1
|
Pan L, Xue Y, Wang K, Zheng X, Islam A, Tapryal N, Chakraborty A, Bacsi A, Ba X, Hazra TK, Boldogh I. Nei-like DNA glycosylase 2 selectively antagonizes interferon-β expression upon respiratory syncytial virus infection. J Biol Chem 2023; 299:105028. [PMID: 37423306 PMCID: PMC10403741 DOI: 10.1016/j.jbc.2023.105028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
As part of the antiviral response, cells activate the expressions of type I interferons (IFNs) and proinflammatory mediators to control viral spreading. Viral infections can impact DNA integrity; however, how DNA damage repair coordinates antiviral response remains elusive. Here we report Nei-like DNA glycosylase 2 (NEIL2), a transcription-coupled DNA repair protein, actively recognizes the oxidative DNA substrates induced by respiratory syncytial virus (RSV) infection to set the threshold of IFN-β expression. Our results show that NEIL2 antagonizes nuclear factor κB (NF-κB) acting on the IFN-β promoter early after infection, thus limiting gene expression amplified by type I IFNs. Mice lacking Neil2 are far more susceptible to RSV-induced illness with an exuberant expression of proinflammatory genes and tissue damage, and the administration of NEIL2 protein into the airway corrected these defects. These results suggest a safeguarding function of NEIL2 in controlling IFN-β levels against RSV infection. Due to the short- and long-term side effects of type I IFNs applied in antiviral therapy, NEIL2 may provide an alternative not only for ensuring genome fidelity but also for controlling immune responses.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Yaoyao Xue
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ke Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Xu Zheng
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Azharul Islam
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Nisha Tapryal
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Attila Bacsi
- Faculty of Medicine, Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.
| |
Collapse
|
2
|
Bédard C, Cisneros AF, Jordan D, Landry CR. Correlation between protein abundance and sequence conservation: what do recent experiments say? Curr Opin Genet Dev 2022; 77:101984. [PMID: 36162152 DOI: 10.1016/j.gde.2022.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/27/2023]
Abstract
Cells evolve in a space of parameter values set by physical and chemical forces. These constraints create associations among cellular properties. A particularly strong association is the negative correlation between the rate of evolution of proteins and their abundance in the cell. Highly expressed proteins evolve slower than lowly expressed ones. Multiple hypotheses have been put forward to explain this relationship, including, for instance, the requirement for higher mRNA stability, misfolding avoidance, and misinteraction avoidance for highly expressed proteins. Here, we review some of these hypotheses, their predictions, and how they are supported to finally discuss recent experiments that have been performed to test these predictions.
Collapse
Affiliation(s)
- Camille Bédard
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada; Centre de Recherche sur les Données Massives, Université Laval, G1V 0A6, Canada. https://twitter.com/@CamilleBed17
| | - Angel F Cisneros
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada; Centre de Recherche sur les Données Massives, Université Laval, G1V 0A6, Canada; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada. https://twitter.com/@AngelFCC119
| | - David Jordan
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada; Centre de Recherche sur les Données Massives, Université Laval, G1V 0A6, Canada; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada. https://twitter.com/@DavidJordan1997
| | - Christian R Landry
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada; Centre de Recherche sur les Données Massives, Université Laval, G1V 0A6, Canada; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada.
| |
Collapse
|
3
|
Williams JD, Houserova D, Johnson BR, Dyniewski B, Berroyer A, French H, Barchie AA, Bilbrey DD, Demeis JD, Ghee KR, Hughes AG, Kreitz NW, McInnis CH, Pudner SC, Reeves MN, Stahly AN, Turcu A, Watters BC, Daly GT, Langley RJ, Gillespie MN, Prakash A, Larson ED, Kasukurthi MV, Huang J, Jinks-Robertson S, Borchert GM. Characterization of long G4-rich enhancer-associated genomic regions engaging in a novel loop:loop 'G4 Kissing' interaction. Nucleic Acids Res 2020; 48:5907-5925. [PMID: 32383760 PMCID: PMC7293029 DOI: 10.1093/nar/gkaa357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
Mammalian antibody switch regions (∼1500 bp) are composed of a series of closely neighboring G4-capable sequences. Whereas numerous structural and genome-wide analyses of roles for minimal G4s in transcriptional regulation have been reported, Long G4-capable regions (LG4s)-like those at antibody switch regions-remain virtually unexplored. Using a novel computational approach we have identified 301 LG4s in the human genome and find LG4s prone to mutation and significantly associated with chromosomal rearrangements in malignancy. Strikingly, 217 LG4s overlap annotated enhancers, and we find the promoters regulated by these enhancers markedly enriched in G4-capable sequences suggesting G4s facilitate promoter-enhancer interactions. Finally, and much to our surprise, we also find single-stranded loops of minimal G4s within individual LG4 loci are frequently highly complementary to one another with 178 LG4 loci averaging >35 internal loop:loop complements of >8 bp. As such, we hypothesized (then experimentally confirmed) that G4 loops within individual LG4 loci directly basepair with one another (similar to characterized stem-loop kissing interactions) forming a hitherto undescribed, higher-order, G4-based secondary structure we term a 'G4 Kiss or G4K'. In conclusion, LG4s adopt novel, higher-order, composite G4 structures directly contributing to the inherent instability, regulatory capacity, and maintenance of these conspicuous genomic regions.
Collapse
Affiliation(s)
- Jonathan D Williams
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Dominika Houserova
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Bradley R Johnson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Brad Dyniewski
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Alexandra Berroyer
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Hannah French
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Addison A Barchie
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Dakota D Bilbrey
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Jeffrey D Demeis
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Kanesha R Ghee
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Alexandra G Hughes
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Naden W Kreitz
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Cameron H McInnis
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Susanna C Pudner
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Monica N Reeves
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Ashlyn N Stahly
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Ana Turcu
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Brianna C Watters
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Grant T Daly
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Raymond J Langley
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Mark N Gillespie
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mitchell Cancer Institute, Mobile, AL 36688, USA
| | - Erik D Larson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49007, USA
| | | | - Jingshan Huang
- School of Computing, University of South Alabama, Mobile, AL 36688, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Glen M Borchert
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
4
|
DNA mismatch repair is required for the host innate response and controls cellular fate after influenza virus infection. Nat Microbiol 2019; 4:1964-1977. [PMID: 31358986 PMCID: PMC6814535 DOI: 10.1038/s41564-019-0509-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Despite the cytopathic nature of influenza A virus (IAV) replication, we
recently reported that a subset of lung epithelial club cells is able to
intrinsically clear virus and survive infection. However, the mechanisms that
drive cell survival during a normally lytic infection remained unclear. Using a
loss-of-function screening approach, we discovered that the DNA mismatch repair
(MMR) pathway is essential for club cell survival of IAV infection. Repair of
virally-induced oxidative damage by the DNA MMR pathway not only allowed cell
survival of infection but also facilitated host gene transcription, including
the expression of antiviral and stress response genes. Enhanced viral
suppression of the DNA MMR pathway prevented club cell survival and increased
the severity of viral disease in vivo. Altogether, these
results identify previously unappreciated roles for DNA MMR as a central
modulator of cellular fate and a contributor to the innate antiviral response,
which together, control influenza viral disease severity.
Collapse
|
5
|
Cho JE, Jinks-Robertson S. Ribonucleotides and Transcription-Associated Mutagenesis in Yeast. J Mol Biol 2016; 429:3156-3167. [PMID: 27511624 DOI: 10.1016/j.jmb.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022]
Abstract
High levels of transcription stimulate mutation rates in microorganisms, and this occurs primarily through an enhanced accumulation of DNA damage. The major source of transcription-associated damage in yeast is Topoisomerase I (Top1), an enzyme that removes torsional stress that accumulates when DNA strands are separated. Top1 relieves torsional stress by nicking and resealing one DNA strand, and some Top1-dependent mutations are due to trapping and processing of the covalent cleavage intermediate. Most, however, reflect enzyme incision at ribonucleotides, which are the most abundant noncanonical component of DNA. In either case, Top1 generates a distinctive mutation signature composed of short deletions in tandem repeats; in the specific case of ribonucleotide-initiated events, mutations reflect sequential cleavage by the enzyme. Top1-dependent mutations do not require highly activated transcription, but their levels are greatly increased by transcription, which partially reflects an interaction of Top1 with RNA polymerase. Recent studies have demonstrated that Top1-dependent mutations exhibit a strand bias, with the nature of the bias differing depending on the transcriptional status of the underlying DNA. Under low-transcription conditions, most Top1-dependent mutations arise in the context of replication and reflect incision at ribonucleotides incorporated during leading-strand synthesis. Under high-transcription conditions, most Top1-dependent events arise when the enzyme cleaves the non-transcribed strand of DNA. In addition to increasing genetic instability in growing cells, Top1 activity in transcriptionally active regions may be a source of mutations in quiescent cells.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Sevilla 41092, Spain; ,
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Sevilla 41092, Spain; ,
| |
Collapse
|
7
|
Callegari AJ. Does transcription-associated DNA damage limit lifespan? DNA Repair (Amst) 2016; 41:1-7. [PMID: 27010736 DOI: 10.1016/j.dnarep.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/31/2022]
Abstract
Small mammals undergo an aging process similar to that of larger mammals, but aging occurs at a dramatically faster rate. This phenomenon is often assumed to be the result of damage caused by reactive oxygen species generated in mitochondria. An alternative explanation for the phenomenon is suggested here. The rate of RNA synthesis is dramatically elevated in small mammals and correlates quantitatively with the rate of aging among different mammalian species. The rate of RNA synthesis is reduced by caloric restriction and inhibition of TOR pathway signaling, two perturbations that increase lifespan in multiple metazoan species. From bacteria to man, the transcription of a gene has been found to increase the rate at which it is damaged, and a number of lines of evidence suggest that DNA damage is sufficient to induce multiple symptoms associated with normal aging. Thus, the correlations frequently found between the rate of RNA synthesis and the rate of aging could potentially reflect an important role for transcription-associated DNA damage in the aging process.
Collapse
Affiliation(s)
- A John Callegari
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
9
|
Abstract
Transcription requires unwinding complementary DNA strands, generating torsional stress, and sensitizing the exposed single strands to chemical reactions and endogenous damaging agents. In addition, transcription can occur concomitantly with the other major DNA metabolic processes (replication, repair, and recombination), creating opportunities for either cooperation or conflict. Genetic modifications associated with transcription are a global issue in the small genomes of microorganisms in which noncoding sequences are rare. Transcription likewise becomes significant when one considers that most of the human genome is transcriptionally active. In this review, we focus specifically on the mutagenic consequences of transcription. Mechanisms of transcription-associated mutagenesis in microorganisms are discussed, as is the role of transcription in somatic instability of the vertebrate immune system.
Collapse
Affiliation(s)
- Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710;
| | | |
Collapse
|
10
|
Gaillard H, Herrera-Moyano E, Aguilera A. Transcription-associated genome instability. Chem Rev 2013; 113:8638-61. [PMID: 23597121 DOI: 10.1021/cr400017y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla , Av. Américo Vespucio s/n, 41092 Seville, Spain
| | | | | |
Collapse
|
11
|
Cho JE, Kim N, Li YC, Jinks-Robertson S. Two distinct mechanisms of Topoisomerase 1-dependent mutagenesis in yeast. DNA Repair (Amst) 2013; 12:205-11. [PMID: 23305949 DOI: 10.1016/j.dnarep.2012.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/09/2012] [Accepted: 12/03/2012] [Indexed: 11/27/2022]
Abstract
Topoisomerase 1 (Top1) resolves transcription-associated supercoils by generating transient single-strand breaks in DNA. Top1 activity in yeast is a major source of transcription-associated mutagenesis, generating a distinctive mutation signature characterized by deletions in short, tandem repeats. A similar signature is associated with the persistence of ribonucleoside monophosphates (rNMPs) in DNA, and it also depends on Top1 activity. There is only partial overlap, however, between Top1-dependent deletion hotspots identified in highly transcribed DNA and those associated with rNMPs, suggesting the existence of both rNMP-dependent and rNMP-independent events. Here, we present genetic studies confirming that there are two distinct types of hotspots. Data suggest a novel model in which rNMP-dependent hotspots are generated by sequential Top1 reactions and are consistent with rNMP-independent hotspots reflecting processing of a trapped Top1 cleavage complex.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
12
|
Alexander MP, Begins KJ, Crall WC, Holmes MP, Lippert MJ. High levels of transcription stimulate transversions at GC base pairs in yeast. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:44-53. [PMID: 23055242 PMCID: PMC5013542 DOI: 10.1002/em.21740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/18/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
High-levels of transcription through a gene stimulate spontaneous mutation rate, a phenomenon termed transcription-associated mutation (TAM). While transcriptional effects on specific mutation classes have been identified using forward mutation and frameshift-reversion assays, little is yet known about transcription-associated base substitutions in yeast. To address this issue, we developed a new base substitution reversion assay (the lys2-TAG allele). We report a 22-fold increase in overall reversion rate in the high- relative to the low-transcription strain (from 2.1- to 47- × 10(-9) ). While all detectable base substitution types increased in the high-transcription strain, G→T and G→C transversions increased disproportionately by 58- and 52-fold, respectively. To assess a potential role of DNA damage in the TAM events, we measured mutation rates and spectra in individual strains defective in the repair of specific DNA lesions or null for the error-prone translesion DNA polymerase zeta (Pol zeta). Results exclude a role of 8-oxoGuanine, general oxidative damage, or apurinic/apyrimidinic sites in the generation of TAM G→T and G→C transversions. In contrast, the TAM transversions at GC base pairs depend on Pol zeta for occurrence implicating DNA damage, other than oxidative lesions or AP sites, in the TAM mechanism. Results further indicate that transcription-dependent G→T transversions in yeast differ mechanistically from equivalent events in E. coli reported by others. Given their occurrences in repair-proficient cells, transcription-associated G→T and G→C events represent a novel type of transcription-associated mutagenesis in normal cells with potentially important implications for evolution and genetic disease.
Collapse
Affiliation(s)
| | | | | | | | - Malcolm J. Lippert
- Correspondence to: Malcolm J. Lippert, Saint Michael's College, Biology Department, Box 283, 1 Winooski Park, Colchester, VT 05439, USA.
| |
Collapse
|
13
|
Torseth K, Doseth B, Hagen L, Olaisen C, Liabakk NB, Græsmann H, Durandy A, Otterlei M, Krokan HE, Kavli B, Slupphaug G. The UNG2 Arg88Cys variant abrogates RPA-mediated recruitment of UNG2 to single-stranded DNA. DNA Repair (Amst) 2012; 11:559-69. [PMID: 22521144 DOI: 10.1016/j.dnarep.2012.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 11/26/2022]
Abstract
In human cell nuclei, UNG2 is the major uracil-DNA glycosylase initiating DNA base excision repair of uracil. In activated B cells it has an additional role in facilitating mutagenic processing of AID-induced uracil at Ig loci and UNG-deficient patients develop hyper-IgM syndrome characterized by impaired class-switch recombination and disturbed somatic hypermutation. How UNG2 is recruited to either error-free or mutagenic uracil processing remains obscure, but likely involves regulated interactions with other proteins. The UNG2 N-terminal domain contains binding motifs for both proliferating cell nuclear antigen (PCNA) and replication protein A (RPA), but the relative contribution of these interactions to genomic uracil processing is not understood. Interestingly, a heterozygous germline single-nucleotide variant leading to Arg88Cys (R88C) substitution in the RPA-interaction motif of UNG2 has been observed in humans, but with unknown functional relevance. Here we demonstrate that UNG2-R88C protein is expressed from the variant allele in a lymphoblastoid cell line derived from a heterozygous germ line carrier. Enzyme activity as well as localization in replication foci of UNG2-R88C was similar to that of WT. However, binding to RPA was essentially abolished by the R88C substitution, whereas binding to PCNA was unaffected. Moreover, we show that disruption of the PCNA-binding motif impaired recruitment of UNG2 to S-phase replication foci, demonstrating that PCNA is a major factor for recruitment of UNG2 to unperturbed replication forks. Conversely, in cells treated with hydroxyurea, RPA mediated recruitment of UNG2 to stalled replication forks independently of functional PCNA binding. Modulation of PCNA- versus RPA-binding may thus constitute a functional switch for UNG2 in cells subsequent to genotoxic stress and potentially also during the processing of uracil at the immunoglobulin locus in antigen-stimulated B cells.
Collapse
Affiliation(s)
- Kathrin Torseth
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, the FUGE Proteomics Node, Norwegian University of Science and Technology, N-7006 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Alterations in genome sequence and structure contribute to somatic disease, affect the fitness of subsequent generations and drive evolutionary processes. The crucial roles of highly accurate replication and efficient repair in maintaining overall genome integrity are well-known, but the more localized stability costs that are associated with transcribing DNA into RNA molecules are less appreciated. Here we review the diverse ways in which the essential process of transcription alters the underlying DNA template and thereby modifies the genetic landscape.
Collapse
|
15
|
Honjo T, Kobayashi M, Begum N, Kotani A, Sabouri S, Nagaoka H. The AID dilemma: infection, or cancer? Adv Cancer Res 2012; 113:1-44. [PMID: 22429851 DOI: 10.1016/b978-0-12-394280-7.00001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation-induced cytidine deaminase (AID), which is both essential and sufficient for forming antibody memory, is also linked to tumorigenesis. AID is found in many B lymphomas, in myeloid leukemia, and in pathogen-induced tumors such as adult T cell leukemia. Although there is no solid evidence that AID causes human tumors, AID-transgenic and AID-deficient mouse models indicate that AID is both sufficient and required for tumorigenesis. Recently, AID's ability to cleave DNA has been shown to depend on topoisomerase 1 (Top1) and a histone H3K4 epigenetic mark. When the level of Top1 protein is decreased by AID activation, it induces irreversible cleavage in highly transcribed targets. This finding and others led to the idea that there is an evolutionary link between meiotic recombination and class switch recombination, which share H3K4 trimethyl, topoisomerase, the MRN complex, mismatch repair family proteins, and exonuclease 3. As Top1 has recently been shown to be involved in many transcription-associated genome instabilities, it is likely that AID took advantage of basic genome instability or diversification to evolve its mechanism for immune diversity. AID targets are therefore not highly specific to immunoglobulin genes and are relatively abundant, although they have strict requirements for transcription-induced H3K4 trimethyl modification and repetitive sequences prone to forming non-B structures. Inevitably, AID-dependent cleavage takes place in nonimmunoglobulin targets and eventually causes tumors. However, battles against infection are waged in the context of acute emergencies, while tumorigenesis is rather a chronic, long-term process. In the interest of survival, vertebrates must have evolved AID to prevent infection despite its long-term risk of causing tumorigenesis.
Collapse
|
16
|
Role for topoisomerase 1 in transcription-associated mutagenesis in yeast. Proc Natl Acad Sci U S A 2010; 108:698-703. [PMID: 21177427 DOI: 10.1073/pnas.1012363108] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High levels of transcription in Saccharomyces cerevisiae are associated with increased genetic instability, which has been linked to DNA damage. Here, we describe a pGAL-CAN1 forward mutation assay for studying transcription-associated mutagenesis (TAM) in yeast. In a wild-type background with no alterations in DNA repair capacity, ≈50% of forward mutations that arise in the CAN1 gene under high-transcription conditions are deletions of 2-5 bp. Furthermore, the deletions characteristic of TAM localize to discrete hotspots that coincide with 2-4 copies of a tandem repeat. Although the signature deletions of TAM are not affected by the loss of error-free or error-prone lesion bypass pathways, they are completely eliminated by deletion of the TOP1 gene, which encodes the yeast type IB topoisomerase. Hotspots can be transposed into the context of a frameshift reversion assay, which is sensitive enough to detect Top1-dependent deletions even in the absence of high transcription. We suggest that the accumulation of Top1 cleavage complexes is related to the level of transcription and that their removal leads to the signature deletions. Given the high degree of conservation between DNA metabolic processes, the links established here among transcription, Top1, and mutagenesis are likely to extend beyond the yeast system.
Collapse
|
17
|
Abasic sites in the transcribed strand of yeast DNA are removed by transcription-coupled nucleotide excision repair. Mol Cell Biol 2010; 30:3206-15. [PMID: 20421413 DOI: 10.1128/mcb.00308-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abasic (AP) sites are potent blocks to DNA and RNA polymerases, and their repair is essential for maintaining genome integrity. Although AP sites are efficiently dealt with through the base excision repair (BER) pathway, genetic studies suggest that repair also can occur via nucleotide excision repair (NER). The involvement of NER in AP-site removal has been puzzling, however, as this pathway is thought to target only bulky lesions. Here, we examine the repair of AP sites generated when uracil is removed from a highly transcribed gene in yeast. Because uracil is incorporated instead of thymine under these conditions, the position of the resulting AP site is known. Results demonstrate that only AP sites on the transcribed strand are efficient substrates for NER, suggesting the recruitment of the NER machinery by an AP-blocked RNA polymerase. Such transcription-coupled NER of AP sites may explain previously suggested links between the BER pathway and transcription.
Collapse
|
18
|
Abstract
Is it possible to mutate DNA during transcription? A new study shows that UV-damaged DNA is deaminated during transcription, which is a probable mechanism underlying CC tandem mutations found in the p53 gene in skin cancers.
Collapse
Affiliation(s)
- Thomas Helleday
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
19
|
Fix D, Canugovi C, Bhagwat AS. Transcription increases methylmethane sulfonate-induced mutations in alkB strains of Escherichia coli. DNA Repair (Amst) 2008; 7:1289-97. [PMID: 18515192 PMCID: PMC2569841 DOI: 10.1016/j.dnarep.2008.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 11/17/2022]
Abstract
Methylmethane sulfonate (MMS) produces DNA base lesions, including 3-methylcytosine (m3C), more effectively in single-stranded DNA. The repair of m3C in Escherichia coli is mediated by AlkB through oxidative demethylation and in the absence of repair, m3C leads to base-substitution mutations. We describe here results of experiments that were designed to investigate whether transcription of a gene in E. coli affects the process of mutagenesis by MMS and the roles played by AlkB and lesion bypass polymerase PolV. Using a genetic reversion assay, we have confirmed that MMS mutagenesis is suppressed by AlkB, but is enhanced by PolV. High transcription of the target gene enhances reversion frequency in an orientation-dependent manner. When the cytosines that are the likely targets of MMS were in the non-template strand (NTS), transcription increased the MMS-induced reversion frequency several fold. This increase was dependent on the presence of PolV. In contrast, when the same cytosines were present in the template strand, transcription had little effect on reversion frequency induced by MMS. These data suggest that MMS creates 3-methylcytosine adducts in the NTS and are consistent with an idea proposed previously that transcription makes the NTS transiently single-stranded and more accessible to chemicals. We propose that this is the underlying cause of its increased sensitivity to MMS and suggest that transcriptionally active DNA may be a preferred target for the action of alkylating agents that prefer single-stranded DNA.
Collapse
Affiliation(s)
- Douglas Fix
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA. <>
| | | | | |
Collapse
|
20
|
Gómez-González B, Aguilera A. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc Natl Acad Sci U S A 2007; 104:8409-14. [PMID: 17488823 PMCID: PMC1895963 DOI: 10.1073/pnas.0702836104] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is a B cell enzyme essential for Ig somatic hypermutation and class switch recombination. AID acts on ssDNA, and switch regions of Ig genes, a target of AID, form R-loops that contain ssDNA. Nevertheless, how AID action is specifically targeted to particular DNA sequences is not clear. Because mutations altering cotranscriptional messenger ribonucleoprotein (mRNP) formation such as those in THO/TREX in yeast promote R-loops, we investigated whether the cotranscriptional assembly of mRNPs could affect AID targeting. Here we show that AID action is transcription-dependent in yeast and that strong and transcription-dependent hypermutation and hyperrecombination are induced by AID if cells are deprived of THO. In these strains AID-induced mutations occurred preferentially at WRC motifs in the nontranscribed DNA strand. We propose that a suboptimal cotranscriptional mRNP assembly at particular DNA regions could play an important role in Ig diversification and genome dynamics.
Collapse
Affiliation(s)
- Belén Gómez-González
- Departamento de Genética, Facultad de Biología, and Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio s/n, 41092 Sevilla, Spain
| | - Andrés Aguilera
- Departamento de Genética, Facultad de Biología, and Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio s/n, 41092 Sevilla, Spain
| |
Collapse
|
21
|
Ettwiller L, Veitia RA. Protein coevolution and isoexpression in yeast macromolecular complexes. Comp Funct Genomics 2007:58721. [PMID: 17538690 PMCID: PMC1838959 DOI: 10.1155/2007/58721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 11/20/2006] [Accepted: 11/23/2006] [Indexed: 11/18/2022] Open
Abstract
Previous studies in the yeast Saccharomyces cerevisiae have shown that genes encoding subunits of macromolecular complexes have similar evolutionary rates (K) and expression levels (E). Besides, it is known that the expression of a gene is a strong predictor of its rate of evolution (i.e., E and K are correlated). Here we show that intracomplex variation of subunit expression correlates with intracomplex variation of their evolutionary rates (using two different measures of dispersion). However, a similar trend was observed for randomized complexes. Therefore, using a mathematical transformation, we created new variables capturing intracomplex variation of both E and K. The values of these new compound variables were smaller for real complexes than for randomized ones. This shows that proteins in complexes tend to have closer expressivities (E) and K's simultaneously than in the randomly grouped genes. We speculate about the possible implications of this finding.
Collapse
Affiliation(s)
- Laurence Ettwiller
- CNRS UMR 7637, Ecole Supérieure de Physique et de Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France
- European Molecular Biology Laboratory Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Reiner A. Veitia
- Institut Cochin, 75014 Paris, France
- INSERM U567, 75014 Paris, France
- CNRS UMR 8104, 75014 Paris, France
- Faculté de Médecine René Descartes, Université Paris 5, UM 3, 75014 Paris, France
- UFR de Biologie et Sciences de la Nature, Université Paris 7, 75005 Paris, France
- *Reiner A. Veitia:
| |
Collapse
|
22
|
The exceptionally high rate of spontaneous mutations in the polymerase delta proofreading exonuclease-deficient Saccharomyces cerevisiae strain starved for adenine. BMC Genet 2004; 5:34. [PMID: 15617571 PMCID: PMC544876 DOI: 10.1186/1471-2156-5-34] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 12/23/2004] [Indexed: 12/20/2022] Open
Abstract
Background Mutagenesis induced in the yeast Saccharomyces cerevisiae by starvation for nutrilites is a well-documented phenomenon of an unknown mechanism. We have previously shown that the polymerase delta proofreading activity controls spontaneous mutagenesis in cells starved for histidine. To obtain further information, we compared the effect of adenine starvation on mutagenesis in wild-type cells and, in cells lacking the proofreading activity of polymerase delta (phenotype Exo-, mutation pol3-01). Results Ade+ revertants accumulated at a very high rate on adenine-free plates so that their frequency on day 16 after plating was 1.5 × 10-4 for wild-type and 1.0 × 10-2 for the Exo- strain. In the Exo- strain, all revertants arising under adenine starvation are suppressors of the original mutation, most possessed additional nutritional requirements, and 50% of them were temperature sensitive. Conclusions Adenine starvation is highly mutagenic in yeast. The deficiency in the polymerase delta proofreading activity in strains with the pol3-01 mutation leads to a further 66-fold increase of the rate of mutations. Our data suggest that adenine starvation induces genome-wide hyper-mutagenesis in the Exo- strain.
Collapse
|
23
|
Hirsh AE, Fraser HB, Wall DP. Adjusting for selection on synonymous sites in estimates of evolutionary distance. Mol Biol Evol 2004; 22:174-7. [PMID: 15371530 DOI: 10.1093/molbev/msh265] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evolution at silent sites is often used to estimate the pace of selectively neutral processes or to infer differences in divergence times of genes. However, silent sites are subject to selection in favor of preferred codons, and the strength of such selection varies dramatically across genes. Here, we use the relationship between codon bias and synonymous divergence observed in four species of the genus Saccharomyces to provide a simple correction for selection on silent sites.
Collapse
Affiliation(s)
- Aaron E Hirsh
- Department of Biological Sciences, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
24
|
Lippert MJ, Freedman JA, Barber MA, Jinks-Robertson S. Identification of a distinctive mutation spectrum associated with high levels of transcription in yeast. Mol Cell Biol 2004; 24:4801-9. [PMID: 15143174 PMCID: PMC416428 DOI: 10.1128/mcb.24.11.4801-4809.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High levels of transcription are associated with increased mutation rates in Saccharomyces cerevisiae, a phenomenon termed transcription-associated mutation (TAM). To obtain insight into the mechanism of TAM, we obtained LYS2 forward mutation spectra under low- versus high-transcription conditions in which LYS2 was expressed from either the low-level pLYS2 promoter or the strong pGAL1-10 promoter, respectively. Because of the large size of the LYS2 locus, forward mutations first were mapped to specific LYS2 subregions, and then those mutations that occurred within a defined 736-bp target region were sequenced. In the low-transcription strain base substitutions comprised the majority (64%) of mutations, whereas short insertion-deletion mutations predominated (56%) in the high-transcription strain. Most notably, deletions of 2 nucleotides (nt) comprised 21% of the mutations in the high-transcription strain, and these events occurred predominantly at 5'-(G/C)AAA-3' sites. No -2 events were present in the low-transcription spectrum, thus identifying 2-nt deletions as a unique mutational signature for TAM.
Collapse
Affiliation(s)
- Malcolm J Lippert
- Department of Biology, Saint Michael's College, 1 Winooski Park, Colchester, VT 05439, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
Cells have high-fidelity polymerases whose task is to accurately replicate the genome, and low-fidelity polymerases with specialized functions. Although some of these low-fidelity polymerases are exceptional in their ability to replicate damaged DNA and restore the undamaged sequence, they are error prone on undamaged DNA. In fact, these error-prone polymerases are sometimes used in circumstances where the capacity to make errors has a selective advantage. The mutagenic potential of the error-prone polymerases requires that their expression, activity, and access to undamaged DNA templates be regulated. Here we review these specialized polymerases with an emphasis on their biological roles.
Collapse
Affiliation(s)
- Alison J Rattray
- Gene Regulation and Chromosome Biology Laboratory, NCI-Frederick, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA.
| | | |
Collapse
|
26
|
García-Rubio M, Huertas P, González-Barrera S, Aguilera A. Recombinogenic Effects of DNA-Damaging Agents Are Synergistically Increased by Transcription inSaccharomyces cerevisiae: New Insights Into Transcription-Associated Recombination. Genetics 2003; 165:457-66. [PMID: 14573461 PMCID: PMC1462770 DOI: 10.1093/genetics/165.2.457] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractHomologous recombination of a particular DNA sequence is strongly stimulated by transcription, a phenomenon observed from bacteria to mammals, which we refer to as transcription-associated recombination (TAR). TAR might be an accidental feature of DNA chemistry with important consequences for genetic stability. However, it is also essential for developmentally regulated processes such as class switching of immunoglobulin genes. Consequently, it is likely that TAR embraces more than one mechanism. In this study we tested the possibility that transcription induces recombination by making DNA more susceptible to recombinogenic DNA damage. Using different plasmid-chromosome and direct-repeat recombination constructs in which transcription is driven from either the PGAL1- or the Ptet-regulated promoters, we haveshown that either 4-nitroquinoline-N-oxide (4-NQO) or methyl methanesulfonate (MMS) produces a synergistic increase of recombination when combined with transcription. 4-NQO and MMS stimulated recombination of a transcriptionally active DNA sequence up to 12,800- and 130-fold above the spontaneous levels observed in the absence of transcription, whereas 4-NQO and MMS alone increased recombination 193- and 4.5-fold, respectively. Our results provide evidence that TAR is due, at least in part, to the ability of transcription to enhance the accessibility of DNA to exogenous chemicals and internal metabolites responsible for recombinogenic lesions. We discuss possible parallelisms between the mechanisms of induction of recombination and mutation by transcription.
Collapse
Affiliation(s)
- M García-Rubio
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
27
|
Abstract
The primary structures of peptides may be adapted for efficient synthesis as well as proper function. Here, the Saccharomyces cerevisiae genome sequence, DNA microarray expression data, tRNA gene numbers, and functional categorizations of proteins are employed to determine whether the amino acid composition of peptides reflects natural selection to optimize the speed and accuracy of translation. Strong relationships between synonymous codon usage bias and estimates of transcript abundance suggest that DNA array data serve as adequate predictors of translation rates. Amino acid usage also shows striking relationships with expression levels. Stronger correlations between tRNA concentrations and amino acid abundances among highly expressed proteins than among less abundant proteins support adaptation of both tRNA abundances and amino acid usage to enhance the speed and accuracy of protein synthesis. Natural selection for efficient synthesis appears to also favor shorter proteins as a function of their expression levels. Comparisons restricted to proteins within functional classes are employed to control for differences in amino acid composition and protein size that reflect differences in the functional requirements of proteins expressed at different levels.
Collapse
Affiliation(s)
- Hiroshi Akashi
- Institute of Molecular Evolutionary Genetics and Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
28
|
Hudson RE, Bergthorsson U, Ochman H. Transcription increases multiple spontaneous point mutations in Salmonella enterica. Nucleic Acids Res 2003; 31:4517-22. [PMID: 12888512 PMCID: PMC169952 DOI: 10.1093/nar/gkg651] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The spontaneous rate of G.C-->A.T mutations and a hotspot T.A-->G.C transversion are known to increase with the frequency of transcription-increases that have been ascribed primarily to processes that affect only these specific mutations. To investigate how transcription induces other spontaneous point mutations, we tested for its effects in repair-proficient Salmonella enterica using reversion assays of chromosomally inserted alleles. Our results indicate that transcription increases rates of all tested point mutations in the induced gene: induction significantly increased the individual rates of an A.T-->T.A transversion, an A.T-->G.C transition and the pooled rates of the three other point mutations assayed. Although the S.enterica genome is thought to have a mutational bias towards G.C base pairs, transitions creating A.T pairs were approximately 10 times more frequent than the reverse mutation, resulting in an overall mutation pressure to lower G+C contents. Transitions occurred at roughly twice the rate of transversions, similar to results from sequence comparisons; however, several individual transversions are more frequent than the least common transition.
Collapse
Affiliation(s)
- Richard Ellis Hudson
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
29
|
Maki H. Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu Rev Genet 2003; 36:279-303. [PMID: 12429694 DOI: 10.1146/annurev.genet.36.042602.094806] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spontaneous mutations are derived from various sources, including errors made during replication of undamaged template DNA, mutagenic nucleotide substrates, and endogenous DNA lesions. These sources vary in their frequencies and resultant mutations, and are differently affected by the DNA sequence, DNA transactions, and cellular metabolism. Organisms possess a variety of cellular functions to suppress spontaneous mutagenesis, and the specificity and effectiveness of each function strongly affect the pattern of spontaneous mutations. Base substitutions and single-base frameshifts, two major classes of spontaneous mutations, occur non-randomly throughout the genome. Within target DNA sequences there are hotspots for particular types of spontaneous mutations; outside of the hotspots, spontaneous mutations occur more randomly and much less frequently. Hotspot mutations are attributable more to endogenous DNA lesions than to replication errors. Recently, a novel class of mutagenic pathway that depends on short inverted repeats was identified as another important source of hotspot mutagenesis.
Collapse
Affiliation(s)
- Hisaji Maki
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.
| |
Collapse
|
30
|
Yoshiyama K, Maki H. Spontaneous hotspot mutations resistant to mismatch correction in Escherichia coli: transcription-dependent mutagenesis involving template-switching mechanisms. J Mol Biol 2003; 327:7-18. [PMID: 12614604 DOI: 10.1016/s0022-2836(03)00089-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The generation and stabilization of spontaneous mutations are affected by many factors, including the accuracy of DNA replication, the generation of spontaneous DNA lesions, and the capacity of mutation-avoidance systems. However, little is known about the causes of spontaneous mutations in cells with fully active mutation-avoidance systems. Using the rpsL forward mutation assay, we previously found that the directionality of replication fork movement significantly affects spontaneous mutagenesis in Escherichia coli. In particular, sequence substitutions and a hotspot type of single-base frameshift, both of which are caused by quasipalindrome-directed mutagenesis, appeared to depend on the directionality of the replication fork. These mutations are also resistant to post-replicative mismatch correction. Here, we show that the level of transcription of the rpsL gene strongly affects spontaneous mutagenesis at two mutational hotspot sites in the target sequence, one for a T-->G base substitution and the other for a+1 single-base frameshift. Mutation frequencies at the hotspot sites were below a detectable level when the transcription of the target sequence was tightly suppressed, but were dramatically increased when the target sequence was highly transcribed. Both of the hotspot mutations were also dependent on the directionality of the replication fork and were caused by quasipalindrome-directed mutagenesis. The frequencies of the hotspot mutations were unchanged in a mismatch-repair deficient strain, indicating that the hotspot mutations are resistant to the mismatch correction. Based on these findings, we propose a novel mutagenic process for these hotspot mutations that depends on transcription and involves template-switching mechanisms induced by spontaneous DNA lesions.
Collapse
Affiliation(s)
- Kaoru Yoshiyama
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | |
Collapse
|
31
|
Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, Aas PA, Hagen L, Krokan HE, Slupphaug G. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem 2002; 277:39926-36. [PMID: 12161446 DOI: 10.1074/jbc.m207107200] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
hUNG2 and hSMUG1 are the only known glycosylases that may remove uracil from both double- and single-stranded DNA in nuclear chromatin, but their relative contribution to base excision repair remains elusive. The present study demonstrates that both enzymes are strongly stimulated by physiological concentrations of Mg2+, at which the activity of hUNG2 is 2-3 orders of magnitude higher than of hSMUG1. Moreover, Mg2+ increases the preference of hUNG2 toward uracil in ssDNA nearly 40-fold. APE1 has a strong stimulatory effect on hSMUG1 against dsU, apparently because of enhanced dissociation of hSMUG1 from AP sites in dsDNA. hSMUG1 also has a broader substrate specificity than hUNG2, including 5-hydroxymethyluracil and 3,N(4)-ethenocytosine. hUNG2 is excluded from, whereas hSMUG1 accumulates in, nucleoli in living cells. In contrast, only hUNG2 accumulates in replication foci in the S-phase. hUNG2 in nuclear extracts initiates base excision repair of plasmids containing either U:A and U:G in vitro. Moreover, an additional but delayed repair of the U:G plasmid is observed that is not inhibited by neutralizing antibodies against hUNG2 or hSMUG1. We propose a model in which hUNG2 is responsible for both prereplicative removal of deaminated cytosine and postreplicative removal of misincorporated uracil at the replication fork. We also provide evidence that hUNG2 is the major enzyme for removal of deaminated cytosine outside of replication foci, with hSMUG1 acting as a broad specificity backup.
Collapse
Affiliation(s)
- Bodil Kavli
- Institute of Cancer Research and Molecular Biology, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Freedman JA, Jinks-Robertson S. Genetic Requirements for Spontaneous and Transcription-Stimulated Mitotic Recombination inSaccharomyces cerevisiae. Genetics 2002; 162:15-27. [PMID: 12242220 PMCID: PMC1462249 DOI: 10.1093/genetics/162.1.15] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractThe genetic requirements for spontaneous and transcription-stimulated mitotic recombination were determined using a recombination system that employs heterochromosomal lys2 substrates that can recombine only by crossover or only by gene conversion. The substrates were fused either to a constitutive low-level promoter (pLYS) or to a highly inducible promoter (pGAL). In the case of the “conversion-only” substrates the use of heterologous promoters allowed either the donor or the recipient allele to be highly transcribed. Transcription of the donor allele stimulated gene conversions in rad50, rad51, rad54, and rad59 mutants, but not in rad52, rad55, and rad57 mutants. In contrast, transcription of the recipient allele stimulated gene conversions in rad50, rad51, rad54, rad55, rad57, and rad59 mutants, but not in rad52 mutants. Finally, transcription stimulated crossovers in rad50, rad54, and rad59 mutants, but not in rad51, rad52, rad55, and rad57 mutants. These data are considered in relation to previously proposed molecular mechanisms of transcription-stimulated recombination and in relation to the roles of the recombination proteins.
Collapse
Affiliation(s)
- Jennifer A Freedman
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
33
|
Ito-Harashima S, Hartzog PE, Sinha H, McCusker JH. The tRNA-Tyr gene family of Saccharomyces cerevisiae: agents of phenotypic variation and position effects on mutation frequency. Genetics 2002; 161:1395-410. [PMID: 12196388 PMCID: PMC1462226 DOI: 10.1093/genetics/161.4.1395] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extensive phenotypic diversity or variation exists in clonal populations of microorganisms and is thought to play a role in adaptation to novel environments. This phenotypic variation or instability, which occurs by multiple mechanisms, may be a form of cellular differentiation and a stochastic means for modulating gene expression. This work dissects a case of phenotypic variation in a clinically derived Saccharomyces cerevisiae strain involving a cox15 ochre mutation, which acts as a reporter. The ochre mutation reverts to sense at a low frequency while tRNA-Tyr ochre suppressors (SUP-o) arise at a very high frequency to produce this phenotypic variation. The SUP-o mutations are highly pleiotropic. In addition, although all SUP-o mutations within the eight-member tRNA-Tyr gene family suppress the ochre mutation reporter, there are considerable phenotypic differences among the different SUP-o mutants. Finally, and of particular interest, there is a strong position effect on mutation frequency within the eight-member tRNA-Tyr gene family, with one locus, SUP6, mutating at a much higher than average frequency and two other loci, SUP2 and SUP8, mutating at much lower than average frequencies. Mechanisms for the position effect on mutation frequency are evaluated.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
34
|
Hardeland U, Bentele M, Lettieri T, Steinacher R, Jiricny J, Schär P. Thymine DNA glycosylase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:235-53. [PMID: 11554300 DOI: 10.1016/s0079-6603(01)68103-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
More than 50% of colon cancer-associated mutations in the p53 tumor suppressor gene are C-->T transitions. The majority of them locate in CpG dinucleotides and are thought to have arisen through spontaneous hydrolytic deamination of 5-methylcytosine. This deamination process gives rise to G.T mispairs that need to be repaired to G.C in order to avoid C-->T mutation. Similarly, deamination of cytosine generates G.U mispairs that also produce C-->T transitions if not repaired. Restoration of both G.T and G.U mismatches was shown to be mediated by a short-patch excision repair pathway, and one principal player implicated in this process may be thymine DNA glycosylase (TDG). Human TDG was discovered as an enzyme that has the potential to specifically remove thymine and uracil bases mispaired with guanine through hydrolysis of their N-glycosidic bond, thereby generating abasic sites in DNA and initiating a base excision repair reaction. The same protein was later found to interact physically and functionally with the retinoid receptors RAR and RXR, and this implicated an unexpected function of TDG in nuclear receptor-mediated transcriptional activation of gene expression. The objective of this chapter is to put together the results of different lines of experimentation that have explored the thymine DNA glycosylase since its discovery and to critically evaluate their implications for possible physiological roles of this enzyme.
Collapse
Affiliation(s)
- U Hardeland
- Institute of Medical Radiobiology, University of Zürich, Paul Scherrer Institute, August-Forel Strasse 7, CH-8008 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Pál C, Papp B, Hurst LD. Does the recombination rate affect the efficiency of purifying selection? The yeast genome provides a partial answer. Mol Biol Evol 2001; 18:2323-6. [PMID: 11719582 DOI: 10.1093/oxfordjournals.molbev.a003779] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Abstract
The combination of complete genome sequence information and estimates of mRNA abundances have begun to reveal causes of both silent and protein sequence evolution. Translational selection appears to explain patterns of synonymous codon usage in many prokaryotes as well as a number of eukaryotic model organisms (with the notable exception of vertebrates). Relationships between gene length and codon usage bias, however, remain unexplained. Intriguing correlations between expression patterns and protein divergence suggest some general mechanisms underlying protein evolution.
Collapse
Affiliation(s)
- H Akashi
- Institute of Molecular Evolutionary Genetics and Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania 06138, USA.
| |
Collapse
|
37
|
Affiliation(s)
- H Nilsen
- Institute of Cancer Research and Molecular Biology, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | |
Collapse
|
38
|
|
39
|
Abstract
A temporary state of hypermutation can in principle arise through an increase in the rate of polymerase errors (which may or may not be triggered by template damage) and/or through abrogation of fidelity mechanisms such as proofreading and mismatch correction. In bacteria there are numerous examples of transient mutator states, often occurring as a consequence of stress. They may be targeted to certain regions of the DNA, for example by transcription or by recombination. The initial errors are made by various DNA polymerases which vary in their error-proneness: several are inducible and are under the control of the SOS system. There are several structurally related polymerases in mammals that have recently come to light and that have unusual properties, such as the ability to carry out 'accurate' translesion synthesis opposite sites of template damage or the possession of exceedingly high misincorporation rates. In bacteria the initial errors may be genuinely spontaneous polymerase errors or they may be triggered by damage to the template strand, for example as a result of attack by active oxidative species such as singlet oxygen. In mammalian cells, hypermutable states persisting for many generations have been shown to be induced by various agents, not all of them DNA damaging agents. A hypermutable state induced by ionizing radiation in male germ cells in the mouse results in a high rate of sequence errors in certain unstable minisatellite loci; the mechanism is unclear but believed to be associated with recombination events.
Collapse
Affiliation(s)
- B A Bridges
- MRC Cell Mutation Unit, University of Sussex, Brighton, UK.
| |
Collapse
|
40
|
Harfe BD, Jinks-Robertson S. Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae. Genetics 2000; 156:571-8. [PMID: 11014807 PMCID: PMC1461279 DOI: 10.1093/genetics/156.2.571] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DNA polymerase slippage occurs frequently in tracts of a tandemly repeated nucleotide, and such slippage events can be genetically detected as frameshift mutations. In long mononucleotide runs, most frameshift intermediates are repaired by the postreplicative mismatch repair (MMR) machinery, rather than by the exonucleolytic proofreading activity of DNA polymerase. Although mononucleotide runs are hotspots for polymerase slippage events, it is not known whether the composition of a run and the surrounding context affect the frequency of slippage or the efficiency of MMR. To address these issues, 10-nucleotide (10N) runs were inserted into the yeast LYS2 gene to create +1 frameshift alleles. Slippage events within these runs were detected as Lys(+) revertants. 10G or 10C runs were found to be more unstable than 10A or 10T runs, but neither the frequency of polymerase slippage nor the overall efficiency of MMR was greatly influenced by sequence context. Although complete elimination of MMR activity (msh2 mutants) affected all runs similarly, analyses of reversion rates in msh3 and msh6 mutants revealed distinct specificities of the yeast Msh2p-Msh3p and Msh2p-Msh6p mismatch binding complexes in the repair of frameshift intermediates in different sequence contexts.
Collapse
Affiliation(s)
- B D Harfe
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
41
|
Saxe D, Datta A, Jinks-Robertson S. Stimulation of mitotic recombination events by high levels of RNA polymerase II transcription in yeast. Mol Cell Biol 2000; 20:5404-14. [PMID: 10891481 PMCID: PMC85992 DOI: 10.1128/mcb.20.15.5404-5414.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The impact of high levels of RNA polymerase II transcription on mitotic recombination was examined using lys2 recombination substrates positioned on nonhomologous chromosomes. Substrates were used that could produce Lys(+) recombinants by either a simple (noncrossover) gene conversion event or a crossover-associated recombination event, by only a simple gene conversion event, or by only a crossover event. Transcription of the lys2 substrates was regulated by the highly inducible GAL1-10 promoter or the low-level LYS2 promoter, with GAL1-10 promoter activity being controlled by the presence or absence of the Gal80p negative regulatory protein. Transcription was found to stimulate recombination in all assays used, but the level of stimulation varied depending on whether only one or both substrates were highly transcribed. In addition, there was an asymmetry in the types of recombination events observed when one substrate versus the other was highly transcribed. Finally, the lys2 substrates were positioned as direct repeats on the same chromosome and were found to exhibit a different recombinational response to high levels of transcription from that exhibited by the repeats on nonhomologous chromosomes. The relevance of these results to the mechanisms of transcription-associated recombination are discussed.
Collapse
Affiliation(s)
- D Saxe
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
42
|
Beletskii A, Grigoriev A, Joyce S, Bhagwat AS. Mutations induced by bacteriophage T7 RNA polymerase and their effects on the composition of the T7 genome. J Mol Biol 2000; 300:1057-65. [PMID: 10903854 DOI: 10.1006/jmbi.2000.3944] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show here that transcription by the bacteriophage T7 RNA polymerase increases the deamination of cytosine bases in the non-transcribed strand to uracil, causing C to T mutations in that strand. Under optimal conditions, the mutation frequency increases about fivefold over background, and is similar to that seen with the Escherichia coli RNA polymerase. Further, we found that a mutant T7 RNA polymerase with a slower rate of elongation caused more cytosine deaminations than its wild-type parent. These results suggest that promoting cytosine deamination in the non-transcribed strand is a general property of transcription in E. coli and is dependent on the length of time the transcription bubble stays open during elongation. To see if transcription-induced mutations have influenced the evolution of bacteriophage T7, we analyzed its genome for a bias in base composition. Our analysis showed a significant excess of thymine over cytosine bases in the highly transcribed regions of the genome. Moreover, the average value of this bias correlated well with the levels of transcription of different genomic regions. Our results indicate that transcription-induced mutations have altered the composition of bacteriophage T7 genome and suggest that this may be a significant force in genome evolution.
Collapse
Affiliation(s)
- A Beletskii
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- B E Wright
- Division of Biological Sciences, The University of Montana, Missoula 59812, USA.
| |
Collapse
|