1
|
Mathews EA, Stroud D, Mullen GP, Gavriilidis G, Duerr JS, Rand JB, Hodgkin J. Allele-specific suppression in C. elegans reveals details of EMS mutagenesis and a possible moonlighting interaction between the vesicular acetylcholine transporter and ERD2 receptors. Genetics 2021; 218:6259149. [PMID: 33914877 PMCID: PMC8664489 DOI: 10.1093/genetics/iyab065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/17/2021] [Indexed: 11/12/2022] Open
Abstract
A missense mutant, unc-17(e245), which affects the Caenorhabditis elegans vesicular acetylcholine transporter UNC-17, has a severe uncoordinated phenotype, allowing efficient selection of dominant suppressors that revert this phenotype to wild-type. Such selections permitted isolation of numerous suppressors after EMS (ethyl methanesulfonate) mutagenesis, leading to demonstration of delays in mutation fixation after initial EMS treatment, as has been shown in T4 bacteriophage but not previously in eukaryotes. Three strong dominant extragenic suppressor loci have been defined, all of which act specifically on allele e245, which causes a G347R mutation in UNC-17. Two of the suppressors (sup-1 and sup-8/snb-1) have previously been shown to encode synaptic proteins able to interact directly with UNC-17. We found that the remaining suppressor, sup-2, corresponds to a mutation in erd-2.1, which encodes an endoplasmic reticulum retention protein; sup-2 causes a V186E missense mutation in transmembrane helix 7 of ERD-2.1. The same missense change introduced into the redundant paralogous gene erd-2.2 also suppressed unc-17(e245). Suppression presumably occurred by compensatory charge interactions between transmembrane helices of UNC-17 and ERD-2.1 or ERD-2.2, as previously proposed in work on suppression by SUP-1(G84E) or SUP-8(I97D)/synaptobrevin. erd-2.1(V186E) homozygotes were fully viable, but erd-2.1(V186E); erd-2.2(RNAi) exhibited synthetic lethality (like erd-2.1(RNAi); erd-2.2(RNAi)), indicating that the missense change in ERD-2.1 impairs its normal function in the secretory pathway but may allow it to adopt a novel moonlighting function as an unc-17 suppressor.
Collapse
Affiliation(s)
- Eleanor A Mathews
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Gregory P Mullen
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | - Janet S Duerr
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.,Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA
| | - James B Rand
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.,Oklahoma Center for Neuroscience, Oklahoma City, Oklahoma 73104, USA
| | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
2
|
van Bostelen I, van Schendel R, Romeijn R, Tijsterman M. Translesion synthesis polymerases are dispensable for C. elegans reproduction but suppress genome scarring by polymerase theta-mediated end joining. PLoS Genet 2020; 16:e1008759. [PMID: 32330130 PMCID: PMC7202663 DOI: 10.1371/journal.pgen.1008759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/06/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
Bases within DNA are frequently damaged, producing obstacles to efficient and accurate DNA replication by replicative polymerases. Translesion synthesis (TLS) polymerases, via their ability to catalyze nucleotide additions to growing DNA chains across DNA lesions, promote replication of damaged DNA, thus preventing checkpoint activation, genome instability and cell death. In this study, we used C. elegans to determine the contribution of TLS activity on long-term stability of an animal genome. We monitored and compared the types of mutations that accumulate in REV1, REV3, POLH1 and POLK deficient animals that were grown under unchallenged conditions. We also addressed redundancies in TLS activity by combining all deficiencies. Remarkably, animals that are deficient for all Y-family polymerases as well as animals that have lost all TLS activity are viable and produce progeny, demonstrating that TLS is not essential for animal life. Whole genome sequencing analyses, however, reveal that TLS is needed to prevent genomic scars from accumulating. These scars, which are the product of polymerase theta-mediated end joining (TMEJ), are found overrepresented at guanine bases, consistent with TLS suppressing DNA double-strand breaks (DSBs) from occurring at replication-blocking guanine adducts. We found that in C. elegans, TLS across spontaneous damage is predominantly error free and anti-clastogenic, and thus ensures preservation of genetic information.
Collapse
Affiliation(s)
- Ivo van Bostelen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron Romeijn
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Herbette M, Mercier M, Michal F, Cluet D, Burny C, Yvert G, Robert V, Palladino F. The C. elegans SET-2/SET1 histone H3 Lys4 (H3K4) methyltransferase preserves genome stability in the germline. DNA Repair (Amst) 2017; 57:139-150. [DOI: 10.1016/j.dnarep.2017.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
4
|
A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:2407-19. [PMID: 27261001 PMCID: PMC4978895 DOI: 10.1534/g3.116.030866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To identify genes that regulate the dynamics of lipid droplet (LD) size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 105 mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10). The nine groups are named drop (lipid droplet abnormal) and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion.
Collapse
|
5
|
Noma K, Jin Y. Optogenetic mutagenesis in Caenorhabditis elegans. Nat Commun 2015; 6:8868. [PMID: 26632265 PMCID: PMC4686824 DOI: 10.1038/ncomms9868] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/08/2015] [Indexed: 12/30/2022] Open
Abstract
Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations. Inducing random mutation of C. elegans DNA is a widely used technique to investigate gene and protein function. Here the authors introduce a method of optogenetic mutagenesis, driving the generation of reactive oxygen species, which avoids the use of toxic chemicals.
Collapse
Affiliation(s)
- Kentaro Noma
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, USA.,Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Yishi Jin
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, USA.,Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
6
|
Roerink SF, van Schendel R, Tijsterman M. Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans. Genome Res 2014; 24:954-62. [PMID: 24614976 PMCID: PMC4032859 DOI: 10.1101/gr.170431.113] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/04/2014] [Indexed: 11/24/2022]
Abstract
DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome sequencing of animal populations that were clonally propagated for more than 50 generations, we identify a distinct class of deletions that spontaneously accumulate in C. elegans strains lacking translesion synthesis (TLS) polymerases. Emerging DNA double-strand breaks are repaired via an error-prone mechanism in which the outermost nucleotide of one end serves to prime DNA synthesis on the other end. This pathway critically depends on the A-family polymerase theta, which protects the genome against gross chromosomal rearrangements. By comparing the genomes of isolates of C. elegans from different geographical regions, we found that in fact most spontaneously evolving structural variations match the signature of polymerase theta-mediated end joining (TMEJ), illustrating that this pathway is an important source of genetic diversification.
Collapse
Affiliation(s)
| | | | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
7
|
de la Cruz IP, Ma L, Horvitz HR. The Caenorhabditis elegans iodotyrosine deiodinase ortholog SUP-18 functions through a conserved channel SC-box to regulate the muscle two-pore domain potassium channel SUP-9. PLoS Genet 2014; 10:e1004175. [PMID: 24586202 PMCID: PMC3930498 DOI: 10.1371/journal.pgen.1004175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/28/2013] [Indexed: 02/04/2023] Open
Abstract
Loss-of-function mutations in the Caenorhabditis elegans gene sup-18 suppress the defects in muscle contraction conferred by a gain-of-function mutation in SUP-10, a presumptive regulatory subunit of the SUP-9 two-pore domain K+ channel associated with muscle membranes. We cloned sup-18 and found that it encodes the C. elegans ortholog of mammalian iodotyrosine deiodinase (IYD), an NADH oxidase/flavin reductase that functions in iodine recycling and is important for the biosynthesis of thyroid hormones that regulate metabolism. The FMN-binding site of mammalian IYD is conserved in SUP-18, which appears to require catalytic activity to function. Genetic analyses suggest that SUP-10 can function with SUP-18 to activate SUP-9 through a pathway that is independent of the presumptive SUP-9 regulatory subunit UNC-93. We identified a novel evolutionarily conserved serine-cysteine-rich region in the C-terminal cytoplasmic domain of SUP-9 required for its specific activation by SUP-10 and SUP-18 but not by UNC-93. Since two-pore domain K+ channels regulate the resting membrane potentials of numerous cell types, we suggest that the SUP-18 IYD regulates the activity of the SUP-9 channel using NADH as a coenzyme and thus couples the metabolic state of muscle cells to muscle membrane excitability. Iodotyrosine deiodinase (IYD) controls the recycling of iodide in the biogenesis of thyroid hormones that regulate metabolism. Defects in IYD result in congenital hypothyroidism, a multisystem disorder that can lead to growth failure and severe mental retardation. We identified the gene sup-18 of the nematode Caenorhabditis elegans as a regulator of the SUP-9/UNC-93/SUP-10 two-pore domain potassium channel complex and showed that SUP-18 is an ortholog of IYD, a member of the NADH oxidase/flavin reductase family. SUP-18 IYD is required for the activation of the channel complex by a gain-of-function mutation of the SUP-10 protein. SUP-9 channel activation by SUP-18 requires a conserved serine-cysteine-rich region in the C-terminus of SUP-9 and is independent of the function of the conserved multi-transmembrane protein UNC-93. We propose that SUP-18 uses NADH as a coenzyme to activate the SUP-9 channel in response to the activity of SUP-10 and the metabolic state of muscle cells.
Collapse
Affiliation(s)
- Ignacio Perez de la Cruz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Long Ma
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wang D, Cao M, Dinh J, Dong Y. Methods for creating mutations in C. elegans that extend lifespan. Methods Mol Biol 2013; 1048:65-75. [PMID: 23929098 DOI: 10.1007/978-1-62703-556-9_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The principle of commonly used methods to create mutations in the nematode Caenorhabditis elegans (C. elegans) is straightforward. In general, worms are exposed to a dose of mutagen resulting in DNA damages and mutations. Screening the progeny of the mutagenized animals for a certain phenotype is the regular forward genetic approach in C. elegans. A mutant selected from such a population is stabilized to recover a pure homozygous strain. In this chapter, we categorize the protocol into mutagenesis, phenotype screen, and outcross and provide time-tested procedures for their implementation to create long-lived worm mutants.
Collapse
Affiliation(s)
- Dayong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School of Southeast University, Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
9
|
Boulin T, Hobert O. From genes to function: the C. elegans genetic toolbox. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:114-37. [PMID: 23801671 DOI: 10.1002/wdev.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.
Collapse
Affiliation(s)
- Thomas Boulin
- Department of Biology, Institut de Biologie de l'École Normale Supérieure, Paris, France.
| | | |
Collapse
|
10
|
Abstract
Deep sequencing offers an unprecedented view of an organism's genome. We describe the spectrum of mutations induced by three commonly used mutagens: ethyl methanesulfonate (EMS), N-ethyl-N-nitrosourea (ENU), and ultraviolet trimethylpsoralen (UV/TMP) in the nematode Caenorhabditis elegans. Our analysis confirms the strong GC to AT transition bias of EMS. We found that ENU mainly produces A to T and T to A transversions, but also all possible transitions. We found no bias for any specific transition or transversion in the spectrum of UV/TMP-induced mutations. In 10 mutagenized strains we identified 2723 variants, of which 508 are expected to alter or disrupt gene function, including 21 nonsense mutations and 10 mutations predicted to affect mRNA splicing. This translates to an average of 50 informative mutations per strain. We also present evidence of genetic drift among laboratory wild-type strains derived from the Bristol N2 strain. We make several suggestions for best practice using massively parallel short read sequencing to ensure mutation detection.
Collapse
|
11
|
Ma L, Horvitz HR. Mutations in the Caenorhabditis elegans U2AF large subunit UAF-1 alter the choice of a 3' splice site in vivo. PLoS Genet 2009; 5:e1000708. [PMID: 19893607 PMCID: PMC2762039 DOI: 10.1371/journal.pgen.1000708] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 10/05/2009] [Indexed: 11/18/2022] Open
Abstract
The removal of introns from eukaryotic RNA transcripts requires the activities of five multi-component ribonucleoprotein complexes and numerous associated proteins. The lack of mutations affecting splicing factors essential for animal survival has limited the study of the in vivo regulation of splicing. From a screen for suppressors of the Caenorhabditis elegans unc-93(e1500) rubberband Unc phenotype, we identified mutations in genes that encode the C. elegans orthologs of two splicing factors, the U2AF large subunit (UAF-1) and SF1/BBP (SFA-1). The uaf-1(n4588) mutation resulted in temperature-sensitive lethality and caused the unc-93 RNA transcript to be spliced using a cryptic 3′ splice site generated by the unc-93(e1500) missense mutation. The sfa-1(n4562) mutation did not cause the utilization of this cryptic 3′ splice site. We isolated four uaf-1(n4588) intragenic suppressors that restored the viability of uaf-1 mutants at 25°C. These suppressors differentially affected the recognition of the cryptic 3′ splice site and implicated a small region of UAF-1 between the U2AF small subunit-interaction domain and the first RNA recognition motif in affecting the choice of 3′ splice site. We constructed a reporter for unc-93 splicing and using site-directed mutagenesis found that the position of the cryptic splice site affects its recognition. We also identified nucleotides of the endogenous 3′ splice site important for recognition by wild-type UAF-1. Our genetic and molecular analyses suggested that the phenotypic suppression of the unc-93(e1500) Unc phenotype by uaf-1(n4588) and sfa-1(n4562) was likely caused by altered splicing of an unknown gene. Our observations provide in vivo evidence that UAF-1 can act in regulating 3′ splice-site choice and establish a system that can be used to investigate the in vivo regulation of RNA splicing in C. elegans. Eukaryotic genes contain intervening intronic sequences that must be removed from pre-mRNA transcripts by RNA splicing to generate functional messenger RNAs. While studying genes that encode and control a presumptive muscle potassium channel complex in the nematode Caenorhabditis elegans, we found that mutations in two splicing factors, the U2AF large subunit and SF1/BBP suppress the rubberband Unc phenotype caused by a rare missense mutation in the gene unc-93. Mutations affecting the U2AF large subunit caused the recognition of a cryptic 3′ splice site generated by the unc-93 mutation, providing in vivo evidence that the U2AF large subunit can affect splice-site selection. By contrast, an SF1/BBP mutation that suppressed the rubberband Unc phenotype did not cause splicing using this cryptic 3′ splice site. Our genetic studies identified a region of the U2AF large subunit important for its effect on 3′ splice-site choice. Our mutagenesis analysis of in vivo transgene splicing identified a positional effect on weak 3′ splice site selection and nucleotides of the endogenous 3′ splice site important for recognition. The system we have defined should facilitate future in vivo analyses of pre–mRNA splicing.
Collapse
Affiliation(s)
- Long Ma
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Identification of mutations in Caenorhabditis elegans that cause resistance to high levels of dietary zinc and analysis using a genomewide map of single nucleotide polymorphisms scored by pyrosequencing. Genetics 2008; 179:811-28. [PMID: 18505880 PMCID: PMC2429876 DOI: 10.1534/genetics.107.084384] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zinc plays many critical roles in biological systems: zinc bound to proteins has structural and catalytic functions, and zinc is proposed to act as a signaling molecule. Because zinc deficiency and excess result in toxicity, animals have evolved sophisticated mechanisms for zinc metabolism and homeostasis. However, these mechanisms remain poorly defined. To identify genes involved in zinc metabolism, we conducted a forward genetic screen for chemically induced mutations that cause Caenorhabditis elegans to be resistant to high levels of dietary zinc. Nineteen mutations that confer significant resistance to supplemental dietary zinc were identified. To determine the map positions of these mutations, we developed a genomewide map of single nucleotide polymorphisms (SNPs) that can be scored by the high-throughput method of DNA pyrosequencing. This map was used to determine the approximate chromosomal position of each mutation, and the accuracy of this approach was verified by conducting three-factor mapping experiments with mutations that cause visible phenotypes. This is a generally applicable mapping approach that can be used to position a wide variety of C. elegans mutations. The mapping experiments demonstrate that the 19 mutations identify at least three genes that, when mutated, confer resistance to toxicity caused by supplemental dietary zinc. These genes are likely to be involved in zinc metabolism, and the analysis of these genes will provide insights into mechanisms of excess zinc toxicity.
Collapse
|
13
|
Astin JW, O'Neil NJ, Kuwabara PE. Nucleotide excision repair and the degradation of RNA pol II by the Caenorhabditis elegans XPA and Rsp5 orthologues, RAD-3 and WWP-1. DNA Repair (Amst) 2007; 7:267-80. [PMID: 18053776 DOI: 10.1016/j.dnarep.2007.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 09/07/2007] [Accepted: 10/12/2007] [Indexed: 01/06/2023]
Abstract
The Caenorhabditis elegans rad-3 gene was identified in a genetic screen for radiation sensitive (rad) mutants. Here, we report that the UV sensitivity of rad-3 mutants is caused by a nonsense mutation in the C. elegans orthologue of the human nucleotide excision repair gene XPA. We have used the xpa-1/rad-3 mutant to examine how a defect in nucleotide excision repair (NER) perturbs development. We find that C. elegans carrying a mutation in xpa-1/rad-3 are hypersensitive and hypermutable in response to UV irradiation, but do not display hypersensitivity to oxidative stress or show obvious developmental abnormalities in the absence of UV exposure. Consistent with these observations, non-irradiated xpa-1 mutants have a similar lifespan as wild type. We further show that UV irradiated xpa-1 mutants undergo a stage-dependent decline in growth and survival, which is associated with a loss in transcriptional competence. Surprisingly, transcriptionally quiescent dauer stage larvae are able to survive a dose of UV irradiation, which is otherwise lethal to early stage larvae. We show that the loss of transcriptional competence in UV irradiated xpa-1 mutants is associated with the degradation of the large RNA polymerase II (RNA pol II) subunit, AMA-1, and have identified WWP-1 as the putative E3 ubiquitin ligase mediating this process. The absence of wwp-1 by itself does not cause sensitivity to UV irradiation, but it acts synergistically with a mutation in xpa-1 to enhance UV hypersensitivity.
Collapse
Affiliation(s)
- Jonathan W Astin
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
14
|
Abstract
Molecular techniques allowing in vivo modulation of gene expression have provided unique opportunities and challenges for behavioural studies aimed at understanding the function of particular genes or biological systems under physiological or pathological conditions. Although various animal models are available, the laboratory mouse (Mus musculus) has unique features and is therefore a preferred animal model. The mouse shares a remarkable genetic resemblance and aspects of behaviour with humans. In this review, first we describe common mouse models for behavioural analyses. As both genetic and environmental factors influence behavioural performance and need to be carefully evaluated in behavioural experiments, considerations for designing and interpretations of these experiments are subsequently discussed. Finally, common behavioural tests used to assess brain function are reviewed, and it is illustrated how behavioural tests are used to increase our understanding of the role of histaminergic neurotransmission in brain function.
Collapse
Affiliation(s)
- Peter van Meer
- *Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, U.S.A
| | - Jacob Raber
- *Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, U.S.A
- †Department of Neurology and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon 97239, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Novelli J, Ahmed S, Hodgkin J. Gene interactions in Caenorhabditis elegans define DPY-31 as a candidate procollagen C-proteinase and SQT-3/ROL-4 as its predicted major target. Genetics 2005; 168:1259-73. [PMID: 15579684 PMCID: PMC1448789 DOI: 10.1534/genetics.104.027953] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zinc metalloproteases of the BMP-1/TOLLOID family (also known as astacins) are extracellular enzymes involved in important developmental processes in metazoans. We report the characterization of the Caenorhabditis elegans gene dpy-31, which encodes the first essential astacin metalloprotease identified in this organism. Loss-of-function mutations in dpy-31 result in cuticle defects, abnormal morphology, and embryonic lethality, indicating that dpy-31 is required for formation of the collagenous exoskeleton. DPY-31 is widely expressed in the hypodermal cells, which are responsible for cuticle secretion. We have investigated the dpy-31 function through reversion analysis. While complete reversion can be obtained only by intragenic suppressors, reversion of the Dpy-31 lethal phenotype also can be caused by dominant extragenic suppressors. Nine extragenic suppressors carry mutations in the uniquely essential collagen gene sqt-3, which we show is the same gene as rol-4. Most mutations exhibit the unusual property of exclusively dominant suppression and all affect the sequence of the SQT-3 collagen C terminus. This suggests that DPY-31 is responsible for C-terminal proteolytic processing of collagen trimers and is therefore a structural and functional homolog of vertebrate BMP-1. The results also demonstrate the critical importance of the collagen C-terminal sequence, which is highly conserved among all 49 members of the SQT-3 subfamily.
Collapse
Affiliation(s)
- Jacopo Novelli
- Genetics Unit, Department of Biochemistry, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
16
|
Lissemore JL, Lackner LL, Fedoriw GD, De Stasio EA. Isolation of Caenorhabditis elegans genomic DNA and detection of deletions in the unc-93 gene using PCR. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 33:219-226. [PMID: 21638583 DOI: 10.1002/bmb.2005.494033032452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PCR, genomic DNA isolation, and agarose gel electrophoresis are common molecular biology techniques with a wide range of applications. Therefore, we have developed a series of exercises employing these techniques for an intermediate level undergraduate molecular biology laboratory course. In these exercises, students isolate genomic DNA from the nematode Caenorhabditis elegans and use PCR to detect deletions in the C. elegans unc-93 gene. In advance of the exercises, wild-type and three different unc-93 deletion mutant strains are grown, harvested, and frozen by the instructor. In one approach, students isolate genomic DNA from each strain using a genomic DNA isolation kit and use agarose gel electrophoresis to analyze the DNA and to estimate its concentration. PCRs using primers directed to two different regions of the unc-93 gene are carried out on the genomic DNA from wild-type and mutant strains, and the PCR products are analyzed by agarose gel electrophoresis. Students analyze the gel to determine the approximate location and size of deletions in the three mutant strains. Alternatively, students may lyse single nematodes and carry out PCR in one laboratory session. These exercises should be easily adaptable to detection of well characterized deletions in any organism.
Collapse
Affiliation(s)
- James L Lissemore
- Biology Department, John Carroll University, University Heights, Ohio 44118.
| | | | | | | |
Collapse
|
17
|
Hoeppner DJ, Spector MS, Ratliff TM, Kinchen JM, Granat S, Lin SC, Bhusri SS, Conradt B, Herman MA, Hengartner MO. eor-1 and eor-2 are required for cell-specific apoptotic death in C. elegans. Dev Biol 2004; 274:125-38. [PMID: 15355793 DOI: 10.1016/j.ydbio.2004.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 06/15/2004] [Accepted: 06/18/2004] [Indexed: 11/22/2022]
Abstract
Programmed cell death occurs in every multicellular organism and in diverse cell types yet the genetic controls that define which cells will live and which will die remain poorly understood. During development of the nematode Caenorhabditis elegans, the coordinated activity of four gene products, EGL-1, CED-9, CED-4 and CED-3, results in the death of essentially all cells fated to die. To identify novel upstream components of the cell death pathway, we performed a genetic screen for mutations that abolish the death of the hermaphrodite-specific neurons (HSNs), a homologous pair of cells required for egg-laying in the hermaphrodite. We identified and cloned the genes, eor-1 and eor-2, which are required to specify the fate of cell death in male HSNs. In addition to defects in HSN death, mutation of either gene leads to defects in coordinated movement, neuronal migration, male tail development, and viability; all consistent with abnormal neuronal differentiation. eor-1 encodes a putative transcription factor related to the human oncogene PLZF. eor-2 encodes a novel but conserved protein. We propose that eor-1 and eor-2 function together throughout the nervous system to promote terminal differentiation of neurons and function specifically in male HSNs to promote apoptotic death of the HSNs.
Collapse
|
18
|
Affiliation(s)
- Erno Wienholds
- Hubrecht Laboratory, Center for Biomedical Genetics, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
19
|
sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans. J Neurosci 2003. [PMID: 14534247 DOI: 10.1523/jneurosci.23-27-09133.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic studies of sup-9, unc-93, and sup-10 strongly suggest that these genes encode components of a multi-subunit protein complex that coordinates muscle contraction in Caenorhabditis elegans. We cloned sup-9 and sup-10 and found that they encode a two-pore K+ channel and a novel transmembrane protein, respectively. We also found that UNC-93 and SUP-10 colocalize with SUP-9 within muscle cells, and that UNC-93 is a member of a novel multigene family that is conserved among C. elegans, Drosophila, and humans. Our results indicate that SUP-9 and perhaps other two-pore K+ channels function as multiprotein complexes, and that UNC-93 and SUP-10 likely define new classes of ion channel regulatory proteins.
Collapse
|
20
|
de la Cruz IP, Levin JZ, Cummins C, Anderson P, Horvitz HR. sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans. J Neurosci 2003; 23:9133-45. [PMID: 14534247 PMCID: PMC6740817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Genetic studies of sup-9, unc-93, and sup-10 strongly suggest that these genes encode components of a multi-subunit protein complex that coordinates muscle contraction in Caenorhabditis elegans. We cloned sup-9 and sup-10 and found that they encode a two-pore K+ channel and a novel transmembrane protein, respectively. We also found that UNC-93 and SUP-10 colocalize with SUP-9 within muscle cells, and that UNC-93 is a member of a novel multigene family that is conserved among C. elegans, Drosophila, and humans. Our results indicate that SUP-9 and perhaps other two-pore K+ channels function as multiprotein complexes, and that UNC-93 and SUP-10 likely define new classes of ion channel regulatory proteins.
Collapse
Affiliation(s)
- Ignacio Perez de la Cruz
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
21
|
Clark SG, Chiu C. C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation. Development 2003; 130:3781-94. [PMID: 12835394 DOI: 10.1242/dev.00571] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neurons acquire distinct cell identities and implement differential gene programs to generate their appropriate neuronal attributes. On the basis of position, axonal structure and synaptic connectivity, the 302 neurons of the nematode Ceanorhabditis elegans are divided into 118 classes. The development and differentiation of many neurons require the gene zag-1, which encodes a deltaEF1/ZFH-1 Zn-finger-homeodomain protein. zag-1 mutations cause misexpression of neuron-specific genes, block formation of stereotypic axon branches, perturb neuronal migrations, and induce various axon-guidance, fasciculation and branching errors. A zag-1-GFP translational reporter is expressed transiently in most or all neurons during embryogenesis and in select neurons during the first larval stage. Analysis of the zag-1 promoter reveals that zag-1 is expressed in neurons and specific muscles, and that ZAG-1 directly represses its own expression. zag-1 activity also downregulates expression of genes involved in either the synthesis or reuptake of serotonin, dopamine and GABA. We propose that ZAG-1 acts as a transcriptional repressor to regulate multiple, discrete, neuron-specific aspects of terminal differentiation, including cell migration, axonal development and gene expression.
Collapse
Affiliation(s)
- Scott G Clark
- Molecular Neurobiology Program, Department of Pharmacology, Skirball Institute, NYU School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
22
|
Mercer KB, Flaherty DB, Miller RK, Qadota H, Tinley TL, Moerman DG, Benian GM. Caenorhabditis elegans UNC-98, a C2H2 Zn finger protein, is a novel partner of UNC-97/PINCH in muscle adhesion complexes. Mol Biol Cell 2003; 14:2492-507. [PMID: 12808046 PMCID: PMC194897 DOI: 10.1091/mbc.e02-10-0676] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Revised: 01/29/2003] [Accepted: 02/26/2003] [Indexed: 01/13/2023] Open
Abstract
To further understand the assembly and maintenance of the muscle contractile apparatus, we have identified a new protein, UNC-98, in the muscle of Caenorhabditis elegans. unc-98 mutants display reduced motility and a characteristic defect in muscle structure. We show that the major defect in the mutant muscle is in the M-lines and dense bodies (Z-line analogs). Both functionally and compositionally, nematode M-lines and dense bodies are analogous to focal adhesions of nonmuscle cells. UNC-98 is a novel 310-residue polypeptide consisting of four C2H2 Zn fingers and several possible nuclear localization signal and nuclear export signal sequences. By use of UNC-98 antibodies and green fluorescent protein fusions (to full-length UNC-98 and UNC-98 fragments), we have shown that UNC-98 resides at M-lines, muscle cell nuclei, and possibly at dense bodies. Furthermore, we demonstrated that 1) the N-terminal 106 amino acids are both necessary and sufficient for nuclear localization, and 2) the C-terminal (fourth) Zn finger is required for localization to M-lines and dense bodies. UNC-98 interacts with UNC-97, a C. elegans homolog of PINCH. We propose that UNC-98 is both a structural component of muscle focal adhesions and a nuclear protein that influences gene expression.
Collapse
Affiliation(s)
- Kristina B Mercer
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Hofmann ER, Milstein S, Boulton SJ, Ye M, Hofmann JJ, Stergiou L, Gartner A, Vidal M, Hengartner MO. Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis. Curr Biol 2002; 12:1908-18. [PMID: 12445383 DOI: 10.1016/s0960-9822(02)01262-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The inability to efficiently repair DNA damage or remove cells with severely damaged genomes has been linked to several human cancers. Studies in yeasts and mammals have identified several genes that are required for proper activation of cell cycle checkpoints following various types of DNA damage. However, in metazoans, DNA damage can induce apoptosis as well. How DNA damage activates the apoptotic machinery is not fully understood. RESULTS We demonstrate here that the Caenorhabditis elegans gene hus-1 is required for DNA damage-induced cell cycle arrest and apoptosis. Following DNA damage, HUS-1 relocalizes and forms distinct foci that overlap with chromatin. Relocalization does not require the novel checkpoint protein RAD-5; rather, relocalization appears more frequently in rad-5 mutants, suggesting that RAD-5 plays a role in repair. HUS-1 is required for genome stability, as demonstrated by increased frequency of spontaneous mutations, chromosome nondisjunction, and telomere shortening. Finally, we show that DNA damage increases expression of the proapoptotic gene egl-1, a response that requires hus-1 and the p53 homolog cep-1. CONCLUSIONS Our findings suggest that the RAD-5 checkpoint protein is not required for HUS-1 to relocalize following DNA damage. Furthermore, our studies reveal a new function of HUS-1 in the prevention of telomere shortening and mortalization of germ cells. DNA damage-induced germ cell death is abrogated in hus-1 mutants, in part, due to the inability of these mutants to activate egl-1 transcription in a cep-1/p53-dependent manner. Thus, HUS-1 is required for p53-dependent activation of a BH3 domain protein in C. elegans.
Collapse
Affiliation(s)
- E Randal Hofmann
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tijsterman M, Pothof J, Plasterk RHA. Frequent germline mutations and somatic repeat instability in DNA mismatch-repair-deficient Caenorhabditis elegans. Genetics 2002; 161:651-60. [PMID: 12072462 PMCID: PMC1462132 DOI: 10.1093/genetics/161.2.651] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mismatch-repair-deficient mutants were initially recognized as mutation-prone derivatives of bacteria, and later mismatch repair deficiency was found to predispose humans to colon cancers (HNPCC). We generated mismatch-repair-deficient Caenorhabditis elegans by deleting the msh-6 gene and analyzed the fidelity of transmission of genetic information to subsequent generations. msh-6-defective animals show an elevated level of spontaneous mutants in both the male and female germline; also repeated DNA tracts are unstable. To monitor DNA repeat instability in somatic tissue, we developed a sensitive system, making use of heat-shock promoter-driven lacZ transgenes, but with a repeat that puts this reporter gene out of frame. In genetic msh-6-deficient animals lacZ+ patches are observed as a result of somatic repeat instability. RNA interference by feeding wild-type animals dsRNA homologous to msh-2 or msh-6 also resulted in somatic DNA instability, as well as in germline mutagenesis, indicating that one can use C. elegans as a model system to discover genes involved in maintaining DNA stability by large-scale RNAi screens.
Collapse
Affiliation(s)
- Marcel Tijsterman
- Hubrecht Laboratory, Centre for Biomedical Genetics, 3584 CT, Utrecht, The Netherlands
| | | | | |
Collapse
|
25
|
Abstract
Chemical mutagenesis of Caenorhabditis elegans has relied primarily on EMS to produce missense mutations. The drawback of EMS mutagenesis is that the molecular lesions are primarily G/C --> A/T transitions. ENU has been shown to produce a different spectrum of mutations, but its greater toxicity to C. elegans makes it a difficult mutagen to use. We describe here methods for minimizing ENU toxicity in C. elegans. Methods include preparing ENU stocks in absolute ethanol and storing stock solutions for not more than 2 weeks at -20 degrees C. To maintain reasonable brood sizes of mutagenized animals, mutagenic solutions should not exceed 1.0mM ENU. We provide data which suggest ENU is degraded or altered to more toxic products in aqueous solution, but less so in solvents such as absolute ethanol.
Collapse
Affiliation(s)
- E A De Stasio
- Department of Biology, Lawrence University, Appleton, WI 54911, USA.
| | | |
Collapse
|
26
|
Zhang Y, Grant B, Hirsh D. RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol Biol Cell 2001; 12:2011-21. [PMID: 11451999 PMCID: PMC55649 DOI: 10.1091/mbc.12.7.2011] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
By genetic analysis of Caenorhabditis elegans mutants defective in yolk uptake, we have identified new molecules functioning in the endocytosis pathway. Here we describe a novel J-domain-containing protein, RME-8, identified by such genetic analysis. RME-8 is required for receptor-mediated endocytosis and fluid-phase endocytosis in various cell types and is essential for C. elegans development and viability. In the macrophage-like coelomocytes, RME-8 localizes to the limiting membrane of large endosomes. Endocytosis markers taken up by the coelomocytes rapidly accumulate in these large RME-8-positive endosomes, concentrate in internal subendosomal structures, and later appear in RME-8-negative lysosomes. rme-8 mutant coelomocytes fail to accumulate visible quantities of endocytosis markers. These observations show that RME-8 functions in endosomal trafficking before the lysosome. RME-8 homologues are found in multicellular organisms from plants to humans but not in the yeast Saccharomyces cerevisiae. These sequence homologies suggest that RME-8 fulfills a conserved function in multicellular organisms.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
27
|
Furuta T, Tuck S, Kirchner J, Koch B, Auty R, Kitagawa R, Rose AM, Greenstein D. EMB-30: an APC4 homologue required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. Mol Biol Cell 2000; 11:1401-19. [PMID: 10749938 PMCID: PMC14855 DOI: 10.1091/mbc.11.4.1401] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Here we show that emb-30 is required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. Germline-specific emb-30 mutant alleles block the meiotic divisions. Mutant oocytes, fertilized by wild-type sperm, set up a meiotic spindle but do not progress to anaphase I. As a result, polar bodies are not produced, pronuclei fail to form, and cytokinesis does not occur. Severe-reduction-of-function emb-30 alleles (class I alleles) result in zygotic sterility and lead to germline and somatic defects that are consistent with an essential role in promoting the metaphase-to-anaphase transition during mitosis. Analysis of the vulval cell lineages in these emb-30(class I) mutant animals suggests that mitosis is lengthened and eventually arrested when maternally contributed emb-30 becomes limiting. By further reducing maternal emb-30 function contributed to class I mutant animals, we show that emb-30 is required for the metaphase-to-anaphase transition in many, if not all, cells. Metaphase arrest in emb-30 mutants is not due to activation of the spindle assembly checkpoint but rather reflects an essential emb-30 requirement for M-phase progression. A reduction in emb-30 activity can suppress the lethality and sterility caused by a null mutation in mdf-1, a component of the spindle assembly checkpoint machinery. This result suggests that delaying anaphase onset can bypass the spindle checkpoint requirement for normal development. Positional cloning established that emb-30 encodes the likely C. elegans orthologue of APC4/Lid1, a component of the anaphase-promoting complex/cyclosome, required for the metaphase-to-anaphase transition. Thus, the anaphase-promoting complex/cyclosome is likely to be required for all metaphase-to-anaphase transitions in a multicellular organism.
Collapse
Affiliation(s)
- T Furuta
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The zebrafish has become a popular model system for the study of vertebrate developmental biology because of its numerous strengths as a molecular genetic and embryological system. To determine the requirement for specific genes during embryogenesis, it is necessary to generate organisms carrying loss-of-function mutations. This can be accomplished in zebrafish through a reverse genetic approach. This review discusses the current techniques for generating mutations in known genes in zebrafish. These techniques include the generation of chromosomal deletions and the subsequent identification of complementation groups within deletions through noncomplementation assays. In addition, this review will discuss methods currently being evaluated that may improve the methods for finding mutations in a known sequence, including screening for randomly induced small deletions within genes and screening for randomly induced point mutations within specific genes.
Collapse
Affiliation(s)
- A C Lekven
- Howard Hughes Medical Institute, Department of Pharmacology, Center for Developmental Biology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
The Caenorhabditis elegans oocyte is a highly amenable system for forward and reverse genetic analysis of receptor-mediated endocytosis. We describe the use of transgenic strains expressing a vitellogenin::green fluorescent protein (YP170::GFP) fusion to monitor yolk endocytosis by the C. elegans oocyte in vivo. This YP170::GFP reporter was used to assay the functions of C. elegans predicted proteins homologous to vertebrate endocytosis factors using RNA-mediated interference. We show that the basic components and pathways of endocytic trafficking are conserved between C. elegans and vertebrates, and that this system can be used to test the endocytic functions of any new gene. We also used the YP170::GFP assay to identify rme (receptor-mediated endocytosis) mutants. We describe a new member of the low-density lipoprotein receptor superfamily, RME-2, identified in our screens for endocytosis defective mutants. We show that RME-2 is the C. elegans yolk receptor.
Collapse
Affiliation(s)
- B Grant
- Columbia University College of Physicians and Surgeons, Department of Biochemistry and Molecular Biophysics, New York, New York 10032, USA.
| | | |
Collapse
|
30
|
Liu LX, Spoerke JM, Mulligan EL, Chen J, Reardon B, Westlund B, Sun L, Abel K, Armstrong B, Hardiman G, King J, McCague L, Basson M, Clover R, Johnson CD. High-throughput isolation of Caenorhabditis elegans deletion mutants. Genome Res 1999; 9:859-67. [PMID: 10508845 PMCID: PMC310813 DOI: 10.1101/gr.9.9.859] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1999] [Accepted: 07/15/1999] [Indexed: 11/25/2022]
Abstract
The nematode Caenorhabditis elegans is the first animal whose genome is completely sequenced, providing a rich source of gene information relevant to metazoan biology and human disease. This abundant sequence information permits a broad-based gene inactivation approach in C. elegans, in which chemically mutagenized nematode populations are screened by PCR for deletion mutations in a specific targeted gene. By handling mutagenized worm growth, genomic DNA templates, PCR screens, and mutant recovery all in 96-well microtiter plates, we have scaled up this approach to isolate deletion mutations in >100 genes to date. Four chemical mutagens, including ethyl methane sulfonate, ethlynitrosourea, diepoxyoctane, and ultraviolet-activated trimethylpsoralen, induced detectable deletions at comparable frequencies. The deletions averaged approximately 1400 bp in size when using a approximately 3 kb screening window. The vast majority of detected deletions removed portions of one or more exons, likely resulting in loss of gene function. This approach requires only the knowledge of a target gene sequence and a suitable mutagen, and thus provides a scalable systematic approach to gene inactivation for any organism that can be handled in high density arrays.
Collapse
Affiliation(s)
- L X Liu
- Axys Pharmaceuticals, NemaPharm Group, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cali BM, Kuchma SL, Latham J, Anderson P. smg-7 is required for mRNA surveillance in Caenorhabditis elegans. Genetics 1999; 151:605-16. [PMID: 9927455 PMCID: PMC1460488 DOI: 10.1093/genetics/151.2.605] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic mRNAs that contain premature stop codons are degraded more rapidly than their wild-type counterparts, a phenomenon termed "nonsense-mediated mRNA decay" (NMD) or "mRNA surveillance." Functions of six previously described Caenorhabditis elegans genes, smg-1 through smg-6, are required for NMD. Whereas nonsense mutant mRNAs are unstable in smg(+) genetic backgrounds, such mRNAs have normal stability in smg(-) backgrounds. Previous screens for smg mutations have likely not identified all genes involved in NMD, but efforts to identify additional smg genes are limited by the fact that almost 90% of smg mutations identified in genome-wide screens are alleles of smg-1, smg-2, or smg-5. We describe a modified screen for smg mutations that precludes isolating alleles of smg-1, smg-2, and smg-5. Using this screen, we have identified and cloned smg-7, a previously uncharacterized gene that we show is required for NMD. smg-7 is predicted to encode a novel protein that contains an acidic carboxyl terminus and two probable tetratricopeptide repeats. We provide evidence that smg-7 is cotranscribed with the previously characterized gene lin-45 and show that null alleles of smg-7 confer a temperature-sensitive defect in NMD.
Collapse
Affiliation(s)
- B M Cali
- Program in Cell and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|