1
|
Jing Kay Lam K, Zhang Z, Saier Jr MH. Histone-like Nucleoid Structuring (H-NS) Protein Silences the beta-glucoside (bgl) Utilization Operon in Escherichia coli by Forming a DNA Loop. Comput Struct Biotechnol J 2022; 20:6287-6301. [DOI: 10.1016/j.csbj.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
|
2
|
Tran D, Zhang Z, Lam KJK, Saier MH. Effects of Global and Specific DNA-Binding Proteins on Transcriptional Regulation of the E. coli bgl Operon. Int J Mol Sci 2022; 23:ijms231810343. [PMID: 36142257 PMCID: PMC9499468 DOI: 10.3390/ijms231810343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Using reporter gene (lacZ) transcriptional fusions, we examined the transcriptional dependencies of the bgl promoter (Pbgl) and the entire operon regulatory region (Pbgl-bglG) on eight transcription factors as well as the inducer, salicin, and an IS5 insertion upstream of Pbgl. Crp-cAMP is the primary activator of both Pbgl and the bgl operon, while H-NS is a strong dominant operon repressor but only a weak repressor of Pbgl. H-NS may exert its repressive effect by looping the DNA at two binding sites. StpA is a relatively weak repressor in the absence of H-NS, while Fis also has a weak repressive effect. Salicin has no effect on Pbgl activity but causes a 30-fold induction of bgl operon expression. Induction depends on the activity of the BglF transporter/kinase. IS5 insertion has only a moderate effect on Pbgl but causes a much greater activation of the bgl operon expression by preventing the full repressive effects of H-NS and StpA. While several other transcription factors (BglJ, RcsB, and LeuO) have been reported to influence bgl operon transcription when overexpressed, they had little or no effect when present at wild type levels. These results indicate the important transcriptional regulatory mechanisms operative on the bgl operon in E. coli.
Collapse
|
3
|
Zhang Z, Zhou K, Tran D, Saier M. Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization ( BglGFB) Operon Are Promoted by the Anti-Terminator Protein (BglG) in Escherichia coli. Int J Mol Sci 2022; 23:ijms23031505. [PMID: 35163427 PMCID: PMC8836124 DOI: 10.3390/ijms23031505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/24/2023] Open
Abstract
The cryptic β-glucoside GFB (bglGFB) operon in Escherichia coli (E. coli) can be activated by mutations arising under starvation conditions in the presence of an aromatic β-glucoside. This may involve the insertion of an insertion sequence (IS) element into a "stress-induced DNA duplex destabilization" (SIDD) region upstream of the operon promoter, although other types of mutations can also activate the bgl operon. Here, we show that increased expression of the bglG gene, encoding a well-characterized transcriptional antiterminator, dramatically increases the frequency of both IS-mediated and IS-independent Bgl+ mutations occurring on salicin- and arbutin-containing agar plates. Both mutation rates increased with increasing levels of bglG expression but IS-mediated mutations were more prevalent at lower BglG levels. Mutations depended on the presence of both BglG and an aromatic β-glucoside, and bglG expression did not influence IS insertion in other IS-activated operons tested. The N-terminal mRNA-binding domain of BglG was essential for mutational activation, and alteration of BglG's binding site in the mRNA nearly abolished Bgl+ mutant appearances. Increased bglG expression promoted residual bgl operon expression in parallel with the increases in mutation rates. Possible mechanisms are proposed explaining how BglG enhances the frequencies of bgl operon activating mutations.
Collapse
|
4
|
Gomez-Arrebola C, Solano C, Lasa I. Regulation of gene expression by non-phosphorylated response regulators. Int Microbiol 2021; 24:521-529. [PMID: 33987704 DOI: 10.1007/s10123-021-00180-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022]
Abstract
Two-component systems (TCSs) are a prominent sensory system in bacteria. A prototypical TCS comprises a membrane-bound sensor histidine kinase (HK) responsible for sensing the signal and a cytoplasmic response regulator (RR) that controls target gene expression. Signal binding activates a phosphotransfer cascade from the HK to the RR. As a result, the phosphorylated RR undergoes a conformational change that leads to activation of the response. Growing experimental evidence indicates that unphosphorylated RRs may also have regulatory functions, and thus, the classical view that the RR is only active when it is phosphorylated needs to be revisited. In this review, we highlight the most recent findings showing that RRs in the non-phosphorylated state control critical bacterial processes that range from secretion of factors to the host, antibiotic resistance, iron transport, stress response, and cell-wall metabolism to biofilm development.
Collapse
Affiliation(s)
- Carmen Gomez-Arrebola
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IdiSNA, Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IdiSNA, Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IdiSNA, Irunlarrea 3, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
5
|
Newman SL, Will WR, Libby SJ, Fang FC. The curli regulator CsgD mediates stationary phase counter-silencing of csgBA in Salmonella Typhimurium. Mol Microbiol 2018; 108:101-114. [PMID: 29388265 DOI: 10.1111/mmi.13919] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/23/2022]
Abstract
Integration of horizontally acquired genes into transcriptional networks is essential for the regulated expression of virulence in bacterial pathogens. In Salmonella enterica, expression of such genes is repressed by the nucleoid-associated protein H-NS, which recognizes and binds to AT-rich DNA. H-NS-mediated silencing must be countered by other DNA-binding proteins to allow expression under appropriate conditions. Some genes that can be transcribed by RNA polymerase (RNAP) associated with the alternative sigma factor σS or the housekeeping sigma factor σ70 in vitro appear to be preferentially transcribed by σS in the presence of H-NS, suggesting that σS may act as a counter-silencer. To determine whether σS directly counters H-NS-mediated silencing and whether co-regulation by H-NS accounts for the σS selectivity of certain promoters, we examined the csgBA operon, which is required for curli fimbriae expression and is known to be regulated by both H-NS and σS . Using genetics and in vitro biochemical analyses, we found that σS is not directly required for csgBA transcription, but rather up-regulates csgBA via an indirect upstream mechanism. Instead, the biofilm master regulator CsgD directly counter-silences the csgBA promoter by altering the DNA-protein complex structure to disrupt H-NS-mediated silencing in addition to directing the binding of RNAP.
Collapse
Affiliation(s)
- S L Newman
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - W R Will
- Department of Microbiology, University of Washington, Seattle WA, USA
| | - S J Libby
- Department of Microbiology, University of Washington, Seattle WA, USA
| | - F C Fang
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Department of Microbiology, University of Washington, Seattle WA, USA
| |
Collapse
|
6
|
Breddermann H, Schnetz K. Activation of leuO by LrhA in Escherichia coli. Mol Microbiol 2017; 104:664-676. [PMID: 28252809 DOI: 10.1111/mmi.13656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 11/26/2022]
Abstract
LeuO is a conserved LysR-type transcription factor of pleiotropic function in Enterobacteria. Regulation of the leuO gene has been best studied in Escherichia coli and Salmonella enterica. Its expression is silenced by the nucleoid-associated proteins H-NS and StpA, autoregulated by LeuO, and in E. coli activated by the transcription regulator BglJ-RcsB. However, signals which induce leuO expression remain unknown. Here we show that LrhA, a conserved LysR-type transcription regulator, activates leuO in E. coli. LrhA specifically binds the leuO regulatory region and activates expression of leuO from three promoters. Activation of leuO by LrhA is synergistic with activation by BglJ-RcsB, while co-regulation by LrhA, LeuO and H-NS/StpA suggests a complex regulatory interplay. In addition, hyperactive LrhA mutants including LrhA-12DN, 221TA, 61HR/221TA and 303DG were identified. Regulation of leuO by LrhA reveals a connection between the two pleiotropic regulators LeuO and LrhA in E. coli.
Collapse
Affiliation(s)
- Hannes Breddermann
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, Cologne, 50674, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, Cologne, 50674, Germany
| |
Collapse
|
7
|
Breddermann H, Schnetz K. Correlation of Antagonistic Regulation of leuO Transcription with the Cellular Levels of BglJ-RcsB and LeuO in Escherichia coli. Front Cell Infect Microbiol 2016; 6:106. [PMID: 27695690 PMCID: PMC5025477 DOI: 10.3389/fcimb.2016.00106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/02/2016] [Indexed: 01/03/2023] Open
Abstract
LeuO is a conserved and pleiotropic transcription regulator, antagonist of the nucleoid-associated silencer protein H-NS, and important for pathogenicity and multidrug resistance in Enterobacteriaceae. Regulation of transcription of the leuO gene is complex. It is silenced by H-NS and its paralog StpA, and it is autoregulated. In addition, in Escherichia coli leuO is antagonistically regulated by the heterodimeric transcription regulator BglJ-RcsB and by LeuO. BglJ-RcsB activates leuO, while LeuO inhibits activation by BglJ-RcsB. Furthermore, LeuO activates expression of bglJ, which is likewise H-NS repressed. Mutual activation of leuO and bglJ resembles a double-positive feedback network, which theoretically can result in bi-stability and heterogeneity, or be maintained in a stable OFF or ON states by an additional signal. Here we performed quantitative and single-cell expression analyses to address the antagonistic regulation and feedback control of leuO transcription by BglJ-RcsB and LeuO using a leuO promoter mVenus reporter fusion and finely tunable bglJ and leuO expression plasmids. The data revealed uniform regulation of leuO expression in the population that correlates with the relative cellular concentration of BglJ and LeuO. The data are in agreement with a straightforward model of antagonistic regulation of leuO expression by the two regulators, LeuO and BglJ-RcsB, by independent mechanisms. Further, the data suggest that at standard laboratory growth conditions feedback regulation of leuO is of minor relevance and that silencing of leuO and bglJ by H-NS (and StpA) keeps these loci in the OFF state.
Collapse
Affiliation(s)
- Hannes Breddermann
- Department of Biology, Institute for Genetics, University of Cologne Cologne, Germany
| | - Karin Schnetz
- Department of Biology, Institute for Genetics, University of Cologne Cologne, Germany
| |
Collapse
|
8
|
Harwani D. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm. Braz J Microbiol 2015; 45:1139-44. [PMID: 25763016 PMCID: PMC4323285 DOI: 10.1590/s1517-83822014000400003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/17/2014] [Indexed: 11/24/2022] Open
Abstract
Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside) operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s) apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP) phenotype to Bgl+ cells and exerts its regulation on at least twelve downstream target genes.
Collapse
Affiliation(s)
- Dharmesh Harwani
- Department of Microbiology Maharaja Ganga Singh University Bikaner India Department of Microbiology, Maharaja Ganga Singh University, Bikaner, India
| |
Collapse
|
9
|
Salscheider SL, Jahn A, Schnetz K. Transcriptional regulation by BglJ-RcsB, a pleiotropic heteromeric activator in Escherichia coli. Nucleic Acids Res 2013; 42:2999-3008. [PMID: 24335284 PMCID: PMC3950696 DOI: 10.1093/nar/gkt1298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The bacterial Rcs phosphorelay signals perturbations of the bacterial cell envelope to its response regulator RcsB, which regulates transcription of multiple loci related to motility, biofilm formation and various stress responses. RcsB is unique, as its set of target loci is modulated by interaction with auxiliary regulators including BglJ. The BglJ–RcsB heteromer is known to activate the HNS repressed leuO and bgl loci independent of RcsB phosphorylation. Here, we show that BglJ–RcsB activates the promoters of 10 additional loci (chiA, molR, sfsB, yecT, yqhG, ygiZ, yidL, ykiA, ynbA and ynjI). Furthermore, we mapped the BglJ–RcsB binding site at seven loci and propose a consensus sequence motif. The data suggest that activation by BglJ–RcsB is DNA phasing dependent at some loci, a feature reminiscent of canonical transcriptional activators, while at other loci BglJ–RcsB activation may be indirect by inhibition of HNS-mediated repression. In addition, we show that BglJ–RcsB activates transcription of bgl synergistically with CRP where it shifts the transcription start by 20 bp from a position typical for class I CRP-dependent promoters to a position typical for class II CRP-dependent promoters. Thus, BglJ–RcsB is a pleiotropic transcriptional activator that coordinates regulation with global regulators including CRP, LeuO and HNS.
Collapse
Affiliation(s)
- Silja Lucia Salscheider
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | | | | |
Collapse
|
10
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Nikaido E, Giraud E, Baucheron S, Yamasaki S, Wiedemann A, Okamoto K, Takagi T, Yamaguchi A, Cloeckaert A, Nishino K. Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses. Gut Pathog 2012; 4:5. [PMID: 22632036 PMCID: PMC3405474 DOI: 10.1186/1757-4749-4-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background Many Gram-positive and Gram-negative bacteria produce large quantities of indole as an intercellular signal in microbial communities. Indole demonstrated to affect gene expression in Escherichia coli as an intra-species signaling molecule. In contrast to E. coli, Salmonella does not produce indole because it does not harbor tnaA, which encodes the enzyme responsible for tryptophan metabolism. Our previous study demonstrated that E. coli-conditioned medium and indole induce expression of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium for inter-species communication; however, the global effect of indole on genes in Salmonella remains unknown. Results To understand the complete picture of genes regulated by indole, we performed DNA microarray analysis of genes in the S. enterica serovar Typhimurium strain ATCC 14028s affected by indole. Predicted Salmonella phenotypes affected by indole based on the microarray data were also examined in this study. Indole induced expression of genes related to efflux-mediated multidrug resistance, including ramA and acrAB, and repressed those related to host cell invasion encoded in the Salmonella pathogenicity island 1, and flagella production. Reduction of invasive activity and motility of Salmonella by indole was also observed phenotypically. Conclusion Our results suggest that indole is an important signaling molecule for inter-species communication to control drug resistance and virulence of S. enterica.
Collapse
Affiliation(s)
- Eiji Nikaido
- Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-00447, Japan.,Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Etienne Giraud
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Sylvie Baucheron
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Suguru Yamasaki
- Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-00447, Japan.,Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Agnès Wiedemann
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Kousuke Okamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Akihito Yamaguchi
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Kunihiko Nishino
- Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-00447, Japan
| |
Collapse
|
12
|
Stratmann T, Pul Ü, Wurm R, Wagner R, Schnetz K. RcsB-BglJ activates the Escherichia coli leuO gene, encoding an H-NS antagonist and pleiotropic regulator of virulence determinants. Mol Microbiol 2012; 83:1109-23. [DOI: 10.1111/j.1365-2958.2012.07993.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
BglJ-RcsB heterodimers relieve repression of the Escherichia coli bgl operon by H-NS. J Bacteriol 2010; 192:6456-64. [PMID: 20952573 DOI: 10.1128/jb.00807-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RcsB is the response regulator of the complex Rcs two-component system, which senses perturbations in the outer membrane and peptidoglycan layer. BglJ is a transcriptional regulator whose constitutive expression causes activation of the H-NS- and StpA-repressed bgl (aryl-β,D-glucoside) operon in Escherichia coli. RcsB and BglJ both belong to the LuxR-type family of transcriptional regulators with a characteristic C-terminal DNA-binding domain. Here, we show that BglJ and RcsB interact and form heterodimers that presumably bind upstream of the bgl promoter, as suggested by mutation of a sequence motif related to the consensus sequence for RcsA-RcsB heterodimers. Heterodimerization of BglJ-RcsB and relief of H-NS-mediated repression of bgl by BglJ-RcsB are apparently independent of RcsB phosphorylation. In addition, we show that LeuO, a pleiotropic LysR-type transcriptional regulator, likewise binds to the bgl upstream regulatory region and relieves repression of bgl independently of BglJ-RcsB. Thus, LeuO can affect bgl directly, as shown here, and indirectly by activating the H-NS-repressed yjjQ-bglJ operon, as shown previously. Taken together, heterodimer formation of RcsB and BglJ expands the role of the Rcs two-component system and the network of regulators affecting the bgl promoter.
Collapse
|
14
|
Zhang Z, Saier MH. A novel mechanism of transposon-mediated gene activation. PLoS Genet 2009; 5:e1000689. [PMID: 19834539 PMCID: PMC2753651 DOI: 10.1371/journal.pgen.1000689] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/17/2009] [Indexed: 12/03/2022] Open
Abstract
Transposable Insertion Sequences (IS elements) have been shown to provide various benefits to their hosts via gene activation or inactivation under stress conditions by appropriately inserting into specific chromosomal sites. Activation is usually due to derepression or introduction of a complete or partial promoter located within the element. Here we define a novel mechanism of gene activation by the transposon IS5 in Escherichia coli. The glycerol utilization operon, glpFK, that is silent in the absence of the cAMP-Crp complex, is activated by IS5 when inserted upstream of its promoter. High-level expression is nearly constitutive, only mildly dependent on glycerol, glucose, GlpR, and Crp, and allows growth at a rate similar to or more rapid than that of wild-type cells. Expression is from the glpFK promoter and dependent on (1) the DNA phase, (2) integration host factor (IHF), and (3) a short region at the 3′ end of IS5 harboring a permanent bend and an IHF binding site. The lacZYA operon is also subject to such activation in the absence of Crp. Thus, we have defined a novel mechanism of gene activation involving transposon insertion that may be generally applicable to many organisms. Transposons are “jumping genes” that can move from one location within a genome to another. Insertion of a transponson changes the DNA sequence and therefore gives rise to mutations that can activate or inactivate gene expression. Here, we demonstrate for the first time that one such transposon, Insertion Sequence 5 (IS5), when positioned upstream of a metabolic operon (glpFK) of E. coli, can activate the otherwise cryptic expression of the operon. This effect is due solely to a short region at the 3′ end of IS5 that harbors a permanent bend and an overlapping nucleoid protein binding site, both of which are required for maximal gene expression. We demonstrate the importance of phasing and conclude that DNA looping probably plays a role. We also show that another operon, the E. coli lactose operon (lacZYA), can be similarly activated by IS5. Although this is the first study to show that unique sequences within a transposon are necessary and sufficient to activate a downstream silent promoter, similar mechanisms of gene activation may occur for other operons.
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Sankar TS, Neelakanta G, Sangal V, Plum G, Achtman M, Schnetz K. Fate of the H-NS-repressed bgl operon in evolution of Escherichia coli. PLoS Genet 2009; 5:e1000405. [PMID: 19266030 PMCID: PMC2646131 DOI: 10.1371/journal.pgen.1000405] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 02/05/2009] [Indexed: 11/18/2022] Open
Abstract
In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS–repressed locus is the bgl (aryl-β,D-glucoside) operon of E. coli. This locus is “cryptic,” as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli. Horizontal gene transfer, an important mechanism in bacterial adaptation and evolution, requires mechanisms to avoid uncontrolled and possibly disadvantageous expression of the transferred genes. Recently, it was shown that the protein H-NS selectively silences genes gained by horizontal transfer in enteric bacteria. Regulated expression of these genes can then evolve and be integrated into the regulatory network of the new host. Our analysis of the catabolic bgl (aryl-β,D-glucoside) operon, which is silenced by H-NS in E. coli, provides a snapshot on the evolution of such a locus. Genes of the bgl operon were presumably gained by horizontal transfer from Gram-positive bacteria to ancestral enteric bacteria. In E. coli, the bgl operon co-evolved with the diversification of the species into four phylogenetic groups. In one phylogenetic group the bgl operon is functional. However, in two other phylogenetic groups, bgl accumulates disrupting mutations, and it is absent in the fourth group. This indicates that the H-NS–silenced bgl operon evolved differently in E. coli and is presumably positively selected in one phylogenetic group, while it is neutrally or negatively selected in the other groups.
Collapse
Affiliation(s)
| | | | - Vartul Sangal
- Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany
- Department of Microbiology and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Georg Plum
- Institute for Medical Microbiology, Immunology, and Hygiene, University of Cologne, Cologne, Germany
| | - Mark Achtman
- Department of Microbiology and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
16
|
Characterization of a yjjQ mutant of avian pathogenic Escherichia coli (APEC). Microbiology (Reading) 2008; 154:1082-1093. [DOI: 10.1099/mic.0.2007/015784-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Regulation of the yjjQ-bglJ operon, encoding LuxR-type transcription factors, and the divergent yjjP gene by H-NS and LeuO. J Bacteriol 2007; 190:926-35. [PMID: 18055596 DOI: 10.1128/jb.01447-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yjjQ and bglJ genes encode LuxR-type transcription factors conserved in several enterobacterial species. YjjQ is a potential virulence factor in avian pathogenic Escherichia coli. BglJ counteracts the silencing of the bgl (beta-glucoside) operon by H-NS in E. coli K-12. Here we show that yjjQ and bglJ form an operon carried by E. coli K-12, whose expression is repressed by the histone-like nucleoid structuring (H-NS) protein. The LysR-type transcription factor LeuO counteracts this repression. Furthermore, the yjjP gene, encoding a membrane protein of unknown function and located upstream in divergent orientation to the yjjQ-bglJ operon, is likewise repressed by H-NS. Mapping of the promoters as well as the H-NS and LeuO binding sites within the 555-bp intergenic region revealed that H-NS binds to the center of the AT-rich regulatory region and distal to the divergent promoters. LeuO sites map to the center and to positions distal to the yjjQ promoters, while one LeuO binding site overlaps with the divergent yjjP promoter. This latter LeuO site is required for full derepression of the yjjQ promoters. The arrangement of regulatory sites suggests that LeuO restructures the nucleoprotein complex formed by H-NS. Furthermore, the data support the conclusion that LeuO, whose expression is likewise repressed by H-NS and which is a virulence factor in Salmonella enterica, is a master regulator that among other loci, also controls the yjjQ-bglJ operon and thus indirectly the presumptive targets of YjjQ and BglJ.
Collapse
|
18
|
Nagarajavel V, Madhusudan S, Dole S, Rahmouni AR, Schnetz K. Repression by binding of H-NS within the transcription unit. J Biol Chem 2007; 282:23622-30. [PMID: 17569663 DOI: 10.1074/jbc.m702753200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H-NS inhibits transcription by forming repressing nucleoprotein complexes next to promoters. We investigated repression by binding of H-NS within the transcription unit using the bgl and proU operons. Repression of both operons requires a downstream regulatory element (DRE) in addition to an upstream element (URE). In bgl, H-NS binds to a region located between 600 to 700 bp downstream of the transcription start site, whereas in proU the DRE extends up to position +270. We show that binding of H-NS to the bgl-DRE inhibits transcription initiation at a step before open complex formation, as shown before for proU. This was shown by determining the occupancy of the bgl transcription unit by RNA polymerases, expression analysis of bgl and proU reporter constructs, and chloroacetaldehyde footprinting of RNA polymerase promoter complexes. The chloroacetaldehyde footprinting also revealed that RNA polymerase is "poised" at the osmoregulated sigma70-dependent proU promoter at low osmolarity, whereas at high osmolarity poising of RNA polymerase and repression by H-NS are reduced. Furthermore, repression by H-NS via the URE and DRE is synergistic, and the efficiency of repression by H-NS via the DRE inversely correlates with the promoter activity. Repression is high for a promoter of low activity, whereas it is low for a strong promoter. Inefficient repression of strong promoters by H-NS via a DRE may account for high induction levels of proU at high osmolarity and for bgl upon disruption of the URE.
Collapse
Affiliation(s)
- V Nagarajavel
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
19
|
Wei C, Yang J, Zhu J, Zhang X, Leng W, Wang J, Xue Y, Sun L, Li W, Wang J, Jin Q. Comprehensive Proteomic Analysis ofShigellaflexneri2a Membrane Proteins. J Proteome Res 2006; 5:1860-5. [PMID: 16889407 DOI: 10.1021/pr0601741] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shigella flexneri is the causative agent of most shigellosis cases in developing countries. We used different proteolytic enzymes to selectively shave the protruding proteins on the surface of purified bacterial membrane sheets or vesicles, and recovered peptides were subsequently identified using 2-D LC-MS/MS. As a result, a total of 666 proteins were unambiguously assigned, including 159 integral membrane proteins, 35 outer membrane proteins and 114 proteins previously annotated as hypothetical. The former had an average grand average hydrophobicity score of 0.362 and were predicted to separate within a pH range of 4.1-10.6 with molecular mass 8-148 kDa, which represents the largest validated set of integral membrane proteins in this organism to date. A functional classification revealed that a large proportion of the identified proteins were involved in cell envelope biogenesis and energy production and conversion. For the first time, this work provides a global view of the S. flexneri 2a membrane subproteome.
Collapse
Affiliation(s)
- Candong Wei
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, CAMS, Beijing 100730, Peoples Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Madan R, Kolter R, Mahadevan S. Mutations that activate the silent bgl operon of Escherichia coli confer a growth advantage in stationary phase. J Bacteriol 2005; 187:7912-7. [PMID: 16291664 PMCID: PMC1291259 DOI: 10.1128/jb.187.23.7912-7917.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild-type strains of Escherichia coli are unable to utilize aromatic beta-glucosides such as arbutin and salicin because the major genetic system that encodes the functions for their catabolism, the bgl operon, is silent and uninducible. We show that strains that carry an activated bgl operon exhibit a growth advantage over the wild type in stationary phase in the presence of the rpoS819 allele that causes attenuated rpoS regulon expression. Our results indicate a possible evolutionary advantage in retaining the silent bgl operon by wild-type bacteria.
Collapse
Affiliation(s)
- Ranjna Madan
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore
| | | | | |
Collapse
|
21
|
Madhusudan S, Paukner A, Klingen Y, Schnetz K. Independent regulation of H-NS-mediated silencing of the bgl operon at two levels: upstream by BglJ and LeuO and downstream by DnaKJ. MICROBIOLOGY-SGM 2005; 151:3349-3359. [PMID: 16207917 DOI: 10.1099/mic.0.28080-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Silencing of the Escherichia coli bgl operon by the histone-like nucleoid-structuring protein H-NS occurs at two levels. Binding of H-NS upstream of the promoter represses transcription initiation, whilst binding within the coding region is also proposed to repress transcription elongation. The latter, downstream level of repression is counteracted by the protease Lon and, thus, silencing of the bgl operon is more effective in lon mutants. Transposon-mutagenesis screens for suppression of this lon phenotype on bgl were performed and insertion mutations disrupting rpoS and crl were obtained, as well as mutations mapping upstream of the open reading frames of bglJ, leuO and dnaK. In rpoS and crl mutants, bgl promoter activity is known to be higher. Likewise, as shown here, bgl promoter activity is increased in the bglJ and leuO mutants, which express BglJ and LeuO constitutively. However, BglJ and LeuO have no impact on downstream repression. A dnaKJ mutant was isolated for the first time in the context of the bgl operon. The mutant expresses lower levels of DnaK than the wild-type. Interestingly, in this dnaKJ : : miniTn10 mutant, downstream repression of bgl by H-NS is less effective, whilst upstream repression by H-NS remains unaffected. Together, the data show that the two levels of bgl silencing by H-NS are regulated independently.
Collapse
Affiliation(s)
- S Madhusudan
- Institute for Genetics, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Andreas Paukner
- Institute for Genetics, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Yvonne Klingen
- Institute for Genetics, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| |
Collapse
|
22
|
Dole S, Klingen Y, Nagarajavel V, Schnetz K. The protease Lon and the RNA-binding protein Hfq reduce silencing of the Escherichia coli bgl operon by H-NS. J Bacteriol 2004; 186:2708-16. [PMID: 15090512 PMCID: PMC387812 DOI: 10.1128/jb.186.9.2708-2716.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon at two levels. H-NS binds upstream of the promoter, represses transcription initiation, and binds downstream within the coding region of the first gene, where it induces polarity of transcription elongation. In hns mutants, silencing of the bgl operon is completely relieved. Various screens for mutants in which silencing of bgl is reduced have yielded mutations in hns and in genes encoding the transcription factors LeuO and BglJ. In order to identify additional factors that regulate bgl, we performed a transposon mutagenesis screen for mutants in which silencing of the operon is strengthened. This screen yielded mutants with mutations in cyaA, hfq, lon, and pgi, encoding adenylate cyclase, RNA-binding protein Hfq, protease Lon, and phosphoglucose isomerase, respectively. In cyaA mutants, the cyclic AMP receptor protein-dependent promoter is presumably inactive. The specific effect of the pgi mutants on bgl is low. Interestingly, in the hfq and lon mutants, the downstream silencing of bgl by H-NS (i.e., the induction of polarity) is more efficient, while the silencing of the promoter by H-NS is unaffected. Furthermore, in an hns mutant, Hfq has no significant effect and the effect of Lon is reduced. These data provide evidence that the specific repression by H-NS can (directly or indirectly) be modulated and controlled by other pleiotropic regulators.
Collapse
Affiliation(s)
- Sudhanshu Dole
- Institute for Genetics, University of Cologne, Weyertal 121, 50931 Cologne, Germany
| | | | | | | |
Collapse
|
23
|
Wu HY, Fang M. DNA supercoiling and transcription control: a model from the study of suppression of the leu-500 mutation in Salmonella typhimurium topA- strains. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:43-68. [PMID: 12882514 DOI: 10.1016/s0079-6603(03)01002-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA supercoiling is known to modulate gene expression. The functional relationship between DNA supercoiling and transcription initiation has been established genetically and biochemically. The molecular mechanism whereby DNA supercoiling regulates gene expression remains unclear however. Quite commonly, the same gene responds to the same DNA supercoiling change differently when the gene is positioned at different locations. Such strong positional effects on gene expression suggest that rather than the overall DNA supercoiling change, the variation of DNA supercoiling at a local site might be important for transcription control. We have started to understand the local DNA supercoiling dynamic on the chromosome. As a primary source of local DNA supercoiling fluctuation, transcription-driven DNA supercoiling is important in determining the chromosome supercoiling dynamic and theoretically, therefore, for transcription control as well. Indeed, by studying the coordinated expression of genes in the ilvIH-leuO-leuABCD gene cluster, we found that transcription-driven DNA supercoiling governs the expression of a group of functionally related genes in a sequential manner. Based on the findings in this model system, we put forward the possible mechanisms whereby DNA supercoiling plays its role in transcription control.
Collapse
Affiliation(s)
- Hai-Young Wu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
24
|
Raghunand TR, Mahadevan S. The beta-glucoside genes of Klebsiella aerogenes: conservation and divergence in relation to the cryptic bgl genes of Escherichia coli. FEMS Microbiol Lett 2003; 223:267-74. [PMID: 12829297 DOI: 10.1016/s0378-1097(03)00393-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to metabolize aromatic beta-glucosides such as salicin and arbutin varies among members of the Enterobacteriaceae. The ability of Escherichia coli to degrade salicin and arbutin appears to be cryptic, subject to activation of the bgl genes, whereas many members of the Klebsiella genus can metabolize these sugars. We have examined the genetic basis for beta-glucoside utilization in Klebsiella aerogenes. The Klebsiella equivalents of bglG, bglB and bglR have been cloned using the genome sequence database of Klebsiella pneumoniae. Nucleotide sequencing shows that the K. aerogenes bgl genes show substantial similarities to the E. coli counterparts. The K. aerogenes bgl genes in multiple copies can also complement E. coli mutants deficient in bglG encoding the antiterminator and bglB encoding the phospho-beta-glucosidase, suggesting that they are functional homologues. The regulatory region bglR of K. aerogenes shows a high degree of similarity of the sequences involved in BglG-mediated regulation. Interestingly, the regions corresponding to the negative elements present in the E. coli regulatory region show substantial divergence in K. aerogenes. The possible evolutionary implications of the results are discussed.
Collapse
Affiliation(s)
- Tirumalai R Raghunand
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
25
|
Schnetz K. Silencing of the Escherichia coli bgl operon by RpoS requires Crl. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2573-2578. [PMID: 12177351 DOI: 10.1099/00221287-148-8-2573] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Silencing of the Escherichia coli bgl operon is mediated by histone-like protein H-NS and affected by other pleiotropic regulators, including sigma factor RpoS. Silencing is relieved and the bgl operon is activated in hns mutants and by mutations that map in the vicinity of the bgl promoter. However, the expression level of activated bgl operon derivatives varies with the strain background. Here it is shown that the repression of the bgl operon by RpoS requires Crl. Crl is a protein that is necessary for the RpoS-dependent expression of the csgBA operon and that enhances the expression of other RpoS-dependent genes. In a Crl-negative strain RpoS had no effect on the bgl operon. The crl gene maps close to the proBA locus in the lac operon region and is deleted in many commonly used E. coli strains. Crl may therefore account for some of the observed strain-dependent variations of bgl operon expression levels and effects of pleiotropic regulators on bgl operon regulation.
Collapse
Affiliation(s)
- Karin Schnetz
- Institut für Genetik, Universität zu Köln, Weyertal 121, 50931 Köln, Germany1
| |
Collapse
|
26
|
Moorthy S, Mahadevan S. Differential spectrum of mutations that activate the Escherichia coli bgl operon in an rpoS genetic background. J Bacteriol 2002; 184:4033-8. [PMID: 12081976 PMCID: PMC135163 DOI: 10.1128/jb.184.14.4033-4038.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bgl promoter is silent in wild-type Escherichia coli under standard laboratory conditions, and as a result, cells exhibit a beta-glucoside-negative (Bgl-) phenotype. Silencing is brought about by negative elements that flank the promoter and include DNA structural elements and sequences that interact with the nucleoid-associated protein H-NS. Mutations that confer a Bgl+ phenotype arise spontaneously at a detectable frequency. Transposition of DNA insertion elements within the regulatory locus, bglR, constitutes the major class of activating mutations identified in laboratory cultures. The rpoS-encoded sigmaS, the stationary-phase sigma factor, is involved in both physiological as well as genetic changes that occur in the cell under stationary-state conditions. In an attempt to see if the rpoS status of the cell influences the nature of the mutations that activate the bgl promoter, we analyzed spontaneously arising Bgl+ mutants in rpoS+ and rpoS genetic backgrounds. We show that the spectrum of activating mutations in rpoS cells is different from that in rpoS+ cells. Unlike rpoS+ cells, where insertions in bglR are the predominant activating mutations, mutations in hns make up the majority in rpoS cells. The physiological significance of these differences is discussed in the context of survival of natural populations of E. coli.
Collapse
Affiliation(s)
- Sudha Moorthy
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
27
|
Dole S, Kühn S, Schnetz K. Post-transcriptional enhancement of Escherichia coli bgl operon silencing by limitation of BglG-mediated antitermination at low transcription rates. Mol Microbiol 2002; 43:217-26. [PMID: 11849549 DOI: 10.1046/j.1365-2958.2002.02734.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The silent bgl operon of Escherichia coli is activated by spontaneous mutations that derepress its promoter. In addition, expression depends on specific transcriptional antitermination within the operon by the antiterminator protein BglG. Here, we show that BglG-mediated antitermination limits expression of the bgl operon when the cellular transcription rate is low. The expression levels of chromosomally encoded activated bgl operon alleles are low but increase significantly when BglG protein is provided in trans or when the expression is rendered independent of BglG-mediated antitermination by mutation of the terminator. Plasmid-encoded activated bgl operon alleles are expressed at high levels. Moreover, a moderate (threefold) further increase in the transcription rate of chromosomally encoded activated bgl operon alleles in an rpoS mutant can result in high (up to 50-fold increased) expression levels. These data show that the expression of the bgl operon does not correlate linearly with its cellular transcription rate. Moderate differences in the transcription initiation rate are amplified post-transcriptionally into large changes in the expression level of the operon by the requirement of a threshold for BglG-mediated antitermination. Implications for bgl operon regulation by global regulators H-NS, RpoS and others are discussed.
Collapse
Affiliation(s)
- Sudhanshu Dole
- Institut für Genetik, Universität zu Köln, Weyertal 121, 50931 Köln, Germany
| | | | | |
Collapse
|
28
|
Manna D, Wang X, Higgins NP. Mu and IS1 transpositions exhibit strong orientation bias at the Escherichia coli bgl locus. J Bacteriol 2001; 183:3328-35. [PMID: 11344140 PMCID: PMC99630 DOI: 10.1128/jb.183.11.3328-3335.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The region upstream of the Escherichia coli bgl operon is an insertion hot spot for several transposons. Elements as distantly related as Tn1, Tn5, and phage Mu home in on this location. To see what characteristics result in a high-affinity site for transposition, we compared in vivo and in vitro Mu transposition patterns near the bgl promoter. In vivo, Mu insertions were focused in two narrow zones of DNA near bgl, and both zones exhibited a striking orientation bias. Five hot spots upstream of the bgl cyclic AMP binding protein (CAP) binding site had Mu insertions exclusively with the phage oriented left to right relative to the direction of bgl transcription. One hot spot within the CAP binding domain had the opposite (right-to-left) orientation of phage insertion. The DNA segment lying between these two Mu hot-spot clusters is extremely A/T rich (80%) and is an efficient target for insertion sequences during stationary phase. IS1 insertions that activate the bgl operon resulted in a decrease in Mu insertions near the CAP binding site. Mu transposition in vitro differed significantly from the in vivo transposition pattern, having a new hot-spot cluster at the border of the A/T-rich segment. Transposon hot-spot behavior and orientation bias may relate to an asymmetry of transposon DNA-protein complexes and to interactions with proteins that produce transcriptionally silenced chromatin.
Collapse
Affiliation(s)
- D Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
29
|
McClelland M, Florea L, Sanderson K, Clifton SW, Parkhill J, Churcher C, Dougan G, Wilson RK, Miller W. Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three salmonella enterica serovars, Typhimurium, Typhi and Paratyphi. Nucleic Acids Res 2000; 28:4974-86. [PMID: 11121489 PMCID: PMC115240 DOI: 10.1093/nar/28.24.4974] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli K-12 genome (ECO) was compared with the sampled genomes of the sibling species Salmonella enterica serovars Typhimurium, Typhi and Paratyphi A (collectively referred to as SAL) and the genome of the close outgroup Klebsiella pneumoniae (KPN). There are at least 160 locations where sequences of >400 bp are absent from ECO but present in the genomes of all three SAL and 394 locations where sequences are present in ECO but close homologs are absent in all SAL genomes. The 394 sequences in ECO that do not occur in SAL contain 1350 (30.6%) of the 4405 ECO genes. Of these, 1165 are missing from both SAL and KPN. Most of the 1165 genes are concentrated within 28 regions of 10-40 kb, which consist almost exclusively of such genes. Among these regions were six that included previously identified cryptic phage. A hypothetical ancestral state of genomic regions that differ between ECO and SAL can be inferred in some cases by reference to the genome structure in KPN and the more distant relative Yersinia pestis. However, many changes between ECO and SAL are concentrated in regions where all four genera have a different structure. The rate of gene insertion and deletion is sufficiently high in these regions that the ancestral state of the ECO/SAL lineage cannot be inferred from the present data. The sequencing of other closely related genomes, such as S.bongori or Citrobacter, may help in this regard.
Collapse
Affiliation(s)
- M McClelland
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kharat AS, Mahadevan S. Analysis of the beta-glucoside utilization (bgl) genes of Shigella sonnei: evolutionary implications for their maintenance in a cryptic state. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 8):2039-2049. [PMID: 10931908 DOI: 10.1099/00221287-146-8-2039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pattern of expression of the genes involved in the utilization of aryl beta-glucosides such as arbutin and salicin is different in the genus Shigella compared to Escherichia coli. The results presented here indicate that the homologue of the cryptic bgl operon of E. coli is conserved in Shigella sonnei and is the primary system involved in beta-glucoside utilization in the organism. The organization of the bgl genes in S. sonnei is similar to that of E. coli; however there are three major differences in terms of their pattern of expression. (i) The bglB gene, encoding phospho-beta-glucosidase B, is insertionally inactivated in S. sonnei. As a result, mutational activation of the silent bgl promoter confers an Arbutin-positive (Arb(+)) phenotype to the cells in a single step; however, acquiring a Salicin-positive (Sal(+)) phenotype requires the reversion or suppression of the bglB mutation in addition. (ii) Unlike in E. coli, a majority of the activating mutations (conferring the Arb(+) phenotype) map within the unlinked hns locus, whereas activation of the E. coli bgl operon under the same conditions is predominantly due to insertions within the bglR locus. (iii) Although the bgl promoter is silent in the wild-type strain of S. sonnei (as in the case of E. coli), transcriptional and functional analyses indicated a higher basal level of transcription of the downstream genes. This was correlated with a 1 bp deletion within the putative Rho-independent terminator present in the leader sequence preceding the homologue of the bglG gene. The possible evolutionary implications of these differences for the maintenance of the genes in the cryptic state are discussed.
Collapse
Affiliation(s)
- Arun S Kharat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India1
| | - S Mahadevan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India1
| |
Collapse
|
31
|
Abstract
Cryptic genes have been defined as phenotypically silent DNA sequences, usually not expressed during the life cycle of a microorganism, but capable of expression in a few members of a large population by mutation, recombination, insertion processes, or other genetic mechanisms. Recently, the crypticity of several genetic systems has been questioned. It appears that in many cases cryptic genes are silent only under the experimental conditions analysed and that their expression can be induced in the natural environment. Therefore, we propose that cryptic genes might not be a peculiar class of uniquely regulated genes, but rather genes encoding unusual functions.
Collapse
Affiliation(s)
- E Tamburini
- Department of Animal Biology and Genetics Leo Pardi, Florence, Italy
| | | |
Collapse
|
32
|
Abstract
The wild-type Escherichia coli bgl promoter is silent in vivo but active in vitro. Silencing in vivo is directed by silencer sequences that flank the promoter, and requires nucleoid-associated protein H-NS and other unidentified cellular factors. Here we show that the DNA bending protein FIS is a repressor of the bgl promoter. Two FIS binding sites, centred at positions -52 and -27, overlap the CAP binding site and the -35 box respectively. FIS efficiently competes with CAP for binding to the wild-type promoter. However, FIS does not prevent binding of RNA polymerase. It interferes with the formation of a heparin-resistant complex and represses transcription initiation up to 40-fold. The presence of CAP has very little effect on the FIS-mediated repression of the wild-type bgl promoter in vitro. However, when a bgl promoter allele was tested that carries an improved CAP binding site (which leads to activation in vivo) CAP effectively counteracted repression by FIS in vitro. These results suggest that FIS contributes to silencing of the wild-type bgl promoter in vivo, presumably in the early exponential phase when FIS is predominantly expressed.
Collapse
Affiliation(s)
- A Caramel
- Institut für Genetik, der Universität zu Köln, Weyertal 121, D-50931 Köln, Germany
| | | |
Collapse
|
33
|
Abstract
Transcriptional silencing and repression are modes of negative control of gene expression that differ in specificity. Repressors, when present at promoter-specific binding sites, interfere locally with RNA polymerase function. Silencing proteins act by covering a continuous region of DNA, compete with a broader spectrum of proteins and are non-specific with respect to the promoters affected. Studies of transcriptional silencing promise an entrée to relatively unexplored areas of prokaryotic biology.
Collapse
Affiliation(s)
- M Yarmolinsky
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA. . gov
| |
Collapse
|
34
|
Ohta T, Ueguchi C, Mizuno T. rpoS function is essential for bgl silencing caused by C-terminally truncated H-NS in Escherichia coli. J Bacteriol 1999; 181:6278-83. [PMID: 10515915 PMCID: PMC103760 DOI: 10.1128/jb.181.20.6278-6283.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From evolutionary and physiological viewpoints, the Escherichia coli bgl operon is intriguing because its expression is silent (Bgl(-) phenotype), at least under several laboratory conditions. H-NS, a nucleoid protein, is known as a DNA-binding protein involved in bgl silencing. However, we previously found that bgl expression is still silent in a certain subset of hns mutations, each of which results in a defect in its DNA-binding ability. Based on this fact, we proposed a model in which a postulated DNA-binding protein(s) has an adapter function by interacting with both the cis-acting element of the bgl promoter and the mutated H-NS. To identify such a presumed adapter molecule, we attempted to isolate mutants exhibiting the Bgl(+) phenotype in the background of hns60, encoding the mutant H-NS protein lacking the DNA-binding domain by random insertion mutagenesis with the mini-Tn10cam transposon. These isolated mutations were mapped to five loci on the chromosome. Among these loci, three appeared to be leuO, hns, and bglJ, which were previously characterized, while the other two were novel. Genetic analysis revealed that the two insertions are within the rpoS gene and in front of the lrhA gene, respectively. The former encodes the stationary-phase-specific sigma factor, sigma(S), and the latter encodes a LysR-like DNA-binding protein. It was found that sigma(S) is defective in both types of mutant cells. These results showed that the rpoS function is involved in the mechanism underlying bgl silencing, at least in the hns60 background used in this study. We also examined whether the H-NS homolog StpA has such an adapter function, as was previously proposed. Our results did not support the idea that StpA has an adapter function in the genetic background used.
Collapse
Affiliation(s)
- T Ohta
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
35
|
Caramel A, Schnetz K. Lac and lambda repressors relieve silencing of the Escherichia coli bgl promoter. Activation by alteration of a repressing nucleoprotein complex. J Mol Biol 1998; 284:875-83. [PMID: 9837711 DOI: 10.1006/jmbi.1998.2191] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli bgl promoter is kept in a repressed state by silencer sequences which flank the promoter and by the histone-like protein H-NS. Silencing of the bgl promoter is likely due to the formation of a repressing nucleoprotein complex of which H-NS is an essential component. Here, we show that silencing is abolished by the binding of Lac or lambda repressors to their respective operators that were inserted within the bgl upstream silencer. Efficient activation of bgl operon transcription by Lac and lambda repressors was independent of the position and phasing of the operators with respect to the promoter. Activation by Lac and lambda repressors as shown here is unprecedented. We conclude that the activation of bgl transcription by both repressors is achieved by a novel mechanism, that is by alteration of the repressing nucleoprotein complex rather than by protein-protein interactions with RNA polymerase and the catabolite activator protein, CAP.
Collapse
Affiliation(s)
- A Caramel
- Institut für Genetik, Universität zu Köln, Köln, Weyertal 121, D-50931, Germany
| | | |
Collapse
|
36
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
37
|
Khan MA, Isaacson RE. In vivo expression of the beta-glucoside (bgl) operon of Escherichia coli occurs in mouse liver. J Bacteriol 1998; 180:4746-9. [PMID: 9721321 PMCID: PMC107493 DOI: 10.1128/jb.180.17.4746-4749.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An Escherichia coli DNA fragment was identified that contained part of the beta-glucoside (bgl) operon. This fragment was identified because it contained a promoter that was responsible for the expression of a reporter gene, the chloramphenicol acetyltransferase gene, in a mouse liver during bacterial infection but not when a bacterial clone was grown in vitro. This fragment contained a promoter and a rho-independent transcription terminator which were flanked by the 3' end of bglG and the 5' end of bglF. Reverse transcription-PCR confirmed that cat-specific mRNA was produced in infected mouse liver but not in vitro. mRNA encoding the positive regulator of the bgl operon, bglG, also was detected in mouse liver infected with an E. coli strain. These results demonstrated that expression of the bgl operon occurs in infected mouse liver and suggests a unique role for this operon in vivo.
Collapse
Affiliation(s)
- M A Khan
- Department of Veterinary Pathobiology, University of Illinois, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
38
|
Reversion of anE. coli strain carrying an IS1-activatedbgl operon under nonselective conditions is predominantly due to deletions within the structural genes. J Genet 1998. [DOI: 10.1007/bf02933037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Ueguchi C, Ohta T, Seto C, Suzuki T, Mizuno T. The leuO gene product has a latent ability to relieve bgl silencing in Escherichia coli. J Bacteriol 1998; 180:190-3. [PMID: 9422614 PMCID: PMC106870 DOI: 10.1128/jb.180.1.190-193.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Escherichia coli bgl operon is of interest, since its expression is silent (phenotypically Bgl-), at least under standard laboratory conditions. Here we attempted to identify a trans-acting factor(s) that is presumably relevant to the regulation of bgl by a random insertion mutagenesis with mini-Tn10. These collected mutations, conferring the phenotype of Bgl+, were localized in three loci on the genetic map, two of which appeared to be hns and bglJ, which were previously implicated as the factors affecting the Bgl phenotype. The other locus at 1 to 2 min on the genetic map appeared to be a new one. In this case, the insertion mutation was found to be just in front of the leuO gene encoding a putative LysR-like DNA-binding protein. Genetic analyses revealed that overproduction of LeuO in the wild-type cells causes the phenotype of Bgl+. A leuO deletion mutant was also characterized in terms of expression of bgl. From these results, the possible function of LeuO in bgl expression will be discussed from an evolutionary and/or ecological point of view.
Collapse
Affiliation(s)
- C Ueguchi
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan.
| | | | | | | | | |
Collapse
|
40
|
Liao MK, Gort S, Maloy S. A cryptic proline permease in Salmonella typhimurium. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 9):2903-2911. [PMID: 9308174 DOI: 10.1099/00221287-143-9-2903] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wild-type Salmonella typhimurium expresses three proline transport systems: a high-affinity proline transport system encoded by the putP gene, and two glycine betaine transport systems with a lower affinity for proline encoded by the proP and proU genes. Although proline uptake by the ProP and ProU transport systems is sufficient to supplement a proline auxotroph, it is not efficient enough to allow proline utilization as a sole source of carbon or nitrogen. Thus, the PutP transport system is required for utilization of proline as a carbon or nitrogen source. In this study, an overexpression suppressor, designated proY, which allows proline utilization in a putP genetic background and does not require the function of any of the known proline transport systems, was cloned and characterized. The suppressor gene, designated proY, maps at 8 min on the S. typhimurium linkage map, distant from any of the other characterized proline transport genes. The DNA sequence of the proY gene predicts that it encodes a hydrophobic integral membrane protein, with strong similarity to a family of amino acid transporters. The suppressor phenotype requires either a multicopy done of the proY+ gene or both a single copy of the proY+ gene and a proZ mutation. These results indicate that the proY gene is the structural gene for a cryptic proline transporter that is silent unless overexpressed on a multicopy plasmid or activated by a proZ mutation.
Collapse
Affiliation(s)
- Min-Ken Liao
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Steve Gort
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Stanley Maloy
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| |
Collapse
|
41
|
|