuator Peptide Provide the Necessary Requirements for Its Function in Translational Regulation. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61434-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Wang Z, Gaba A, Sachs MS. A highly conserved mechanism of regulated ribosome stalling mediated by fungal arginine attenuator peptides that appears independent of the charging status of arginyl-tRNAs. J Biol Chem 1999; 274:37565-74. [PMID: 10608810 DOI: 10.1074/jbc.274.53.37565] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Arg attenuator peptide (AAP) is an evolutionarily conserved peptide involved in Arg-specific negative translational control. It is encoded as an upstream open reading frame (uORF) in fungal mRNAs specifying the small subunit of Arg-specific carbamoyl phosphate synthetase. We examined the functions of the Saccharomyces cerevisiae CPA1 and Neurospora crassa arg-2 AAPs using translation extracts from S. cerevisiae, N. crassa, and wheat germ. Synthetic RNA containing AAP and firefly luciferase (LUC) sequences were used to program translation; analyses of LUC activity indicated that the AAPs conferred Arg-specific negative regulation in each system. The AAPs functioned either as uORFs or fused in-frame at the N terminus of LUC. Mutant AAPs lacking function in vivo did not function in vitro. Therefore, trans-acting factors conferring AAP-mediated regulation are in both fungal and plant systems. Analyses of ribosome stalling in the fungal extracts by primer extension inhibition (toeprint) assays showed that these AAPs acted similarly to stall ribosomes in the region immediately distal to the AAP coding region in response to Arg. The regulatory effect increased as the Arg concentration increased; all of the arginyl-tRNAs examined appeared maximally charged at low Arg concentrations. Therefore, AAP-mediated Arg-specific regulation appeared independent of the charging status of arginyl-tRNA.
Collapse
Affiliation(s)
- Z Wang
- Department of Biochemistry, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006-8921, USA
| | | | | |
Collapse
|
16
|
Wang Z, Fang P, Sachs MS. The evolutionarily conserved eukaryotic arginine attenuator peptide regulates the movement of ribosomes that have translated it. Mol Cell Biol 1998; 18:7528-36. [PMID: 9819438 PMCID: PMC109333 DOI: 10.1128/mcb.18.12.7528] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/1998] [Accepted: 08/28/1998] [Indexed: 11/20/2022] Open
Abstract
Translation of the upstream open reading frame (uORF) in the 5' leader segment of the Neurospora crassa arg-2 mRNA causes reduced initiation at a downstream start codon when arginine is plentiful. Previous examination of this translational attenuation mechanism using a primer-extension inhibition (toeprint) assay in a homologous N. crassa cell-free translation system showed that arginine causes ribosomes to stall at the uORF termination codon. This stalling apparently regulates translation by preventing trailing scanning ribosomes from reaching the downstream start codon. Here we provide evidence that neither the distance between the uORF stop codon and the downstream initiation codon nor the nature of the stop codon used to terminate translation of the uORF-encoded arginine attenuator peptide (AAP) is important for regulation. Furthermore, translation of the AAP coding region regulates synthesis of the firefly luciferase polypeptide when it is fused directly at the N terminus of that polypeptide. In this case, the elongating ribosome stalls in response to Arg soon after it translates the AAP coding region. Regulation by this eukaryotic leader peptide thus appears to be exerted through a novel mechanism of cis-acting translational control.
Collapse
Affiliation(s)
- Z Wang
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland, Oregon 97291-1000, USA
| | | | | |
Collapse
|
17
|
Loomis WP, Moseley SL. Translational control of mRNA processing in the F1845 fimbrial operon of Escherichia coli. Mol Microbiol 1998; 30:843-53. [PMID: 10094632 DOI: 10.1046/j.1365-2958.1998.01117.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endoribonucleolytic processing followed by differential decay of the cleavage products is an increasingly recognized mechanism for achieving co-ordinate regulation of functionally related proteins encoded by bacterial polycistronic transcripts. Unlike most examples when RNases E or III initiate decay, the daa transcript encoding F1845 fimbriae, a member of the Dr family of adhesins in Escherichia coli, is processed by an as yet unidentified endoribonuclease using a unique recognition mechanism. An open reading frame (ORF) predicted to encode a 57-amino-acid polypeptide was identified flanking the daa processing site. To determine whether this ORF is involved in processing, site-directed mutagenesis was used to generate mutants with altered translational efficiencies. A mutation in the putative ribosome binding site preceding the ORF significantly inhibited processing while the introduction of a premature stop codon abolished processing. Site-directed mutagenesis was used to introduce a limited number of mutations into the ORF, designated daaP, to alter the reading frame such that a different polypeptide of a similar size was encoded. Despite the presumed presence of trafficking ribosomes, this mutant failed to be processed, suggesting that the sequence of the DaaP peptide is important. However, the failure of a wild-type copy of the daaP gene to complement these mutations in trans suggested that the presence of wild-type daaP gene product was not sufficient to promote processing. Although active translation has been found to inhibit processing by RNases E and III, our data suggest that translation of the daaP gene is required in cis to promote processing by the endonuclease, perhaps due to an interaction of the nascent peptide with the ribosome or the daaP mRNA.
Collapse
Affiliation(s)
- W P Loomis
- Department of Microbiology, University of Washington, Seattle 98195-7242, USA
| | | |
Collapse
|
18
|
Affiliation(s)
- M S Sachs
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA.
| |
Collapse
|
19
|
Wang Z, Sachs MS. Ribosome stalling is responsible for arginine-specific translational attenuation in Neurospora crassa. Mol Cell Biol 1997; 17:4904-13. [PMID: 9271370 PMCID: PMC232343 DOI: 10.1128/mcb.17.9.4904] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Neurospora crassa arg-2 upstream open reading frame (uORF) plays a role in negative arginine-specific translational regulation. Primer extension inhibition analyses of arg-2 uORF-containing RNA translated in a cell-free system in which arginine-specific regulation was retained revealed "toeprints" corresponding to ribosomes positioned at the uORF initiation and termination codons and at the downstream initiation codon. At high arginine concentrations, the toeprint signal corresponding to ribosomes at the uORF termination codon rapidly increased; a new, broad toeprint that represents additional ribosomes stalled on the uORF appeared 21 to 30 nucleotides upstream of this site; and the toeprint signal corresponding to ribosomes at the downstream initiation codon decreased. These data suggest that arginine increases ribosomal stalling and thereby decreases translation from the downstream initiation codon.
Collapse
Affiliation(s)
- Z Wang
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000, USA
| | | |
Collapse
|
20
|
Sachs MS, Selker EU, Lin B, Roberts CJ, Luo Z, Vaught-Alexander D, Margolin BS. Expression of herpes virus thymidine kinase in Neurospora crassa. Nucleic Acids Res 1997; 25:2389-95. [PMID: 9171090 PMCID: PMC146768 DOI: 10.1093/nar/25.12.2389] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of thymidine kinase in fungi, which normally lack this enzyme, will greatly aid the study of DNA metabolism and provide useful drug-sensitive phenotypes. The herpes simplex virus type-1 thymidine kinase gene ( tk ) was expressed in Neurospora crassa. tk was expressed as a fusion to N.crassa arg-2 regulatory sequences and as a hygromycin phosphotransferase-thymidine kinase fusion gene under the control of cytomegalovirus and SV40 sequences. Only strains containing tk showed thymidine kinase enzyme activity. In strains containing the arg-2 - tk gene, both the level of enzyme activity and the level of mRNA were reduced by growth in arginine medium, consistent with control through arg-2 regulatory sequences. Expression of thymidine kinase in N.crassa facilitated radioactive labeling of replicating DNA following addition of [3H]thymidine or [14C]thymidine to the growth medium. Thymidine labeling of DNA enabled demonstration that hydroxyurea can be used to block replication and synchronize the N.crassa mitotic cycle. Strains expressing thymidine kinase were also more sensitive than strains lacking thymidine kinase to anticancer and antiviral nucleoside drugs that are activated by thymidine kinase, including 5-fluoro-2'-deoxyuridine, 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouridine and trifluorothymidine. Finally, expression of thymidine kinase in N. crassa enabled incorporation of bromodeoxyuridine into DNA at levels sufficient to separate newly replicated DNA from old DNA using equilibrium centrifugation.
Collapse
Affiliation(s)
- M S Sachs
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, PO Box 91000, Portland, OR 97291-1000, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Jackson RJ, Wickens M. Translational controls impinging on the 5'-untranslated region and initiation factor proteins. Curr Opin Genet Dev 1997; 7:233-41. [PMID: 9115426 DOI: 10.1016/s0959-437x(97)80133-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Translation of eukaryotic mRNAs is generally initiated by the scanning ribosome mechanism. This can be downregulated by high affinity protein binding to cap-proximal RNA motifs. Translation can also be regulated by short open reading frames within the 5' -untranslated region. A key factor for initiation is elF4F, in which one of the polypeptide chains, elF4G, seems to have a bridging function and binds three other factors at separate sites: elF4E (the cap-binding factor), the helicase elF4A, and elF3, which also interacts with 40S ribosomal subunits. Initiation is regulated by the MAP kinase and rapamycin-sensitive signalling pathways, which control phosphorylation of elF4E and 4E-BP1, a protein which in the dephosphorylated form binds and sequesters elF4E.
Collapse
Affiliation(s)
- R J Jackson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | | |
Collapse
|
22
|
Abstract
Using a sensitive primer extension technique, we have carried out studies to localize the start site of replication of the replicon RepFIC. In the course of these studies, we have found evidence that supports the hypothesis that transcription is an integral component of the initiation of replication. On the basis of our findings, we suggest that the transcript is processed to act as a primer, and therefore we propose that the transcript has a dual role as primer of replication and mRNA for the RepA1 protein. We present a model, based on our evidence, for the initiation of replication of the replicon RepFIC. This model provides as well an alternative explanation for what has been called the cis action of RepA1, and we show that RepA1 may act in trans as well as in cis.
Collapse
Affiliation(s)
- R Maas
- Department of Microbiology, New York University Medical Center, New York 10016, USA.
| | | |
Collapse
|
23
|
Shen WC, Ebbole DJ. Cross-Pathway and Pathway-Specific Control of Amino Acid Biosynthesis inMagnaporthe grisea. Fungal Genet Biol 1997. [DOI: 10.1006/fgbi.1997.0958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Wang Z, Sachs MS. Arginine-specific regulation mediated by the Neurospora crassa arg-2 upstream open reading frame in a homologous, cell-free in vitro translation system. J Biol Chem 1997; 272:255-61. [PMID: 8995256 DOI: 10.1074/jbc.272.1.255] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Translational control mediated by an upstream open reading frame (uORF) in the 5'-leader of the Neurospora crassa arg-2 mRNA was reconstituted in a homologous, cell-free in vitro translation system. A cell-free N. crassa system was developed that required the presence of cap and poly(A) on RNA for maximal translation and that was amino acid-dependent. The 24-codon arg-2 uORF, when placed in the 5'-leader region of capped and adenylated synthetic luciferase RNAs, conferred Arg-specific negative regulation in this system. Improving the uORF translation initiation context decreased luciferase production and only slightly increased the magnitude of Arg-specific regulation. Mutation of uORF Asp codon 12 to Asn, which eliminates Arg-specific regulation in vivo, eliminated regulation in vitro. Elimination of the uORF translation initiation codon also eliminated Arg-specific regulation. Arg-specific regulation in vitro appeared to be reversible. Control of RNA stability did not appear to be a primary component of Arg-specific regulation in vitro. Comparison of the effects of adding Arg to in vitro translation reactions with adding compounds related to Arg indicated that Arg-specific translational regulation was specific for L-arginine.
Collapse
Affiliation(s)
- Z Wang
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000, USA
| | | |
Collapse
|
25
|
Luo Z, Sachs MS. Role of an upstream open reading frame in mediating arginine-specific translational control in Neurospora crassa. J Bacteriol 1996; 178:2172-7. [PMID: 8636015 PMCID: PMC177922 DOI: 10.1128/jb.178.8.2172-2177.1996] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Neurospora crassa arg-2 transcript contains an upstream open reading frame (uORF) specifying a 24-residue leader peptide and is subject to a novel form of negative translational regulation in response to arginine. The role of the arg-2 uORF in arginine-specific negative regulation was investigated by using translational fusions of wild-type and mutant arg-2 sequences to the Escherichia coli lacZ reporter gene specifying beta-galactosidase. The wild-type uORF conferred Arg-specific regulation on the reporter gene in N. crassa, but mutated or truncated uORFs did not, as determined by measurements of beta-galactosidase activity produced in N. crassa strains expressing arg-2-lacZ fusion genes. All effects on reporter gene expression were posttranscriptional, as determined by measurement of RNA levels. Both sequence-dependent and sequence-independent effects of uORFs were observed. Genes containing the wild-type uORF or a 21-codon mutated uORF showed reduced translation in comparison with that of a gene lacking a uORF. Both uORF-containing transcripts showed reduced association with polysomes relative to transcripts lacking a uORF, but only the transcript with the wild-type uORF showed a reduced average number of ribosomes associated with it in response to arginine addition. Direct translational fusions between uORF sequences and lacZ sequences indicated that the uORF is translated. Overlapping the uORF with the lacZ initiation codon indicated that ribosome reinitiation at a downstream start codon is not integral to uORF-mediated, Arg-specific translational regulation. These studies provide direct biochemical evidence for arg-2 uORF function in translational control.
Collapse
Affiliation(s)
- Z Luo
- Department of Chemistry, Biochemistry and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000, USA
| | | |
Collapse
|