1
|
Bhuyan S, Dutta L, Begum S, Giri SJ, Jain M, Mandal M, Ray SK. A study on twitching motility dynamics in Ralstonia solanacearum microcolonies by live imaging. J Basic Microbiol 2024; 64:42-49. [PMID: 37612794 DOI: 10.1002/jobm.202300272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/15/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
Ralstonia solanacearum is a rod-shaped phytopathogenic bacterium that causes lethal wilt disease in many plants. On solid agar growth medium, in the early hour of the growth of the bacterial colony, the type IV pili-mediated twitching motility, which is important for its virulence and biofilm formation, is prominently observed under the microscope. In this study, we have done a detailed observation of twitching motility in R. solanacearum colony. In the beginning, twitching motility in the microcolonies was observed as a density-dependent phenomenon that influences the shape of the microcolonies. No such phenomenon was observed in Escherichia coli, where twitching motility is absent. In the early phase of colony growth, twitching motility exhibited by the cells at the peripheral region of the colony was more prominent than the cells toward the center of the colony. Using time-lapse photography and merging the obtained photomicrographs into a video, twitching motility was observed as an intermittent phenomenon that progresses in layers in all directions as finger-like projections at the peripheral region of a bacterial colony. Each layer of bacteria twitches on top of the other and produces a multilayered film-like appearance. We found that the duration between the emergence of each layer diminishes progressively as the colony becomes older. This study on twitching motility demonstrates distinctly heterogeneity among the cells within a colony regarding their dynamics and the influence of microcolonies on each other regarding their morphology.
Collapse
Affiliation(s)
- Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Lukapriya Dutta
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Shuhada Begum
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Shubhra J Giri
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Monika Jain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Suvendra K Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
2
|
Lawing AM, McCoy M, Reinke BA, Sarkar SK, Smith FA, Wright D. A Framework for Investigating Rules of Life by Establishing Zones of Influence. Integr Comp Biol 2022; 61:2095-2108. [PMID: 34297089 PMCID: PMC8825771 DOI: 10.1093/icb/icab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
The incredible complexity of biological processes across temporal and spatial scales hampers defining common underlying mechanisms driving the patterns of life. However, recent advances in sequencing, big data analysis, machine learning, and molecular dynamics simulation have renewed the hope and urgency of finding potential hidden rules of life. There currently exists no framework to develop such synoptic investigations. Some efforts aim to identify unifying rules of life across hierarchical levels of time, space, and biological organization, but not all phenomena occur across all the levels of these hierarchies. Instead of identifying the same parameters and rules across levels, we posit that each level of a temporal and spatial scale and each level of biological organization has unique parameters and rules that may or may not predict outcomes in neighboring levels. We define this neighborhood, or the set of levels, across which a rule functions as the zone of influence. Here, we introduce the zone of influence framework and explain using three examples: (a) randomness in biology, where we use a Poisson process to describe processes from protein dynamics to DNA mutations to gene expressions, (b) island biogeography, and (c) animal coloration. The zone of influence framework may enable researchers to identify which levels are worth investigating for a particular phenomenon and reframe the narrative of searching for a unifying rule of life to the investigation of how, when, and where various rules of life operate.
Collapse
Affiliation(s)
- A Michelle Lawing
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Michael McCoy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, IL 60625, USA
| | | | - Felisa A Smith
- Department of Biology, University of New Mexico, NM 87131, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, CO 80401, USA
| |
Collapse
|
3
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
4
|
Abstract
The rate of mutation refers to the probability that a unit length of DNA (generally a base pair) mutates with time. Fluctuation analysis or mutant accumulation assays applied to phenotypic changes measure mutation rates of cells. However, only a few phenotypic changes indicative of mutations are known thus limiting the analysis to those rare genes. Direct sequencing overcomes the limitations imposed by phenotypic analysis but is limited by the extensive number of clones or cells that have to be analyzed in fluctuation or mutant accumulation assays. We propose a strategy to determine the rate of mutation of a gene by limited direct sequencing of a few single cells of a defined lineage. To accomplish this, we determined the average number of mutations per position in each DNA length sequenced from the proportion of the non-mutated positions, according to the Poisson process and/or the Taylor series. Measuring the rate of mutation by direct sequencing of genes does not require ascertaining a phenotype and can be applied to any area of the genome in a cell. The approach avoids fluctuation errors.
Collapse
Affiliation(s)
- Samuel J Balin
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
5
|
Abstract
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
6
|
Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI. Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 2006; 60:477-501. [PMID: 16761951 DOI: 10.1146/annurev.micro.60.080805.142045] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Growth under selection causes new genotypes to predominate in a population. It is difficult to determine whether selection stimulates formation of new mutations or merely allows faster growth of mutants that arise independent of selection. In the practice of microbial genetics, selection is used to detect and enumerate pre-existing mutants; stringent conditions prevent growth of the parent and allow only the pre-existing mutants to grow. Used in this way, selection detects rare mutations that cause large, easily observable phenotypic changes. In natural populations, selection is imposed on growing cells and can detect the more common mutations that cause small growth improvements. As slightly improved clones expand, they can acquire additional mutational improvements. Selected sequential clonal expansions have huge power to produce new genotypes and have been suggested to underlie tumor progression. We suggest that the adaptive mutation controversy has persisted because the distinction between these two uses of selection has not been appreciated.
Collapse
Affiliation(s)
- John R Roth
- Microbiology Section, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Spontaneous mutations arise as a result of cellular processes that act upon or damage DNA. Accurate determination of spontaneous mutation rates can contribute to our understanding of these processes and the enzymatic pathways that deal with them. The methods that are used to calculate mutation rates are based on the model for the expansion of mutant clones originally described by Luria and Delbrück (1943) and extended by Lea and Coulson (1949). The accurate determination of mutation rates depends on understanding the strengths and limitations of these methods and how to optimize a fluctuation assay for a given method. This chapter describes the proper design of a fluctuation assay, several of the methods used to calculate mutation rates, and ways to evaluate the results statistically.
Collapse
Affiliation(s)
- Patricia L. Foster
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA, E-mail , Tel. (+1) 812 855 4084, Fax (+1) 812 855 6705
| |
Collapse
|
8
|
Reddy M. Positive selection system for identification of recombinants using α-complementation plasmids. Biotechniques 2004; 37:948-52. [PMID: 15597544 DOI: 10.2144/04376st03] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A number of selection systems have been developed for direct selection of recombinant plasmids in cloning experiments (positive selection). In this study, the commonly used LacZ-based α-complementation plasmid vectors have been used for designing a positive selection system for the selection of recombinants. The basis for the strategy is the phenomenon of galactose sensitivity exhibited by galactose epimerase (galE) mutants of Escherichia coli. It is known that lacZ+ galE, but not LacZ− galE cells are killed upon addition of lactose due to the accumulation of a toxic intermediate, UDP-galactose, by hydrolysis of lactose. Using a galE mutant strain of E. coli that carries the lacZΔM15 allele, various α-complementation plasmids that vary in their copy number were examined for their ability to be killed following addition of lactose. The results show that some plasmids that exhibit relatively high β-galactosidase enzyme activity can be used effectively for positive selection. This selection would be extremely useful during primary cloning experiments such as construction of genomic or cDNA libraries and also in instances involving selection for rare recombinants.
Collapse
Affiliation(s)
- Manjula Reddy
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
9
|
Bharatan SM, Reddy M, Gowrishankar J. Distinct signatures for mutator sensitivity of lacZ reversions and for the spectrum of lacI/lacO forward mutations on the chromosome of nondividing Escherichia coli. Genetics 2004; 166:681-92. [PMID: 15020459 PMCID: PMC1470738 DOI: 10.1534/genetics.166.2.681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A conditional lethal galE(Ts)-based strategy was employed in Escherichia coli, first to eliminate all growth-associated chromosomal reversions in lacZ or forward mutations in lacI/lacO by incubation at the restrictive temperature and subsequently to recover (as papillae) spontaneous mutations that had arisen in the population of nondividing cells after shift to the permissive temperature. Data from lacZ reversion studies in mutator strains indicated that the products of all genes for mismatch repair (mutHLS, dam, uvrD), of some for oxidative damage repair (mutMT), and of that for polymerase proofreading (dnaQ) are required in dividing cells; some others for oxidative damage repair (mutY, nth nei) are required in both dividing and nondividing cells; and those for alkylation damage repair (ada ogt) are required in nondividing cells. The spectrum of lacI/lacO mutations in nondividing cells was distinguished both by lower frequencies of deletions and IS1 insertions and by the unique occurrence of GC-to-AT transitions at lacO +5. In the second approach to study mutations that had occurred in nondividing cells, lacI/lacO mutants were selected as late-arising papillae from the lawn of a galE+ strain; once again, transitions at lacO +5 were detected among the mutants that had been obtained from populations initially grown on poor carbon sources such as acetate, palmitate, or succinate. Our results indicate that the lacO +5 site is mutable only in nondividing cells, one possible mechanism for which might be that random endogenous alkylation (or oxidative) damage to DNA in these cells is efficiently corrected by the Ada Ogt (or Nth Nei) repair enzymes at most sites but not at lacO +5. Furthermore, the late-arising papillae from the second approach were composed almost exclusively of dominant lacI/lacO mutants. This finding lends support to "instantaneous gratification" models in which a spontaneous lesion, occurring at a random site in DNA of a nondividing cell, is most likely to be fixed as a mutation if it allows the cell to immediately exit the nondividing state.
Collapse
|
10
|
Bharatan SM, Reddy M, Gowrishankar J. Distinct Signatures for Mutator Sensitivity of lacZ Reversions and for the Spectrum of lacI/lacO Forward Mutations on the Chromosome of Nondividing Escherichia coli. Genetics 2004. [DOI: 10.1093/genetics/166.2.681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
A conditional lethal galE(Ts)-based strategy was employed in Escherichia coli, first to eliminate all growth-associated chromosomal reversions in lacZ or forward mutations in lacI/lacO by incubation at the restrictive temperature and subsequently to recover (as papillae) spontaneous mutations that had arisen in the population of nondividing cells after shift to the permissive temperature. Data from lacZ reversion studies in mutator strains indicated that the products of all genes for mismatch repair (mutHLS, dam, uvrD), of some for oxidative damage repair (mutMT), and of that for polymerase proofreading (dnaQ) are required in dividing cells; some others for oxidative damage repair (mutY, nth nei) are required in both dividing and nondividing cells; and those for alkylation damage repair (ada ogt) are required in nondividing cells. The spectrum of lacI/lacO mutations in nondividing cells was distinguished both by lower frequencies of deletions and IS1 insertions and by the unique occurrence of GC-to-AT transitions at lacO +5. In the second approach to study mutations that had occurred in nondividing cells, lacI/lacO mutants were selected as late-arising papillae from the lawn of a galE+ strain; once again, transitions at lacO +5 were detected among the mutants that had been obtained from populations initially grown on poor carbon sources such as acetate, palmitate, or succinate. Our results indicate that the lacO +5 site is mutable only in nondividing cells, one possible mechanism for which might be that random endogenous alkylation (or oxidative) damage to DNA in these cells is efficiently corrected by the Ada Ogt (or Nth Nei) repair enzymes at most sites but not at lacO +5. Furthermore, the late-arising papillae from the second approach were composed almost exclusively of dominant lacI/lacO mutants. This finding lends support to “instantaneous gratification” models in which a spontaneous lesion, occurring at a random site in DNA of a nondividing cell, is most likely to be fixed as a mutation if it allows the cell to immediately exit the nondividing state.
Collapse
Affiliation(s)
- Shanti M Bharatan
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 076, India
| | - Manjula Reddy
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - J Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 076, India
| |
Collapse
|
11
|
Barionovi D, Ghelardini P, Di Lallo G, Paolozzi L. Mutations arise independently of transcription in non-dividing bacteria. Mol Genet Genomics 2003; 269:517-25. [PMID: 12768413 DOI: 10.1007/s00438-003-0857-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2003] [Accepted: 04/23/2003] [Indexed: 10/26/2022]
Abstract
It has been proposed that transcription introduces a bias into the random process of mutation. Although this hypothesis is supported by experimental data for mutations arising during active bacterial growth, the role of transcription in mutagenesis in non-dividing bacteria is entirely hypothetical. In the present study, we tested the hypothesis of a possible role of transcription in a non-dividing E. coli K12 strain. In this strain (BD010), a mutated trpB allele (trpB9578), placed under stringent transcriptional control, was tested for the appearance of prototrophic revertants on synthetic medium lacking tryptophan. The number of phenotypic revertants which appeared in the absence of trp transcription was compared to that observed when the mutated gene was continuously transcribed. Our results showed that transcription of trpB is not mutagenic under conditions of tryptophan starvation, and that the frequency of TrpB+ reversion is solely a function of the duration of starvation.
Collapse
Affiliation(s)
- D Barionovi
- Laboratorio di Microbiologia Generale, Dipartimento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | |
Collapse
|
12
|
Mokkapati SK, Fernández de Henestrosa AR, Bhagwat AS. Escherichia coli DNA glycosylase Mug: a growth-regulated enzyme required for mutation avoidance in stationary-phase cells. Mol Microbiol 2001; 41:1101-11. [PMID: 11555290 DOI: 10.1046/j.1365-2958.2001.02559.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Escherichia coli DNA glycosylase Mug excises 3,N(4)-ethenocytosines (epsilon C) and uracils from DNA, but its biological function is obscure. This is because epsilon C is not found in E. coli DNA, and uracil-DNA glycosylase (Ung), a distinct enzyme, is much more efficient at removing uracils from DNA than Mug. We find that Mug is overexpressed as cells enter stationary phase, and it is maintained at a fairly high level in resting cells. This is true of cells grown in rich or minimal media, and the principal regulation of mug is at the level of mRNA. Although the expression of mug is strongly dependent on the stationary-phase sigma factor, sigma(S), when cells are grown in minimal media, it shows only a modest dependence on sigma(S) when cells are grown in rich media. When mug cells are maintained in stationary phase for several days, they acquire many more mutations than their mug(+) counterparts. This is true in ung as well as ung(+) cells, and a majority of new mutations may not be C to T. Our results show that the biological role of Mug parallels its expression in cells. It is expressed poorly in exponentially growing cells and has no apparent role in mutation avoidance in these cells. In contrast, Mug is fairly abundant in stationary-phase cells and has an important anti-mutator role at this stage of cell growth. Thus, Mug joins a very small coterie of DNA repair enzymes whose principal function is to avoid mutations in stationary-phase cells.
Collapse
Affiliation(s)
- S K Mokkapati
- Department of Chemistry, 463 Chemistry Building, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
13
|
SaiSree L, Reddy M, Gowrishankar J. lon incompatibility associated with mutations causing SOS induction: null uvrD alleles induce an SOS response in Escherichia coli. J Bacteriol 2000; 182:3151-7. [PMID: 10809694 PMCID: PMC94501 DOI: 10.1128/jb.182.11.3151-3157.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The uvrD gene in Escherichia coli encodes a 720-amino-acid 3'-5' DNA helicase which, although nonessential for viability, is required for methyl-directed mismatch repair and nucleotide excision repair and furthermore is believed to participate in recombination and DNA replication. We have shown in this study that null mutations in uvrD are incompatible with lon, the incompatibility being a consequence of the chronic induction of SOS in uvrD strains and the resultant accumulation of the cell septation inhibitor SulA (which is a normal target for degradation by Lon protease). uvrD-lon incompatibility was suppressed by sulA, lexA3(Ind(-)), or recA (Def) mutations. Other mutations, such as priA, dam, polA, and dnaQ (mutD) mutations, which lead to persistent SOS induction, were also lon incompatible. SOS induction was not observed in uvrC and mutH (or mutS) mutants defective, respectively, in excision repair and mismatch repair. Nor was uvrD-mediated SOS induction abolished by mutations in genes that affect mismatch repair (mutH), excision repair (uvrC), or recombination (recB and recF). These data suggest that SOS induction in uvrD mutants is not a consequence of defects in these three pathways. We propose that the UvrD helicase participates in DNA replication to unwind secondary structures on the lagging strand immediately behind the progressing replication fork, and that it is the absence of this function which contributes to SOS induction in uvrD strains.
Collapse
Affiliation(s)
- L SaiSree
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | | |
Collapse
|
14
|
Nagel R, Chan A. Enhanced Tn10 and mini-Tn10 precise excision in DNA replication mutants of Escherichia coli K12. Mutat Res 2000; 459:275-84. [PMID: 10844241 DOI: 10.1016/s0921-8777(00)00008-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The precise excision of transposon Tn10 and a mini-Tn10 derivative, inserted in the gal or lac operons, was studied in dnaB252 and dnaE486 temperature-sensitive mutants of Escherichia coli. dnaB codes for a DNA replication helicase and dnaE for the alpha subunit of DNA polymerase III. Mutations in these genes were found to enhance, at the permissive temperature, the precise excision of both genetic elements. The increase factor was much more pronounced for the dnaB252 mutant with the transposons inserted in gal. The stimulated excision was only partially affected by a recA null mutation but was significantly reduced by introduction of recF null or ruvA mutations. A model involving template switching of the polymerase between the direct repeats flanking the transposons, on the same strand or between sister strands, could account for the observed results.
Collapse
Affiliation(s)
- R Nagel
- CEFYBO, CONICET, Buenos Aires, Argentina.
| | | |
Collapse
|
15
|
Mahajan SK, Narayana Rao AVSS, Bhattacharjee SK. Stationary-state mutagenesis inEscherichia coli: A model. J Genet 2000. [DOI: 10.1007/bf02715869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Reddy M, Gowrishankar J. Characterization of the uup locus and its role in transposon excisions and tandem repeat deletions in Escherichia coli. J Bacteriol 2000; 182:1978-86. [PMID: 10715006 PMCID: PMC101901 DOI: 10.1128/jb.182.7.1978-1986.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Null mutations in the Escherichia coli uup locus (at 21.8 min) serve to increase the frequency of RecA-independent precise excision of transposable elements such as Tn10 and to reduce the plaque size of bacteriophage Mu (Uup(-) phenotype). By the combined approaches of physical mapping of the mutations, complementation analyses, and protein overexpression from cloned gene fragments, we have demonstrated in this study that the Uup(-) phenotype is the consequence of the absence of expression of the downstream gene (uup) of a two-gene operon, caused either directly by insertions in uup or indirectly by the polar effect of insertions in the upstream gene (ycbY). The promoter for uup was mapped upstream of ycbY by primer extension analysis on cellular RNA, and assays of reporter gene expression indicated that it is a moderately active, constitutive promoter. The uup mutations were also shown to increase, in a RecA-independent manner, the frequencies of nearly precise excision of Tn10 derivatives and of the deletion of one copy of a chromosomal tandem repeat, suggesting the existence of a shared step or intermediate in the pathways of these latter events and that of precise excision. Finally, we found that mutations that increase the frequency of precise excision of Tn10 are divisible into two categories, depending upon whether they did (uup, ssb, polA, and topA) or did not (mutHLS, dam, and uvrD) also increase precise excision frequency of the mini-Tn10 derivatives. It is suggested that the differential response of mini-Tn10 and Tn10 to the second category of mutations is related to the presence, respectively, of perfect and of imperfect terminal inverted repeats in them.
Collapse
Affiliation(s)
- M Reddy
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
17
|
Foster PL. Adaptive mutation in Escherichia coli. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2000; 65:21-9. [PMID: 12760017 PMCID: PMC2929248 DOI: 10.1101/sqb.2000.65.21] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- P L Foster
- Department of Biology, Jordan Hall 142, Indiana University, Bloomington, Indiana 47405-6801, USA
| |
Collapse
|
18
|
Affiliation(s)
- P L Foster
- Department of Environmental Health, Boston University School of Public Health, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
19
|
Foster PL, Rosche WA. Mechanisms of mutation in nondividing cells. Insights from the study of adaptive mutation in Escherichia coli. Ann N Y Acad Sci 1999; 870:133-45. [PMID: 10415479 PMCID: PMC2928472 DOI: 10.1111/j.1749-6632.1999.tb08873.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
When populations of cells are subjected to nonlethal selection, mutations arise in the absence of cell division, a phenomenon that has been called "adaptive mutation." In a strain of Escherichia coli that cannot metabolize lactose (Lac-) but that reverts to lactose utilization (Lac+) when lactose is its sole energy and carbon source, the mutational process consists of two components. (1) A highly efficient, recombination-dependent mechanism giving rise to mutations on the F' episome that carries the Lac- allele; and (2) a less efficient, unknown mechanism giving rise to mutations elsewhere in the genome. Both selected and nonselected mutations arise in the Lac- population, but nonselected mutations are enriched in Lac+ mutants, suggesting that some Lac+ cells have passed though a transient period of increased mutation. These results have several evolutionary implications. (1) DNA synthesis initiated by recombination could be an important source of spontaneous mutation, particularly in cells that are not undergoing genomic replication. (2) The highly active mutational mechanism on the episome could be important in the horizontal transfer of variant alleles among species that carry and exchange conjugal plasmids. (3) A sub-population of cells in a state of transient mutation could be a source of multiple variant alleles and could provide a mechanism for rapid adaptive evolution under adverse conditions.
Collapse
Affiliation(s)
- P L Foster
- Department of Environmental Health, Boston University School of Public Health, Massachusetts 02118-2394, USA.
| | | |
Collapse
|
20
|
Abstract
The levels of proteins required for methyl-directed mismatch repair appear to decline in stationary-phase and nutritionally-deprived cells of Escherichia coli. It has been hypothesized that error-correction by the system also declines, and this decline is responsible for adaptive or stationary-phase mutations. However, evidence in support of this hypothesis is lacking. The mismatch repair system is no less effective in correcting errors during prolonged selection than it is during growth. Furthermore, mismatch repair proteins supplied in excess reduce both growth-dependent and adaptive mutation.
Collapse
Affiliation(s)
- P L Foster
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118-2394, USA.
| |
Collapse
|
21
|
RamıÌrez E, Schmidt M, Rinas U, Villaverde A. RecA-dependent viral burst in bacterial colonies during the entry into stationary phase. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13389.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Abstract
A decade of research on adaptive mutation has revealed a plethora of mutagenic mechanisms that may be important in evolution. The DNA synthesis associated with recombination could be an important source of spontaneous mutation in cells that are not proliferating. The movement of insertion elements can be responsive to environmental conditions. Insertion elements not only activate and inactivate genes, they also provide sequence homology that allows large-scale genomic rearrangements. Some conjugative plasmids can recombine with their host's chromosome, and may acquire chromosomal genes that could then spread through the population and even to other species. Finally, a subpopulation of transient hypermutators could be a source of multiple variant alleles, providing a mechanism for rapid evolution under adverse conditions.
Collapse
Affiliation(s)
- P L Foster
- Department of Biology, Indiana University, Bloomington 47405, USA.
| |
Collapse
|
23
|
Affiliation(s)
- B A Bridges
- MRC Cell Mutation Unit, University of Sussex, Falmer, Brighton, UK.
| |
Collapse
|
24
|
Abstract
Reversion of an episomal Lac- allele during lactose selection has been studied as a model for adaptive mutation. Although recent results show that the mutations that arise during selection are not "adaptive" in the original sense, the mutagenic mechanism that produces these mutations may nonetheless be of evolutionary significance. In addition, a transient mutational state induced in a subpopulation of starving cells could provide a species with a mechanism for adaptive evolution.
Collapse
Affiliation(s)
- P L Foster
- Department of Environmental Health, Boston University School of Public Health, Massachusetts 02118-2394, USA.
| |
Collapse
|