1
|
Selection and Plasmid Transfer Underlie Adaptive Mutation in Escherichia coli. Genetics 2018; 210:821-841. [PMID: 30194073 DOI: 10.1534/genetics.118.301347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/30/2018] [Indexed: 11/18/2022] Open
Abstract
In the Cairns-Foster adaptive mutation system, a +1 lac frameshift mutant of Escherichia coli is plated on lactose medium, where the nondividing population gives rise to Lac+ revertant colonies during a week under selection. Reversion requires the mutant lac allele to be located on a conjugative F'lac plasmid that also encodes the error-prone DNA polymerase, DinB. Rare plated cells with multiple copies of the mutant F'lac plasmid initiate the clones that develop into revertants under selection. These initiator cells arise before plating, and their extra lac copies allow them to divide on lactose and produce identical F'lac-bearing daughter cells that can mate with each other. DNA breaks can form during plasmid transfer and their recombinational repair can initiate rolling-circle replication of the recipient plasmid. This replication is mutagenic because the amplified plasmid encodes the error-prone DinB polymerase. A new model proposes that Lac+ revertants arise during mutagenic over-replication of the F'lac plasmid under selection. This mutagenesis is focused on the plasmid because the cell chromosome replicates very little. The outer membrane protein OmpA is essential for reversion under selection. OmpA helps cells conserve energy and may stabilize the long-term mating pairs that produce revertants.
Collapse
|
2
|
Cipponi A, Thomas DM. Stress-induced cellular adaptive strategies: ancient evolutionarily conserved programs as new anticancer therapeutic targets. Bioessays 2014; 36:552-60. [PMID: 24706439 DOI: 10.1002/bies.201300170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite the remarkable achievements of novel targeted anti-cancer drugs, most therapies only produce remission for a limited time, resistance to treatment, and relapse, often being the ultimate outcome. Drug resistance is due to highly efficient adaptive strategies utilized by cancer cells. Exogenous and endogenous stress stimuli are known to induce first-line responses, capable of re-establishing cellular homeostasis and determining cell fate decisions. Cancer cells may also mount second-line adaptive strategies, such as the mutator response. Hypermutable subpopulations of cells may expand under severe selective stress, thereby accelerating the emergence of adapted clones. As with first-line protective responses, these strategies appear highly conserved, and are found in yeasts and bacteria. We hypothesize that evolutionarily conserved programs rheostatically regulate mutability in fluctuating environments, and contribute to drug resistance in cancer cells. Elucidating the conserved genetic and molecular mechanisms may present novel opportunities to increase the effectiveness of cancer therapies.
Collapse
Affiliation(s)
- Arcadi Cipponi
- Sarcoma Genomics and Genetics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | |
Collapse
|
3
|
Shee C, Ponder R, Gibson JL, Rosenberg SM. What limits the efficiency of double-strand break-dependent stress-induced mutation in Escherichia coli? J Mol Microbiol Biotechnol 2012; 21:8-19. [PMID: 22248539 DOI: 10.1159/000335354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stress-induced mutation is a collection of molecular mechanisms in bacterial, yeast and human cells that promote mutagenesis specifically when cells are maladapted to their environment, i.e. when they are stressed. Here, we review one molecular mechanism: double-strand break (DSB)-dependent stress-induced mutagenesis described in starving Escherichia coli. In it, the otherwise high-fidelity process of DSB repair by homologous recombination is switched to an error-prone mode under the control of the RpoS general stress response, which licenses the use of error-prone DNA polymerase, DinB, in DSB repair. This mechanism requires DSB repair proteins, RpoS, the SOS response and DinB. This pathway underlies half of spontaneous chromosomal frameshift and base substitution mutations in starving E. coli [Proc Natl Acad Sci USA 2011;108:13659-13664], yet appeared less efficient in chromosomal than F' plasmid-borne genes. Here, we demonstrate and quantify DSB-dependent stress-induced reversion of a chromosomal lac allele with DSBs supplied by I-SceI double-strand endonuclease. I-SceI-induced reversion of this allele was previously studied in an F'. We compare the efficiencies of mutagenesis in the two locations. When we account for contributions of an F'-borne extra dinB gene, strain background differences, and bypass considerations of rates of spontaneous DNA breakage by providing I-SceI cuts, the chromosome is still ∼100 times less active than F. We suggest that availability of a homologous partner molecule for recombinational break repair may be limiting. That partner could be a duplicated chromosomal segment or sister chromosome.
Collapse
Affiliation(s)
- Chandan Shee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
4
|
Lin D, Gibson IB, Moore JM, Thornton PC, Leal SM, Hastings PJ. Global chromosomal structural instability in a subpopulation of starving Escherichia coli cells. PLoS Genet 2011; 7:e1002223. [PMID: 21901104 PMCID: PMC3161906 DOI: 10.1371/journal.pgen.1002223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/18/2011] [Indexed: 11/18/2022] Open
Abstract
Copy-number variations (CNVs) constitute very common differences between individual humans and possibly all genomes and may therefore be important fuel for evolution, yet how they form remains elusive. In starving Escherichia coli, gene amplification is induced by stress, controlled by the general stress response. Amplification has been detected only encompassing genes that confer a growth advantage when amplified. We studied the structure of stress-induced gene amplification in starving cells in the Lac assay in Escherichia coli by array comparative genomic hybridization (aCGH), with polymerase chain reaction (pcr) and DNA sequencing to establish the structures generated. About 10% of 300 amplified isolates carried other chromosomal structural change in addition to amplification. Most of these were inversions and duplications associated with the amplification event. This complexity supports a mechanism similar to that seen in human non-recurrent copy number variants. We interpret these complex events in terms of repeated template switching during DNA replication. Importantly, we found a significant occurrence (6 out of 300) of chromosomal structural changes that were apparently not involved in the amplification event. These secondary changes were absent from 240 samples derived from starved cells not carrying amplification, suggesting that amplification happens in a differentiated subpopulation of stressed cells licensed for global chromosomal structural change and genomic instability. These data imply that chromosomal structural changes occur in bursts or showers of instability that may have the potential to drive rapid evolution. Much of the difference between individual humans is in the number of copies of genes and lengths of genome. The mechanisms by which copy number variation arises are not well understood. We sought information on copy number change mechanisms by extensive use of array comparative genomic hybridization of whole genomes in bacteria selected for amplification of part of the genome. We report that about 10% of amplified isolates carried other chromosomal structural changes associated with the amplification, a result comparable to that seen in human copy number variants. Importantly, we found a significant occurrence of structural changes that were not involved in the amplification event. These were not seen in a control sample of stressed cells not carrying amplification. This establishes that chromosomal structural change happens in a subpopulation of cells apparently licensed to undergo these changes. Because the changes occur under the stress of starvation and require two of the cells' stress-response systems, we propose that licensing for cell-wide structural change in this subpopulation is a component of response to stress. This idea has implications for the mechanisms of evolution and cancer progression, suggesting that changes occur in a shower of events rather than as isolated random events.
Collapse
Affiliation(s)
- Dongxu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ian B. Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jessica M. Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. C. Thornton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Suzanne M. Leal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:13659-64. [PMID: 21808005 DOI: 10.1073/pnas.1104681108] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basic ideas about the constancy and randomness of mutagenesis that drives evolution were challenged by the discovery of mutation pathways activated by stress responses. These pathways could promote evolution specifically when cells are maladapted to their environment (i.e., are stressed). However, the clearest example--a general stress-response-controlled switch to error-prone DNA break (double-strand break, DSB) repair--was suggested to be peculiar to an Escherichia coli F' conjugative plasmid, not generally significant, and to occur by an alternative stress-independent mechanism. Moreover, mechanisms of spontaneous mutation in E. coli remain obscure. First, we demonstrate that this same mechanism occurs in chromosomes of starving F(-) E. coli. I-SceI endonuclease-induced chromosomal DSBs increase mutation 50-fold, dependent upon general/starvation- and DNA-damage-stress responses, DinB error-prone DNA polymerase, and DSB-repair proteins. Second, DSB repair is also mutagenic if the RpoS general-stress-response activator is expressed in unstressed cells, illustrating a stress-response-controlled switch to mutagenic repair. Third, DSB survival is not improved by RpoS or DinB, indicating that mutagenesis is not an inescapable byproduct of repair. Importantly, fourth, fully half of spontaneous frame-shift and base-substitution mutation during starvation also requires the same stress-response, DSB-repair, and DinB proteins. These data indicate that DSB-repair-dependent stress-induced mutation, driven by spontaneous DNA breaks, is a pathway that cells usually use and a major source of spontaneous mutation. These data also rule out major alternative models for the mechanism. Mechanisms that couple mutagenesis to stress responses can allow cells to evolve rapidly and responsively to their environment.
Collapse
|
6
|
Benson RW, Norton MD, Lin I, Du Comb WS, Godoy VG. An active site aromatic triad in Escherichia coli DNA Pol IV coordinates cell survival and mutagenesis in different DNA damaging agents. PLoS One 2011; 6:e19944. [PMID: 21614131 PMCID: PMC3096655 DOI: 10.1371/journal.pone.0019944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/07/2011] [Indexed: 12/16/2022] Open
Abstract
DinB (DNA Pol IV) is a translesion (TLS) DNA polymerase, which inserts a nucleotide opposite an otherwise replication-stalling N(2)-dG lesion in vitro, and confers resistance to nitrofurazone (NFZ), a compound that forms these lesions in vivo. DinB is also known to be part of the cellular response to alkylation DNA damage. Yet it is not known if DinB active site residues, in addition to aminoacids involved in DNA synthesis, are critical in alkylation lesion bypass. It is also unclear which active site aminoacids, if any, might modulate DinB's bypass fidelity of distinct lesions. Here we report that along with the classical catalytic residues, an active site "aromatic triad", namely residues F12, F13, and Y79, is critical for cell survival in the presence of the alkylating agent methyl methanesulfonate (MMS). Strains expressing dinB alleles with single point mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in addition to its role in TLS, modulates DinB's accuracy in bypassing distinct lesions. The high bypass fidelity of prevalent alkylation lesions is evident even when the DinB active site performs error-prone NFZ-induced lesion bypass. The analyses carried out with the active site aromatic triad suggest that the DinB active site residues are poised to proficiently bypass distinctive DNA lesions, yet they are also malleable so that the accuracy of the bypass is lesion-dependent.
Collapse
Affiliation(s)
- Ryan W. Benson
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - Matthew D. Norton
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - Ida Lin
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - William S. Du Comb
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - Veronica G. Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| |
Collapse
|
7
|
Cohen SE, Walker GC. The transcription elongation factor NusA is required for stress-induced mutagenesis in Escherichia coli. Curr Biol 2009; 20:80-5. [PMID: 20036541 DOI: 10.1016/j.cub.2009.11.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/07/2009] [Accepted: 11/11/2009] [Indexed: 11/19/2022]
Abstract
Stress-induced mutagenesis describes the accumulation of mutations that occur in nongrowing cells, in contrast to mutagenesis that occurs in actively dividing populations, and has been referred to as stationary-phase or adaptive mutagenesis. The most widely studied system for stress-induced mutagenesis involves monitoring the appearance of Lac(+) revertants of the strain FC40 under starvation conditions in Escherichia coli. The SOS-inducible translesion DNA polymerase DinB plays an important role in this phenomenon. Loss of DinB (DNA pol IV) function results in a severe reduction of Lac(+) revertants. We previously reported that NusA, an essential component of elongating RNA polymerases, interacts with DinB. Here we report our unexpected observation that wild-type NusA function is required for stress-induced mutagenesis. We present evidence that this effect is unlikely to be due to defects in transcription of lac genes but rather is due to an inability to adapt and mutate in response to environmental stress. Furthermore, we extended our analysis to the formation of stress-induced mutants in response to antibiotic treatment, observing the same striking abolition of mutagenesis under entirely different conditions. Our results are the first to implicate NusA as a crucial participant in the phenomenon of stress-induced mutagenesis.
Collapse
Affiliation(s)
- Susan E Cohen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
8
|
DinB upregulation is the sole role of the SOS response in stress-induced mutagenesis in Escherichia coli. Genetics 2009; 182:55-68. [PMID: 19270270 DOI: 10.1534/genetics.109.100735] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stress-induced mutagenesis is a collection of mechanisms observed in bacterial, yeast, and human cells in which adverse conditions provoke mutagenesis, often under the control of stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e., are stressed. It is therefore important to understand how stress responses increase mutagenesis. In the Escherichia coli Lac assay, stress-induced point mutagenesis requires induction of at least two stress responses: the RpoS-controlled general/starvation stress response and the SOS DNA-damage response, both of which upregulate DinB error-prone DNA polymerase, among other genes required for Lac mutagenesis. We show that upregulation of DinB is the only aspect of the SOS response needed for stress-induced mutagenesis. We constructed two dinB(o(c)) (operator-constitutive) mutants. Both produce SOS-induced levels of DinB constitutively. We find that both dinB(o(c)) alleles fully suppress the phenotype of constitutively SOS-"off" lexA(Ind(-)) mutant cells, restoring normal levels of stress-induced mutagenesis. Thus, dinB is the only SOS gene required at induced levels for stress-induced point mutagenesis. Furthermore, although spontaneous SOS induction has been observed to occur in only a small fraction of cells, upregulation of dinB by the dinB(o(c)) alleles in all cells does not promote a further increase in mutagenesis, implying that SOS induction of DinB, although necessary, is insufficient to differentiate cells into a hypermutable condition.
Collapse
|
9
|
Abstract
Clonal populations of microbial cells often show a high degree of phenotypic variability under homogeneous conditions. Stochastic fluctuations in the cellular components that determine cellular states can cause two distinct subpopulations, a property called bistability. Phenotypic heterogeneity can be readily obtained by interlinking multiple gene regulatory pathways, effectively resulting in a genetic logic-AND gate. Although switching between states can occur within the cells' lifetime, cells can also pass their cellular state over to the next generation by a mechanism known as epigenetic inheritance and thus perpetuate the phenotypic state. Importantly, heterogeneous populations can demonstrate increased fitness compared with homogeneous populations. This suggests that microbial cells employ bet-hedging strategies to maximize survival. Here, we discuss the possible roles of interlinked bistable networks, epigenetic inheritance, and bet-hedging in bacteria.
Collapse
Affiliation(s)
- Jan-Willem Veening
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | | | |
Collapse
|
10
|
Abstract
Adaptive mutation is a generic term for processes that allow individual cells of nonproliferating cell populations to acquire advantageous mutations and thereby to overcome the strong selective pressure of proliferation-limiting environmental conditions. Prerequisites for an occurrence of adaptive mutation are that the selective conditions are nonlethal and that a restart of proliferation may be accomplished by some genetic change in principle. The importance of adaptive mutation is derived from the assumption that it may, on the one hand, result in an accelerated evolution of microorganisms and, on the other, in multicellular organisms may contribute to a breakout of somatic cells from negative growth regulation, i.e., to cancerogenesis. Most information on adaptive mutation in eukaryotes has been gained with the budding yeast Saccharomyces cerevisiae. This review focuses comprehensively on adaptive mutation in this organism and summarizes our current understanding of this issue.
Collapse
Affiliation(s)
- Erich Heidenreich
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Gonzalez C, Hadany L, Ponder RG, Price M, Hastings PJ, Rosenberg SM. Mutability and importance of a hypermutable cell subpopulation that produces stress-induced mutants in Escherichia coli. PLoS Genet 2008; 4:e1000208. [PMID: 18833303 PMCID: PMC2543114 DOI: 10.1371/journal.pgen.1000208] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 08/25/2008] [Indexed: 01/03/2023] Open
Abstract
In bacterial, yeast, and human cells, stress-induced mutation mechanisms are induced in growth-limiting environments and produce non-adaptive and adaptive mutations. These mechanisms may accelerate evolution specifically when cells are maladapted to their environments, i.e., when they are are stressed. One mechanism of stress-induced mutagenesis in Escherichia coli occurs by error-prone DNA double-strand break (DSB) repair. This mechanism was linked previously to a differentiated subpopulation of cells with a transiently elevated mutation rate, a hypermutable cell subpopulation (HMS). The HMS could be important, producing essentially all stress-induced mutants. Alternatively, the HMS was proposed to produce only a minority of stress-induced mutants, i.e., it was proposed to be peripheral. We characterize three aspects of the HMS. First, using improved mutation-detection methods, we estimate the number of mutations per genome of HMS-derived cells and find that it is compatible with fitness after the HMS state. This implies that these mutants are not necessarily an evolutionary dead end, and could contribute to adaptive evolution. Second, we show that stress-induced Lac(+) mutants, with and without evidence of descent from the HMS, have similar Lac(+) mutation sequences. This provides evidence that HMS-descended and most stress-induced mutants form via a common mechanism. Third, mutation-stimulating DSBs introduced via I-SceI endonuclease in vivo do not promote Lac(+) mutation independently of the HMS. This and the previous finding support the hypothesis that the HMS underlies most stress-induced mutants, not just a minority of them, i.e., it is important. We consider a model in which HMS differentiation is controlled by stress responses. Differentiation of an HMS potentially limits the risks of mutagenesis in cell clones.
Collapse
Affiliation(s)
- Caleb Gonzalez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lilach Hadany
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rebecca G. Ponder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mellanie Price
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
12
|
Godoy VG, Jarosz DF, Simon SM, Abyzov A, Ilyin V, Walker GC. UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB. Mol Cell 2008; 28:1058-70. [PMID: 18158902 DOI: 10.1016/j.molcel.2007.10.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/23/2007] [Accepted: 10/18/2007] [Indexed: 11/25/2022]
Abstract
DinB is the only translesion Y family DNA polymerase conserved among bacteria, archaea, and eukaryotes. DinB and its orthologs possess a specialized lesion bypass function but also display potentially deleterious -1 frameshift mutagenic phenotypes when overproduced. We show that the DNA damage-inducible proteins UmuD(2) and RecA act in concert to modulate this mutagenic activity. Structural modeling suggests that the relatively open active site of DinB is enclosed by interaction with these proteins, thereby preventing the template bulging responsible for -1 frameshift mutagenesis. Intriguingly, residues that define the UmuD(2)-interacting surface on DinB statistically covary throughout evolution, suggesting a driving force for the maintenance of a regulatory protein-protein interaction at this site. Together, these observations indicate that proteins like RecA and UmuD(2) may be responsible for managing the mutagenic potential of DinB orthologs throughout evolution.
Collapse
Affiliation(s)
- Veronica G Godoy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
13
|
Robleto EA, Yasbin R, Ross C, Pedraza-Reyes M. Stationary phase mutagenesis in B. subtilis: a paradigm to study genetic diversity programs in cells under stress. Crit Rev Biochem Mol Biol 2008; 42:327-39. [PMID: 17917870 DOI: 10.1080/10409230701597717] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
One of the experimental platforms to study programs increasing genetic diversity in cells under stressful or nondividing conditions is adaptive mutagenesis, also called stationary phase mutagenesis or stress-induced mutagenesis. In some model systems, there is evidence that mutagenesis occurs in genes that are actively transcribed. Some of those genes may be actively transcribed as a result of environmental stress giving the appearance of directed mutation. That is, cells under conditions of starvation or other stresses accumulate mutations in transcribed genes, including those transcribed because of the selective pressure. An important question concerns how, within the context of stochastic processes, a cell biases mutation to genes under selection pressure? Because the mechanisms underlying DNA transactions in prokaryotic cells are well conserved among the three domains of life, these studies are likely to apply to the examination of genetic programs in eukaryotes. In eukaryotes, increasing genetic diversity in differentiated cells has been implicated in neoplasia and cell aging. Historically, Escherichia coli has been the paradigm used to discern the cellular processes driving the generation of adaptive mutations; however, examining adaptive mutation in Bacillus subtilis has contributed new insights. One noteworthy contribution is that the B. subtilis' ability to accumulate chromosomal mutations under conditions of starvation is influenced by cell differentiation and transcriptional derepression, as well as by proteins homologous to transcription and repair factors. Here we revise and discuss concepts pertaining to genetic programs that increase diversity in B. subtilis cells under nutritional stress.
Collapse
|
14
|
Abstract
Modern techniques are revealing that repetition of segments of the genome, called amplification or gene amplification, is very common. Amplification is found in all domains of life, and occurs under conditions where enhanced expression of the amplified genes is advantageous. Amplification extends the range of gene expression beyond that which is achieved by control systems. It also is reversible because it is unstable, breaking down by homologous recombination. Amplification is believed to be the driving force in the clustering of related functions, in that it allows them to be amplified together. Amplification provides the extra copies of genes that allow evolution of functions to occur while retaining the original function. Amplification can be induced in response to cellular stressors. In many cases, it has been shown that the genomic regions that are amplified include those genes that are appropriate to upregulate for a specific stressor. There is some evidence that amplification occurs as part of a broad, general stress response, suggesting that organisms have the capacity to induce structural changes in the genome. This then allows adaptation to the stressful conditions. The mechanisms by which amplification arises are now being studied at the molecular level, but much is still unknown about the mechanisms in all organisms. Recent advances in our understanding of amplification in bacteria suggests new interpretations of events leading to human copy number variation, as well as evolution in general.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
15
|
Galhardo RS, Hastings PJ, Rosenberg SM. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 2007; 42:399-435. [PMID: 17917874 PMCID: PMC3319127 DOI: 10.1080/10409230701648502] [Citation(s) in RCA: 411] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Our concept of a stable genome is evolving to one in which genomes are plastic and responsive to environmental changes. Growing evidence shows that a variety of environmental stresses induce genomic instability in bacteria, yeast, and human cancer cells, generating occasional fitter mutants and potentially accelerating adaptive evolution. The emerging molecular mechanisms of stress-induced mutagenesis vary but share telling common components that underscore two common themes. The first is the regulation of mutagenesis in time by cellular stress responses, which promote random mutations specifically when cells are poorly adapted to their environments, i.e., when they are stressed. A second theme is the possible restriction of random mutagenesis in genomic space, achieved via coupling of mutation-generating machinery to local events such as DNA-break repair or transcription. Such localization may minimize accumulation of deleterious mutations in the genomes of rare fitter mutants, and promote local concerted evolution. Although mutagenesis induced by stresses other than direct damage to DNA was previously controversial, evidence for the existence of various stress-induced mutagenesis programs is now overwhelming and widespread. Such mechanisms probably fuel evolution of microbial pathogenesis and antibiotic-resistance, and tumor progression and chemotherapy resistance, all of which occur under stress, driven by mutations. The emerging commonalities in stress-induced-mutation mechanisms provide hope for new therapeutic interventions for all of these processes.
Collapse
Affiliation(s)
- Rodrigo S Galhardo
- Department of Molecular and Human Genetics, Baylor College, Houston, Texas 77030-3411, USA
| | | | | |
Collapse
|
16
|
Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI. Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 2006; 60:477-501. [PMID: 16761951 DOI: 10.1146/annurev.micro.60.080805.142045] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Growth under selection causes new genotypes to predominate in a population. It is difficult to determine whether selection stimulates formation of new mutations or merely allows faster growth of mutants that arise independent of selection. In the practice of microbial genetics, selection is used to detect and enumerate pre-existing mutants; stringent conditions prevent growth of the parent and allow only the pre-existing mutants to grow. Used in this way, selection detects rare mutations that cause large, easily observable phenotypic changes. In natural populations, selection is imposed on growing cells and can detect the more common mutations that cause small growth improvements. As slightly improved clones expand, they can acquire additional mutational improvements. Selected sequential clonal expansions have huge power to produce new genotypes and have been suggested to underlie tumor progression. We suggest that the adaptive mutation controversy has persisted because the distinction between these two uses of selection has not been appreciated.
Collapse
Affiliation(s)
- John R Roth
- Microbiology Section, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
17
|
He AS, Rohatgi PR, Hersh MN, Rosenberg SM. Roles of E. coli double-strand-break-repair proteins in stress-induced mutation. DNA Repair (Amst) 2005; 5:258-73. [PMID: 16310415 PMCID: PMC3685484 DOI: 10.1016/j.dnarep.2005.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 08/15/2005] [Accepted: 10/08/2005] [Indexed: 11/21/2022]
Abstract
Special mechanisms of mutation are induced during growth-limiting stress and can generate adaptive mutations that permit growth. These mechanisms may provide improved models for mutagenesis in antibiotic resistance, evolution of pathogens, cancer progression and chemotherapy resistance. Stress-induced reversion of an Escherichia coli episomal lac frameshift allele specifically requires DNA double-strand-break-repair (DSBR) proteins, the SOS DNA-damage response and its error-prone DNA polymerase, DinB. We distinguished two possible roles for the DSBR proteins. Each might act solely upstream of SOS, to create single-strand DNA that induces SOS. This could upregulate DinB and enhance mutation globally. Or any or all of them might function other than or in addition to SOS promotion, for example, directly in error-prone DSBR. We report that in cells with SOS genes derepressed constitutively, RecA, RuvA, RuvB, RuvC, RecF, and TraI remain required for stress-induced mutation, demonstrating that these proteins act other than via SOS induction. RecA and TraI also act by promoting SOS. These and additional results with hyper-mutating recD and recG mutants support roles for these proteins via error-prone DSBR. Such mechanisms could localize stress-induced mutagenesis to small genomic regions, a potentially important strategy for adaptive evolution, both for reducing additional deleterious mutations in rare adaptive mutants and for concerted evolution of genes.
Collapse
Affiliation(s)
- Albert S. He
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pooja R. Rohatgi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan N. Hersh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M. Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author: Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm. S809A Mail Stop BCM225, Houston, TX 77030-3411. Tel.: +1-713-798-6924; fax: +1-713-798-8967.
| |
Collapse
|
18
|
Ponder RG, Fonville NC, Rosenberg SM. A Switch from High-Fidelity to Error-Prone DNA Double-Strand Break Repair Underlies Stress-Induced Mutation. Mol Cell 2005; 19:791-804. [PMID: 16168374 DOI: 10.1016/j.molcel.2005.07.025] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 04/22/2005] [Accepted: 07/26/2005] [Indexed: 10/25/2022]
Abstract
Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.
Collapse
Affiliation(s)
- Rebecca G Ponder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
19
|
Foster PL. Stress responses and genetic variation in bacteria. Mutat Res 2005; 569:3-11. [PMID: 15603749 PMCID: PMC2729700 DOI: 10.1016/j.mrfmmm.2004.07.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/30/2004] [Accepted: 07/20/2004] [Indexed: 11/28/2022]
Abstract
Under stressful conditions mechanisms that increase genetic variation can bestow a selective advantage. Bacteria have several stress responses that provide ways in which mutation rates can be increased. These include the SOS response, the general stress response, the heat-shock response, and the stringent response, all of which impact the regulation of error-prone polymerases. Adaptive mutation appears to be process by which cells can respond to selective pressure specifically by producing mutations. In Escherichia coli strain FC40 adaptive mutation involves the following inducible components: (i) a recombination pathway that generates mutations; (ii) a DNA polymerase that synthesizes error-containing DNA; and (iii) stress responses that regulate cellular processes. In addition, a subpopulation of cells enters into a state of hypermutation, giving rise to about 10% of the single mutants and virtually all of the mutants with multiple mutations. These bacterial responses have implications for the development of cancer and other genetic disorders in higher organisms.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
20
|
Hastings PJ, Slack A, Petrosino JF, Rosenberg SM. Adaptive amplification and point mutation are independent mechanisms: evidence for various stress-inducible mutation mechanisms. PLoS Biol 2004; 2:e399. [PMID: 15550983 PMCID: PMC529313 DOI: 10.1371/journal.pbio.0020399] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 09/20/2004] [Indexed: 11/22/2022] Open
Abstract
“Adaptive mutation” denotes a collection of processes in which cells respond to growth-limiting environments by producing compensatory mutants that grow well, apparently violating fundamental principles of evolution. In a well-studied model, starvation of stationary-phase lac− Escherichia coli cells on lactose medium induces Lac+ revertants at higher frequencies than predicted by usual mutation models. These revertants carry either a compensatory frameshift mutation or a greater than 20-fold amplification of the leaky lac allele. A crucial distinction between alternative hypotheses for the mechanisms of adaptive mutation hinges on whether these amplification and frameshift mutation events are distinct, or whether amplification is a molecular intermediate, producing an intermediate cell type, in colonies on a pathway to frameshift mutation. The latter model allows the evolutionarily conservative idea of increased mutations (per cell) without increased mutation rate (by virtue of extra gene copies per cell), whereas the former requires an increase in mutation rate, potentially accelerating evolution. To resolve these models, we probed early events leading to rare adaptive mutations and report several results that show that amplification is not the precursor to frameshift mutation but rather is an independent adaptive outcome. (i) Using new high-resolution selection methods and stringent analysis of all cells in very young (micro)colonies (500–10,000 cells), we find that most mutant colonies contain no detectable lac-amplified cells, in contrast with previous reports. (ii) Analysis of nascent colonies, as young as the two-cell stage, revealed mutant Lac+ cells with no lac-amplified cells present. (iii) Stringent colony-fate experiments show that microcolonies of lac-amplified cells grow to form visible colonies of lac-amplified, not mutant, cells. (iv) Mutant cells do not overgrow lac-amplified cells in microcolonies fast enough to mask the lac-amplified cells. (v) lac-amplified cells are not SOS-induced, as was proposed to explain elevated mutation in a sequential model. (vi) Amplification, and not frameshift mutation, requires DNA polymerase I, demonstrating that mutation is separable from amplification, and also illuminating the amplification mechanism. We conclude that amplification and mutation are independent outcomes of adaptive genetic change. We suggest that the availability of alternative pathways for genetic/evolutionary adaptation and clonal expansion under stress may be exploited during processes ranging from the evolution of drug resistance to cancer progression. Cells can respond to stress by apparently increasing their mutation rate. This study provides evidence that there is more than one pathway by which cells achieve such a response
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | |
Collapse
|
21
|
Lombardo MJ, Aponyi I, Rosenberg SM. General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics 2004; 166:669-80. [PMID: 15020458 PMCID: PMC1470735 DOI: 10.1534/genetics.166.2.669] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial cells under growth-limiting stress can generate mutations by mechanisms distinct from those in rapidly growing cells. These mechanisms might be specific stress responses that increase mutation rates, potentially altering rates of evolution, or might reflect non-stress-specific processes in rare growing cells. In an Escherichia coli model system, both frameshift reversion mutations and gene amplifications occur as apparent starvation-induced mutations. Whereas frameshift reversion ("point mutation") requires recombination proteins, the SOS response, and error-prone DNA polymerase IV (DinB), amplification requires neither SOS nor pol IV. We report that both point mutation and amplification require the stationary-phase and general stress response transcription factor RpoS (sigmaS). Growth-dependent mutation does not. Alternative interpretations are excluded. The results imply, first, that point mutation and amplification are stress responses that occur in differentiated stationary-phase (not rare growing) cells and, second, that transient genetic instability, producing both point mutation and genome rearrangement, may be a previously unrecognized component of the RpoS-dependent general stress response.
Collapse
Affiliation(s)
- Mary-Jane Lombardo
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | | | |
Collapse
|
22
|
Bharatan SM, Reddy M, Gowrishankar J. Distinct signatures for mutator sensitivity of lacZ reversions and for the spectrum of lacI/lacO forward mutations on the chromosome of nondividing Escherichia coli. Genetics 2004; 166:681-92. [PMID: 15020459 PMCID: PMC1470738 DOI: 10.1534/genetics.166.2.681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A conditional lethal galE(Ts)-based strategy was employed in Escherichia coli, first to eliminate all growth-associated chromosomal reversions in lacZ or forward mutations in lacI/lacO by incubation at the restrictive temperature and subsequently to recover (as papillae) spontaneous mutations that had arisen in the population of nondividing cells after shift to the permissive temperature. Data from lacZ reversion studies in mutator strains indicated that the products of all genes for mismatch repair (mutHLS, dam, uvrD), of some for oxidative damage repair (mutMT), and of that for polymerase proofreading (dnaQ) are required in dividing cells; some others for oxidative damage repair (mutY, nth nei) are required in both dividing and nondividing cells; and those for alkylation damage repair (ada ogt) are required in nondividing cells. The spectrum of lacI/lacO mutations in nondividing cells was distinguished both by lower frequencies of deletions and IS1 insertions and by the unique occurrence of GC-to-AT transitions at lacO +5. In the second approach to study mutations that had occurred in nondividing cells, lacI/lacO mutants were selected as late-arising papillae from the lawn of a galE+ strain; once again, transitions at lacO +5 were detected among the mutants that had been obtained from populations initially grown on poor carbon sources such as acetate, palmitate, or succinate. Our results indicate that the lacO +5 site is mutable only in nondividing cells, one possible mechanism for which might be that random endogenous alkylation (or oxidative) damage to DNA in these cells is efficiently corrected by the Ada Ogt (or Nth Nei) repair enzymes at most sites but not at lacO +5. Furthermore, the late-arising papillae from the second approach were composed almost exclusively of dominant lacI/lacO mutants. This finding lends support to "instantaneous gratification" models in which a spontaneous lesion, occurring at a random site in DNA of a nondividing cell, is most likely to be fixed as a mutation if it allows the cell to immediately exit the nondividing state.
Collapse
|
23
|
Rosenberg SM, Hastings PJ. Adaptive point mutation and adaptive amplification pathways in the Escherichia coli Lac system: stress responses producing genetic change. J Bacteriol 2004; 186:4838-43. [PMID: 15262914 PMCID: PMC451650 DOI: 10.1128/jb.186.15.4838-4843.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, BCM-S809A Mail Stop BCM225, Houston, TX 77030-3411, USA.
| | | |
Collapse
|
24
|
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN 47405, USA.
| |
Collapse
|
25
|
Roth JR, Andersson DI. Amplification–mutagenesis—how growth under selection contributes to the origin of genetic diversity and explains the phenomenon of adaptive mutation. Res Microbiol 2004; 155:342-51. [PMID: 15207866 DOI: 10.1016/j.resmic.2004.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 01/20/2004] [Indexed: 11/30/2022]
Abstract
The behavior of a particular bacterial genetic system has been interpreted as evidence that selective stress induces general mutagenesis or even preferentially directs mutations to sites that improve growth (adaptive mutation). It has been proposed that changes in mutability are a programmed response to stress in non-growing cells. In contrast, the amplification-mutagenesis model suggests that stress has no direct effect on the mutation rate and that mutations arise in cells growing under strong selection. In this model, stress serves only as a selective pressure that favors cells with multiple copies of a growth-limiting gene. Mutations are made more probable because more target copies are added to the selection plate-more cells with more mutational targets per cell. The amplification-mutagenesis process involves standard genetic events and therefore should apply to all biological systems. Idiosyncrasies of the particular system described here accelerate this process, allowing an evolutionary series of events to be completed in only a few days.
Collapse
Affiliation(s)
- John R Roth
- Section of Microbiology, University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
26
|
Hersh MN, Ponder RG, Hastings PJ, Rosenberg SM. Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress. Res Microbiol 2004; 155:352-9. [PMID: 15207867 DOI: 10.1016/j.resmic.2004.01.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
The neo-Darwinists suggested that evolution is constant and gradual, and thus that genetic changes that drive evolution should be too. However, more recent understanding of phenomena called adaptive mutation in microbes indicates that mutation rates can be elevated in response to stress, producing beneficial and other mutations. We review evidence that, in Escherichia coli, two separate mechanisms of stress-induced genetic change occur that revert a lac frameshift allele allowing growth on lactose medium. First, compensatory frameshift ("point") mutations occur by a mechanism that includes DNA double-strand breaks and (we have suggested) their error-prone repair. Point mutation requires induction of the RpoS-dependent general stress response, and the SOS DNA damage response leading to upregulation of the error-prone DNA polymerase DinB (Pol IV), and occurs during a transient limitation of post-replicative mismatch repair activity. A second mechanism, adaptive amplification, entails amplification of the leaky lac allele to 20-50 tandem repeats. These provide sufficient beta-galactosidase activity for growth, thereby apparently deflecting cells from the point mutation pathway. Unlike point mutation, amplification neither occurs in hypermutating cells nor requires SOS or DinB, but like point mutation, amplification requires the RpoS-dependent stress response. Similar processes are being found in other bacterial systems and yeast. Stress-induced genetic changes may underlie much of microbial evolution, pathogenesis and antibiotic resistance, and also cancer formation, progression and drug resistance.
Collapse
Affiliation(s)
- Megan N Hersh
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm S809, Mail Stop 225, Houston, TX 77030-3411, USA
| | | | | | | |
Collapse
|
27
|
Loewe L. Response to Comment on "High Deleterious Genomic Mutation Rate in Stationary Phase of
Escherichia coli
". Science 2004. [DOI: 10.1126/science.1096397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Laurence Loewe
- Institute of Cell Animal and Population Biology, University of Edinburgh, Kings Buildings, West Mains Road Edinburgh EH9 3JT, Scotland
| |
Collapse
|
28
|
Kivisaar M. Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 2004; 5:814-27. [PMID: 14510835 DOI: 10.1046/j.1462-2920.2003.00488.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microorganisms are exposed to constantly changing environmental conditions. In a growth-restricting environment (e.g. during starvation), mutants arise that are able to take over the population by a process known as stationary phase mutation. Genetic adaptation of a microbial population under environmental stress involves mechanisms that lead to an elevated mutation rate. Under stressful conditions, DNA synthesis may become more erroneous because of the induction of error-prone DNA polymerases, resulting in a situation in which DNA repair systems are unable to cope with increasing amounts of DNA lesions. Transposition may also increase genetic variation. One may ask whether the rate of mutation under stressful conditions is elevated as a result of malfunctioning of systems responsible for accuracy or are there specific mechanisms that regulate the rate of mutations under stress. Evidence for the presence of mutagenic pathways that have probably been evolved to control the mutation rate in a cell will be discussed.
Collapse
Affiliation(s)
- Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia.
| |
Collapse
|
29
|
Lombardo MJ, Aponyi I, Rosenberg SM. General Stress Response Regulator RpoS in Adaptive Mutation and Amplification in Escherichia coli. Genetics 2004. [DOI: 10.1093/genetics/166.2.669] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Microbial cells under growth-limiting stress can generate mutations by mechanisms distinct from those in rapidly growing cells. These mechanisms might be specific stress responses that increase mutation rates, potentially altering rates of evolution, or might reflect non-stress-specific processes in rare growing cells. In an Escherichia coli model system, both frameshift reversion mutations and gene amplifications occur as apparent starvation-induced mutations. Whereas frameshift reversion (“point mutation”) requires recombination proteins, the SOS response, and error-prone DNA polymerase IV (DinB), amplification requires neither SOS nor pol IV. We report that both point mutation and amplification require the stationary-phase and general stress response transcription factor RpoS (σS). Growth-dependent mutation does not. Alternative interpretations are excluded. The results imply, first, that point mutation and amplification are stress responses that occur in differentiated stationary-phase (not rare growing) cells and, second, that transient genetic instability, producing both point mutation and genome rearrangement, may be a previously unrecognized component of the RpoS-dependent general stress response.
Collapse
Affiliation(s)
- Mary-Jane Lombardo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411
| | - Ildiko Aponyi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030-3411
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030-3411
| |
Collapse
|
30
|
Bharatan SM, Reddy M, Gowrishankar J. Distinct Signatures for Mutator Sensitivity of lacZ Reversions and for the Spectrum of lacI/lacO Forward Mutations on the Chromosome of Nondividing Escherichia coli. Genetics 2004. [DOI: 10.1093/genetics/166.2.681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
A conditional lethal galE(Ts)-based strategy was employed in Escherichia coli, first to eliminate all growth-associated chromosomal reversions in lacZ or forward mutations in lacI/lacO by incubation at the restrictive temperature and subsequently to recover (as papillae) spontaneous mutations that had arisen in the population of nondividing cells after shift to the permissive temperature. Data from lacZ reversion studies in mutator strains indicated that the products of all genes for mismatch repair (mutHLS, dam, uvrD), of some for oxidative damage repair (mutMT), and of that for polymerase proofreading (dnaQ) are required in dividing cells; some others for oxidative damage repair (mutY, nth nei) are required in both dividing and nondividing cells; and those for alkylation damage repair (ada ogt) are required in nondividing cells. The spectrum of lacI/lacO mutations in nondividing cells was distinguished both by lower frequencies of deletions and IS1 insertions and by the unique occurrence of GC-to-AT transitions at lacO +5. In the second approach to study mutations that had occurred in nondividing cells, lacI/lacO mutants were selected as late-arising papillae from the lawn of a galE+ strain; once again, transitions at lacO +5 were detected among the mutants that had been obtained from populations initially grown on poor carbon sources such as acetate, palmitate, or succinate. Our results indicate that the lacO +5 site is mutable only in nondividing cells, one possible mechanism for which might be that random endogenous alkylation (or oxidative) damage to DNA in these cells is efficiently corrected by the Ada Ogt (or Nth Nei) repair enzymes at most sites but not at lacO +5. Furthermore, the late-arising papillae from the second approach were composed almost exclusively of dominant lacI/lacO mutants. This finding lends support to “instantaneous gratification” models in which a spontaneous lesion, occurring at a random site in DNA of a nondividing cell, is most likely to be fixed as a mutation if it allows the cell to immediately exit the nondividing state.
Collapse
Affiliation(s)
- Shanti M Bharatan
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 076, India
| | - Manjula Reddy
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - J Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 076, India
| |
Collapse
|
31
|
Slechta ES, Bunny KL, Kugelberg E, Kofoid E, Andersson DI, Roth JR. Adaptive mutation: general mutagenesis is not a programmed response to stress but results from rare coamplification of dinB with lac. Proc Natl Acad Sci U S A 2003; 100:12847-52. [PMID: 14559967 PMCID: PMC240707 DOI: 10.1073/pnas.1735464100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a particular genetic system, selection stimulates reversion of a lac mutation and causes genome-wide mutagenesis (adaptive mutation). Selection allows rare plated cells with a duplication of the leaky lac allele to initiate clones within which further lac amplification improves growth rate. Growth and amplification add mutational targets to each clone and thereby increase the likelihood of reversion. We suggest that general mutagenesis occurs only in clones whose lac amplification includes the nearby dinB+ gene (for error-prone DNA polymerase IV). Thus mutagenesis is not a programmed response to stress but a side effect of amplification in a few clones; it is not central to the effect of selection on reversion.
Collapse
Affiliation(s)
- E. Susan Slechta
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
| | - Kim L. Bunny
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
| | - Elisabeth Kugelberg
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
| | - Eric Kofoid
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
| | - Dan I. Andersson
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
| | - John R. Roth
- Microbiology Section, Division of Biological Sciences, University of California, Davis, CA 95616; Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden; and Karolinska Institute of Microbiology, Tumour Biology Center, S-171 77 Solna, Sweden
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Tompkins JD, Nelson JL, Hazel JC, Leugers SL, Stumpf JD, Foster PL. Error-prone polymerase, DNA polymerase IV, is responsible for transient hypermutation during adaptive mutation in Escherichia coli. J Bacteriol 2003; 185:3469-72. [PMID: 12754247 PMCID: PMC155394 DOI: 10.1128/jb.185.11.3469-3472.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The frequencies of nonselected mutations among adaptive Lac(+) revertants of Escherichia coli strains with and without the error-prone DNA polymerase IV (Pol IV) were compared. This frequency was more than sevenfold lower in the Pol IV-defective strain than in the wild-type strain. Thus, the mutations that occur during hypermutation are due to Pol IV.
Collapse
Affiliation(s)
- Joshua D Tompkins
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | |
Collapse
|
33
|
Slechta ES, Liu J, Andersson DI, Roth JR. Evidence that selected amplification of a bacterial lac frameshift allele stimulates Lac(+) reversion (adaptive mutation) with or without general hypermutability. Genetics 2002; 161:945-56. [PMID: 12136002 PMCID: PMC1462195 DOI: 10.1093/genetics/161.3.945] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the genetic system of Cairns and Foster, a nongrowing population of an E. coli lac frameshift mutant appears to specifically accumulate Lac(+) revertants when starved on medium including lactose (adaptive mutation). This behavior has been attributed to stress-induced general mutagenesis in a subpopulation of starved cells (the hypermutable state model). We have suggested that, on the contrary, stress has no direct effect on mutability but favors only growth of cells that amplify their leaky mutant lac region (the amplification mutagenesis model). Selection enhances reversion primarily by increasing the mutant lac copy number within each developing clone on the selection plate. The observed general mutagenesis is attributed to a side effect of growth with an amplification-induction of SOS by DNA fragments released from a tandem array of lac copies. Here we show that the S. enterica version of the Cairns system shows SOS-dependent general mutagenesis and behaves in every way like the original E. coli system. In both systems, lac revertants are mutagenized during selection. Eliminating the 35-fold increase in mutation rate reduces revertant number only 2- to 4-fold. This discrepancy is due to continued growth of amplification cells until some clones manage to revert without mutagenesis solely by increasing their lac copy number. Reversion in the absence of mutagenesis is still dependent on RecA function, as expected if it depends on lac amplification (a recombination-dependent process). These observations support the amplification mutagenesis model.
Collapse
Affiliation(s)
- E Susan Slechta
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
34
|
Slechta ES, Harold J, Andersson DI, Roth JR. The effect of genomic position on reversion of a lac frameshift mutation (lacIZ33) during non-lethal selection (adaptive mutation). Mol Microbiol 2002; 44:1017-32. [PMID: 12010495 DOI: 10.1046/j.1365-2958.2002.02934.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In a system described by Cairns and Foster, starvation of a particular leaky lac mutant (lacIZ33) in the presence of lactose appears to direct mutation in non-growing cells to sites that allow growth (adaptive mutation). This behaviour requires that the lac operon be located on an F' plasmid. This position effect was investigated by placing the mutant lac operon at many sites in the genome of Salmonella enterica (Typhimurium; LT2) and testing reversion behaviour. Genomic position did not affect reversion during non-selective growth. When lac was at any of 550 chromosomal sites, starvation caused little or no enhancement of reversion. In the 28 strains with the lac on Salmonella's conjugative plasmid (pSLT), selection enhanced reversion strongly, just as seen for strains with lac on an F' plasmid. In 46 strains, the lac operon was inserted within a small chromosomal duplication, and selection stimulated RecA-dependent partial reversion by simple amplification (about 8x) of the mutant lac region. The position of lac on a conjugative plasmid is important to reversion because it allows more frequent gene duplication and amplification. These events are central to growth and reversion under selection because they increase the number of replicating lac alleles within each developing revertant clone.
Collapse
Affiliation(s)
- E Susan Slechta
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
35
|
Abstract
"Adaptive" or "stationary-phase" mutation is a collection of apparent stress responses in which cells exposed to a growth-limiting environment generate genetic changes, some of which can allow resumption of rapid growth. In the well-characterized Lac system of Escherichia coli, reversions of a lac frameshift allele give rise to adaptive point mutations. Also in this system, adaptive gene amplification has been documented as a separate and parallel response that allows growth on lactose medium without acquisition of a compensatory frameshift mutation. In amplification, the DNA region containing the weakly functional lac allele becomes amplified to multiple copies, which produce sufficient enzyme activity to allow growth on the otherwise growth-limiting lactose medium. The amplifications are "adaptive" in that they occur after cells encounter the growth-limiting environment. Adaptive amplification is a reversible genetic change that allows adaptation and growth. It may be similar to chromosomal instability observed in the origins and progression of many cancers. We explore possible molecular mechanisms of adaptive amplification in the bacterial system and note parallels to chromosomal instability in other systems.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room T809 Mail Stop 225, Houston, TX 77030-3411, USA.
| | | |
Collapse
|
36
|
Hendrickson H, Slechta ES, Bergthorsson U, Andersson DI, Roth JR. Amplification-mutagenesis: evidence that "directed" adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc Natl Acad Sci U S A 2002; 99:2164-9. [PMID: 11830643 PMCID: PMC122336 DOI: 10.1073/pnas.032680899] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When a particular lac mutant of Escherichia coli starves in the presence of lactose, nongrowing cells appear to direct mutations preferentially to sites that allow growth (adaptive mutation). This observation suggested that growth limitation stimulates mutability. Evidence is provided here that this behavior is actually caused by a standard Darwinian process in which natural selection acts in three sequential steps. First, growth limitation favors growth of a subpopulation with an amplification of the mutant lac gene; next, it favors cells with a lac(+) revertant allele within the amplified array. Finally, it favors loss of mutant copies until a stable haploid lac(+) revertant arises and overgrows the colony. By increasing the lac copy number, selection enhances the likelihood of reversion within each developing clone. This sequence of events appears to direct mutations to useful sites. General mutagenesis is a side-effect of growth with an amplification (SOS induction). The F' plasmid, which carries lac, contributes by stimulating gene duplication and amplification. Selective stress has no direct effect on mutation rate or target specificity, but acts to favor a succession of cell types with progressively improved growth on lactose. The sequence of events--amplification, mutation, segregation--may help to explain both the origins of some cancers and the evolution of new genes under selection.
Collapse
|
37
|
Bull HJ, Lombardo MJ, Rosenberg SM. Stationary-phase mutation in the bacterial chromosome: recombination protein and DNA polymerase IV dependence. Proc Natl Acad Sci U S A 2001; 98:8334-41. [PMID: 11459972 PMCID: PMC37440 DOI: 10.1073/pnas.151009798] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several microbial systems have been shown to yield advantageous mutations in slowly growing or nongrowing cultures. In one assay system, the stationary-phase mutation mechanism differs from growth-dependent mutation, demonstrating that the two are different processes. This system assays reversion of a lac frameshift allele on an F' plasmid in Escherichia coli. The stationary-phase mutation mechanism at lac requires recombination proteins of the RecBCD double-strand-break repair system and the inducible error-prone DNA polymerase IV, and the mutations are mostly -1 deletions in small mononucleotide repeats. This mutation mechanism is proposed to occur by DNA polymerase errors made during replication primed by recombinational double-strand-break repair. It has been suggested that this mechanism is confined to the F plasmid. However, the cells that acquire the adaptive mutations show hypermutation of unrelated chromosomal genes, suggesting that chromosomal sites also might experience recombination protein-dependent stationary-phase mutation. Here we test directly whether the stationary-phase mutations in the bacterial chromosome also occur via a recombination protein- and pol IV-dependent mechanism. We describe an assay for chromosomal mutation in cells carrying the F' lac. We show that the chromosomal mutation is recombination protein- and pol IV-dependent and also is associated with general hypermutation. The data indicate that, at least in these male cells, recombination protein-dependent stationary-phase mutation is a mechanism of general inducible genetic change capable of affecting genes in the bacterial chromosome.
Collapse
Affiliation(s)
- H J Bull
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030-3411, USA
| | | | | |
Collapse
|
38
|
Abstract
A basic principle of genetics is that the likelihood that a particular mutation occurs is independent of its phenotypic consequences. The concept of adaptive mutation seemed to challenge this principle with the discoveries of mutations stimulated by stress, some of which allow adaptation to the stress. The emerging mechanisms of adaptive genetic change cast evolution, development and heredity into a new perspective, indicating new models for the genetic changes that fuel these processes.
Collapse
Affiliation(s)
- S M Rosenberg
- Departments of Molecular and Human Genetics, Biochemistry, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030-3411, USA.
| |
Collapse
|
39
|
McKenzie GJ, Lee PL, Lombardo MJ, Hastings PJ, Rosenberg SM. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol Cell 2001; 7:571-9. [PMID: 11463382 DOI: 10.1016/s1097-2765(01)00204-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Adaptive point mutation and amplification are induced responses to environmental stress, promoting genetic changes that can enhance survival. A specialized adaptive mutation mechanism has been documented in one Escherichia coli assay, but its enzymatic basis remained unclear. We report that the SOS-inducible, error-prone DNA polymerase (pol) IV, encoded by dinB, is required for adaptive point mutation in the E. coli lac operon. A nonpolar dinB mutation reduces adaptive mutation frequencies by 85% but does not affect adaptive amplification, growth-dependent mutation, or survival after oxidative or UV damage. We show that pol IV, together with the major replicase, pol III, can account for all adaptive point mutations at lac. The results identify a role for pol IV in inducible genetic change.
Collapse
Affiliation(s)
- G J McKenzie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411, USA
| | | | | | | | | |
Collapse
|
40
|
Hastings PJ, Bull HJ, Klump JR, Rosenberg SM. Adaptive amplification: an inducible chromosomal instability mechanism. Cell 2000; 103:723-31. [PMID: 11114329 DOI: 10.1016/s0092-8674(00)00176-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adaptive mutation is an induced response to environmental stress in which mutation rates rise, producing permanent genetic changes that can adapt cells to stress. This contrasts with neo-Darwinian views of genetic change rates blind to environmental conditions. DNA amplification is a flexible, reversible genomic change that has long been postulated to be adaptive. We report the discovery of adaptive amplification at the lac operon in Escherichia coli. Additionally, we find that adaptive amplification is separate from, and does not lead to, adaptive point mutation. This contradicts a prevailing alternative hypothesis whereby adaptive mutation is normal mutability in amplified DNA. Instead, adaptive mutation and amplification are parallel routes of inducible genetic instability allowing rapid evolution under stress, and escape from growth inhibition.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics Baylor College of Medicine One Baylor Plaza Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
41
|
Godoy VG, Fox MS. Transposon stability and a role for conjugational transfer in adaptive mutability. Proc Natl Acad Sci U S A 2000; 97:7393-8. [PMID: 10840058 PMCID: PMC16556 DOI: 10.1073/pnas.130186597] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lac(+) revertants of Escherichia coli that occur after prolonged nonlethal selection display a high frequency of transposon loss when the transposon Tn10 and the reverting lacI33 allele are linked on an F'128 episome. As many as 20% of the Lac(+) revertants are sensitive to tetracycline, about half because of transposon loss, nearly all by precise excision, and the remainder because of amplification of both the transposon and the linked lac allele. Lethality of the amplified products in the presence of tetracycline is a peculiarity of the tetA gene at high gene dosage. The selective conditions on lactose medium result in 10% transposon-free revertants, whether or not a requirement for conjugal DNA transfer is imposed. In addition, a similar fraction, about 5% of Lac(-) unreverted colonies that are products of transfer between cells experiencing nonlethal selection are also tetracycline-sensitive, and all are attributable to loss of the Tn10 transposon. These results suggest the possibility that the high frequency of transposon loss is a consequence of conjugal transfer, making this loss a marker for that transfer. We suggest that conjugal DNA transfer may be a prominent feature in the mutability process that occurs during nonlethal selection and that the subset of bacteria displaying hypermutability are those that experience such transfer.
Collapse
Affiliation(s)
- V G Godoy
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
42
|
McKenzie GJ, Harris RS, Lee PL, Rosenberg SM. The SOS response regulates adaptive mutation. Proc Natl Acad Sci U S A 2000; 97:6646-51. [PMID: 10829077 PMCID: PMC18688 DOI: 10.1073/pnas.120161797] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Upon starvation some Escherichia coli cells undergo a transient, genome-wide hypermutation (called adaptive mutation) that is recombination-dependent and appears to be a response to a stressful environment. Adaptive mutation may reflect an inducible mechanism that generates genetic variability in times of stress. Previously, however, the regulatory components and signal transduction pathways controlling adaptive mutation were unknown. Here we show that adaptive mutation is regulated by the SOS response, a complex, graded response to DNA damage that includes induction of gene products blocking cell division and promoting mutation, recombination, and DNA repair. We find that SOS-induced levels of proteins other than RecA are needed for adaptive mutation. We report a requirement of RecF for efficient adaptive mutation and provide evidence that the role of RecF in mutation is to allow SOS induction. We also report the discovery of an SOS-controlled inhibitor of adaptive mutation, PsiB. These results indicate that adaptive mutation is a tightly regulated response, controlled both positively and negatively by the SOS system.
Collapse
Affiliation(s)
- G J McKenzie
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
43
|
Bull HJ, McKenzie GJ, Hastings PJ, Rosenberg SM. Evidence that stationary-phase hypermutation in the Escherichia coli chromosome is promoted by recombination. Genetics 2000; 154:1427-37. [PMID: 10747042 PMCID: PMC1461015 DOI: 10.1093/genetics/154.4.1427] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adaptive (or stationary-phase) mutation is a group of phenomena in which mutations appear to occur more often when selected than when not. They may represent cellular responses to the environment in which the genome is altered to allow survival. The best-characterized assay system and mechanism is reversion of a lac allele on an F' sex plasmid in Escherichia coli, in which the stationary-phase mutability requires homologous recombination functions. A key issue has concerned whether the recombination-dependent mutation mechanism is F' specific or is general. Hypermutation of chromosomal genes occurs in association with adaptive Lac(+) mutation. Here we present evidence that the chromosomal hypermutation is promoted by recombination. Hyperrecombinagenic recD cells show elevated chromosomal hypermutation. Further, recG mutation, which promotes accumulation of recombination intermediates proposed to prime replication and mutation, also stimulates chromosomal hypermutation. The coincident mutations at lac (on the F') and chromosomal genes behave as independent events, whereas coincident mutations at lac and other F-linked sites do not. This implies that transient covalent linkage of F' and chromosomal DNA (Hfr formation) does not underlie chromosomal mutation. The data suggest that recombinational stationary-phase mutation occurs in the bacterial chromosome and thus can be a general strategy for programmed genetic change.
Collapse
Affiliation(s)
- H J Bull
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| | | | | | | |
Collapse
|
44
|
Foster PL. Adaptive mutation in Escherichia coli. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2000; 65:21-9. [PMID: 12760017 PMCID: PMC2929248 DOI: 10.1101/sqb.2000.65.21] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- P L Foster
- Department of Biology, Jordan Hall 142, Indiana University, Bloomington, Indiana 47405-6801, USA
| |
Collapse
|