1
|
Maxwell PH, Mahmood M, Villanueva M, Devine K, Avery N. Lifespan Extension by Retrotransposons under Conditions of Mild Stress Requires Genes Involved in tRNA Modifications and Nucleotide Metabolism. Int J Mol Sci 2024; 25:10593. [PMID: 39408922 PMCID: PMC11477299 DOI: 10.3390/ijms251910593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Retrotransposons are mobile DNA elements that are more active with increasing age and exacerbate aging phenotypes in multiple species. We previously reported an unexpected extension of chronological lifespan in the yeast, Saccharomyces paradoxus, due to the presence of Ty1 retrotransposons when cells were aged under conditions of mild stress. In this study, we tested a subset of genes identified by RNA-seq to be differentially expressed in S. paradoxus strains with a high-copy number of Ty1 retrotransposons compared with a strain with no retrotransposons and additional candidate genes for their contribution to lifespan extension when cells were exposed to a moderate dose of hydroxyurea (HU). Deletion of ADE8, NCS2, or TRM9 prevented lifespan extension, while deletion of CDD1, HAC1, or IRE1 partially prevented lifespan extension. Genes overexpressed in high-copy Ty1 strains did not typically have Ty1 insertions in their promoter regions. We found that silencing genomic copies of Ty1 prevented lifespan extension, while expression of Ty1 from a high-copy plasmid extended lifespan in medium with HU or synthetic medium. These results indicate that cells adapt to expression of retrotransposons by changing gene expression in a manner that can better prepare them to remain healthy under mild stress.
Collapse
|
2
|
Zylstra A, Hadj-Moussa H, Horkai D, Whale AJ, Piguet B, Houseley J. Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation. PLoS Biol 2023; 21:e3002250. [PMID: 37643194 PMCID: PMC10464983 DOI: 10.1371/journal.pbio.3002250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.
Collapse
Affiliation(s)
- Andre Zylstra
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Baptiste Piguet
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
3
|
Li F, Lee M, Esnault C, Wendover K, Guo Y, Atkins P, Zaratiegui M, Levin HL. Identification of an integrase-independent pathway of retrotransposition. SCIENCE ADVANCES 2022; 8:eabm9390. [PMID: 35767609 DOI: 10.1126/sciadv.abm9390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Retroviruses and long terminal repeat retrotransposons rely on integrase (IN) to insert their complementary DNA (cDNA) into the genome of host cells. Nevertheless, in the absence of IN, retroelements can retain notable levels of insertion activity. We have characterized the IN-independent pathway of Tf1 and found that insertion sites had homology to the primers of reverse transcription, which form single-stranded DNAs at the termini of the cDNA. In the absence of IN activity, a similar bias was observed with HIV-1. Our studies showed that the Tf1 insertions result from single-strand annealing, a noncanonical form of homologous recombination mediated by Rad52. By expanding our analysis of insertions to include repeat sequences, we found most formed tandem elements by inserting at preexisting copies of a related transposable element. Unexpectedly, we found that wild-type Tf1 uses the IN-independent pathway as an alternative mode of insertion.
Collapse
Affiliation(s)
- Feng Li
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Lee
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katie Wendover
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yabin Guo
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Atkins
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mikel Zaratiegui
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson Biological Laboratories A133, 604 Allison Rd., Piscataway, NJ 08854, USA
| | - Henry L Levin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Salinero AC, Emerson S, Cormier TC, Yin J, Morse RH, Curcio MJ. Reliance of Host-Encoded Regulators of Retromobility on Ty1 Promoter Activity or Architecture. Front Mol Biosci 2022; 9:896215. [PMID: 35847981 PMCID: PMC9283973 DOI: 10.3389/fmolb.2022.896215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
The Ty1 retrotransposon family is maintained in a functional but dormant state by its host, Saccharomyces cerevisiae. Several hundred RHF and RTT genes encoding co-factors and restrictors of Ty1 retromobility, respectively, have been identified. Well-characterized examples include MED3 and MED15, encoding subunits of the Mediator transcriptional co-activator complex; control of retromobility by Med3 and Med15 requires the Ty1 promoter in the U3 region of the long terminal repeat. To characterize the U3-dependence of other Ty1 regulators, we screened a library of 188 known rhf and rtt mutants for altered retromobility of Ty1his3AI expressed from the strong, TATA-less TEF1 promoter or the weak, TATA-containing U3 promoter. Two classes of genes, each including both RHFs and RTTs, were identified. The first class comprising 82 genes that regulated Ty1his3AI retromobility independently of U3 is enriched for RHF genes that restrict the G1 phase of the cell cycle and those involved in transcriptional elongation and mRNA catabolism. The second class of 51 genes regulated retromobility of Ty1his3AI driven only from the U3 promoter. Nineteen U3-dependent regulators (U3DRs) also controlled retromobility of Ty1his3AI driven by the weak, TATA-less PSP2 promoter, suggesting reliance on the low activity of U3. Thirty-one U3DRs failed to modulate PPSP2-Ty1his3AI retromobility, suggesting dependence on the architecture of U3. To further investigate the U3-dependency of Ty1 regulators, we developed a novel fluorescence-based assay to monitor expression of p22-Gag, a restriction factor expressed from the internal Ty1i promoter. Many U3DRs had minimal effects on levels of Ty1 RNA, Ty1i RNA or p22-Gag. These findings uncover a role for the Ty1 promoter in integrating signals from diverse host factors to modulate Ty1 RNA biogenesis or fate.
Collapse
Affiliation(s)
- Alicia C. Salinero
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| | - Simey Emerson
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Tayla C. Cormier
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - John Yin
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Randall H. Morse
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| | - M. Joan Curcio
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
- *Correspondence: M. Joan Curcio,
| |
Collapse
|
5
|
Ramos F, Durán L, Sánchez M, Campos A, Hernández-Villamor D, Antequera F, Clemente-Blanco A. Genome-wide sequencing analysis of Sgs1, Exo1, Rad51, and Srs2 in DNA repair by homologous recombination. Cell Rep 2022; 38:110201. [PMID: 35021102 DOI: 10.1016/j.celrep.2021.110201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Homologous recombination is essential to maintain genome stability in response to DNA damage. Here, we have used genome-wide sequencing to quantitatively analyze at nucleotide resolution the dynamics of DNA end resection, re-synthesis, and gene conversion at a double-strand break. Resection initiates asymmetrically in an MRX-independent manner before proceeding steadily in both directions. Sgs1, Exo1, Rad51, and Srs2 differently regulate the rate and symmetry of early and late resection. Exo1 also ensures the coexistence of resection and re-synthesis, while Srs2 guarantees a constant and symmetrical DNA re-polymerization. Gene conversion is MMR independent, spans only a minor fraction of the resected region, and its unidirectionality depends on Srs2. Finally, these repair factors prevent the development of alterations remote from the DNA lesion, such as subtelomeric instability, duplication of genomic regions, and over-replication of Ty elements. Altogether, this approach allows a quantitative analysis and a direct genome-wide visualization of DNA repair by homologous recombination.
Collapse
Affiliation(s)
- Facundo Ramos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Laura Durán
- Functional Organization of the Eukaryotic Genome Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Mar Sánchez
- Functional Organization of the Eukaryotic Genome Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Adrián Campos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - David Hernández-Villamor
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Francisco Antequera
- Functional Organization of the Eukaryotic Genome Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain.
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain.
| |
Collapse
|
6
|
RNA-cDNA hybrids mediate transposition via different mechanisms. Sci Rep 2020; 10:16034. [PMID: 32994470 PMCID: PMC7524711 DOI: 10.1038/s41598-020-73018-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022] Open
Abstract
Retrotransposons can represent half of eukaryotic genomes. Retrotransposon dysregulation destabilizes genomes and has been linked to various human diseases. Emerging regulators of retromobility include RNA–DNA hybrid-containing structures known as R-loops. Accumulation of these structures at the transposons of yeast 1 (Ty1) elements has been shown to increase Ty1 retromobility through an unknown mechanism. Here, via a targeted genetic screen, we identified the rnh1Δ rad27Δ yeast mutant, which lacked both the Ty1 inhibitor Rad27 and the RNA–DNA hybrid suppressor Rnh1. The mutant exhibited elevated levels of Ty1 cDNA-associated RNA–DNA hybrids that promoted Ty1 mobility. Moreover, in this rnh1Δ rad27Δ mutant, but not in the double RNase H mutant rnh1Δ rnh201Δ, RNA–DNA hybrids preferentially existed as duplex nucleic acid structures and increased Ty1 mobility in a Rad52-dependent manner. The data indicate that in cells lacking RNA–DNA hybrid and Ty1 repressors, elevated levels of RNA-cDNA hybrids, which are associated with duplex nucleic acid structures, boost Ty1 mobility via a Rad52-dependent mechanism. In contrast, in cells lacking RNA–DNA hybrid repressors alone, elevated levels of RNA-cDNA hybrids, which are associated with triplex nucleic acid structures, boost Ty1 mobility via a Rad52-independent process. We propose that duplex and triplex RNA–DNA hybrids promote transposon mobility via Rad52-dependent or -independent mechanisms.
Collapse
|
7
|
Rai SK, Sangesland M, Lee M, Esnault C, Cui Y, Chatterjee AG, Levin HL. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes. PLoS Genet 2017; 13:e1006775. [PMID: 29232693 PMCID: PMC5741268 DOI: 10.1371/journal.pgen.1006775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/22/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements. Retroviruses and retrotransposons are genetic elements that propagate by integrating into chromosomes of eukaryotic cells. Genetic disorders are being treated with retrovirus-based vectors that integrate corrective genes into the chromosomes of patients. Unfortunately, the vectors can alter expression of adjacent genes and depending on the position of integration, cancer genes can be induced. It is therefore essential that we understand how integration sites are selected. Interestingly, different retroviruses and retrotransposons have different profiles of integration sites. While specific proteins have been identified that select target sites, it’s not known what other cellular factors promote integration. In this paper, we report a comprehensive screen of host factors that promote LTR-retrotransposon integration in the widely-studied yeast, Schizosaccharomyces pombe. Unexpectedly, we found a wide range of pathways and host factors participate in integration. And importantly, we found the cellular processes that promote integration relative to recombination in S. pombe are the same that drive integration of LTR-retrotransposons in the distantly related yeast Saccharomyces cerevisiae. This suggests a specific set of cellular pathways are responsible for integration in a wide range of eukaryotic hosts.
Collapse
Affiliation(s)
- Sudhir Kumar Rai
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Maya Sangesland
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michael Lee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Caroline Esnault
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yujin Cui
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Atreyi Ghatak Chatterjee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Henry L. Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Paralog-Specific Functions of RPL7A and RPL7B Mediated by Ribosomal Protein or snoRNA Dosage in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:591-606. [PMID: 28007835 PMCID: PMC5295604 DOI: 10.1534/g3.116.035931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most ribosomal proteins in Saccharomyces cerevisiae are encoded by two paralogs that additively produce the optimal protein level for cell growth. Nonetheless, deleting one paralog of most ribosomal protein gene pairs results in a variety of phenotypes not observed when the other paralog is deleted. To determine whether paralog-specific phenotypes associated with deleting RPL7A or RPL7B stem from distinct functions or different levels of the encoded isoforms, the coding region and introns of one paralog, including an intron-embedded snoRNA (small nucleolar RNA) gene, were exchanged with that of the other paralog. Among mutants harboring a single native or chimeric RPL7 allele, expression from the RPL7A locus exceeded that from the RPL7B locus, and more Rpl7a was expressed from either locus than Rpl7b. Phenotypic differences in tunicamycin sensitivity, ASH1 mRNA localization, and mobility of the Ty1 retrotransposon were strongly correlated with Rpl7 and ribosome levels, but not with the Rpl7 or snoRNA isoform expressed. Although Ty1 RNA is cotranslationally localized, depletion of Rpl7 minimally affected synthesis of Ty1 Gag protein, but strongly influenced Ty1 RNA localization. Unlike the other processes studied, Ty1 cDNA accumulation was influenced by both the level and isoform of Rpl7 or snoRNA expressed. These cellular processes had different minimal threshold values for Rpl7 and ribosome levels, but all were functional when isoforms of either paralog were expressed from the RPL7A locus or both RPL7 loci. This study illustrates the broad range of phenotypes that can result from depleting ribosomes to different levels.
Collapse
|
9
|
Bridier-Nahmias A, Tchalikian-Cosson A, Baller JA, Menouni R, Fayol H, Flores A, Saïb A, Werner M, Voytas DF, Lesage P. Retrotransposons. An RNA polymerase III subunit determines sites of retrotransposon integration. Science 2015; 348:585-8. [PMID: 25931562 DOI: 10.1126/science.1259114] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mobile genetic elements are ubiquitous. Their integration site influences genome stability and gene expression. The Ty1 retrotransposon of the yeast Saccharomyces cerevisiae integrates upstream of RNA polymerase III (Pol III)-transcribed genes, yet the primary determinant of target specificity has remained elusive. Here we describe an interaction between Ty1 integrase and the AC40 subunit of Pol III and demonstrate that AC40 is the predominant determinant targeting Ty1 integration upstream of Pol III-transcribed genes. Lack of an integrase-AC40 interaction dramatically alters target site choice, leading to a redistribution of Ty1 insertions in the genome, mainly to chromosome ends. The mechanism of target specificity allows Ty1 to proliferate and yet minimizes genetic damage to its host.
Collapse
Affiliation(s)
- Antoine Bridier-Nahmias
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France. Department CASER Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - Aurélie Tchalikian-Cosson
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France
| | - Joshua A Baller
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA. Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachid Menouni
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France
| | - Hélène Fayol
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France
| | - Amando Flores
- IBiTec-S, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Université Paris-Sud, CP 22, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Ali Saïb
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France. Department CASER Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - Michel Werner
- IBiTec-S, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Université Paris-Sud, CP 22, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pascale Lesage
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France.
| |
Collapse
|
10
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
11
|
Ho KL, Ma L, Cheung S, Manhas S, Fang N, Wang K, Young B, Loewen C, Mayor T, Measday V. A role for the budding yeast separase, Esp1, in Ty1 element retrotransposition. PLoS Genet 2015; 11:e1005109. [PMID: 25822502 PMCID: PMC4378997 DOI: 10.1371/journal.pgen.1005109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 02/27/2015] [Indexed: 12/18/2022] Open
Abstract
Separase/Esp1 is a protease required at the onset of anaphase to cleave cohesin and thereby enable sister chromatid separation. Esp1 also promotes release of the Cdc14 phosphatase from the nucleolus to enable mitotic exit. To uncover other potential roles for separase, we performed two complementary genome-wide genetic interaction screens with a strain carrying the budding yeast esp1-1 separase mutation. We identified 161 genes that when mutated aggravate esp1-1 growth and 44 genes that upon increased dosage are detrimental to esp1-1 viability. In addition to the expected cell cycle and sister chromatid segregation genes that were identified, 24% of the genes identified in the esp1-1 genetic screens have a role in Ty1 element retrotransposition. Retrotransposons, like retroviruses, replicate through reverse transcription of an mRNA intermediate and the resultant cDNA product is integrated into the genome by a conserved transposon or retrovirus encoded integrase protein. We purified Esp1 from yeast and identified an interaction between Esp1 and Ty1 integrase using mass spectrometry that was subsequently confirmed by co-immunoprecipitation analysis. Ty1 transposon mobility and insertion upstream of the SUF16 tRNA gene are both reduced in an esp1-1 strain but increased in cohesin mutant strains. Securin/Pds1, which is required for efficient localization of Esp1 to the nucleus, is also required for efficient Ty1 transposition. We propose that Esp1 serves two roles to mediate Ty1 transposition - one to remove cohesin and the second to target Ty1-IN to chromatin.
Collapse
Affiliation(s)
- Krystina L. Ho
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lina Ma
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie Cheung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Savrina Manhas
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nancy Fang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaiqian Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barry Young
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Loewen
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Checkley MA, Nagashima K, Lockett SJ, Nyswaner KM, Garfinkel DJ. P-body components are required for Ty1 retrotransposition during assembly of retrotransposition-competent virus-like particles. Mol Cell Biol 2010; 30:382-98. [PMID: 19901074 PMCID: PMC2798465 DOI: 10.1128/mcb.00251-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/20/2009] [Accepted: 10/29/2009] [Indexed: 01/24/2023] Open
Abstract
Ty1 is a retrovirus-like retrotransposon whose replication is influenced by diverse cellular processes in Saccharomyces cerevisiae. We have identified cytoplasmic P-body components encoded by DHH1, KEM1, LSM1, and PAT1 as cofactors that posttranscriptionally enhance Ty1 retrotransposition. Using fluorescent in situ hybridization and immunofluorescence microscopy, we found that Ty1 mRNA and Gag colocalize to discrete cytoplasmic foci in wild-type cells. These foci, which are distinct from P-bodies, do not form in P-body component mutants or under conditions suboptimal for retrotransposition. Our immunoelectron microscopy (IEM) data suggest that mRNA/Gag foci are sites where virus-like particles (VLPs) cluster. Overexpression of Ty1 leads to a large increase in retrotransposition in wild-type cells, which allows VLPs to be detected by IEM. However, retrotransposition is still reduced in P-body component mutants under these conditions. Moreover, the percentage of Ty1 mRNA/Gag foci and VLP clusters and levels of integrase and reverse transcriptase are reduced in these mutants. Ty1 antisense RNAs, which have been reported to inhibit Ty1 transposition, are more abundant in the kem1Delta mutant and colocalize with Ty1 mRNA in the cytoplasm. Therefore, Kem1p may prevent the aggregation of Ty1 antisense and mRNAs. Overall, our results suggest that P-body components enhance the formation of retrotransposition-competent Ty1 VLPs.
Collapse
Affiliation(s)
- Mary Ann Checkley
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research National Cancer Institute, Frederick, Maryland 21702-1201, Advanced Technology Program, SAIC—Frederick, Inc., NCI—Frederick, Frederick, Maryland 21702-1201
| | - Kunio Nagashima
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research National Cancer Institute, Frederick, Maryland 21702-1201, Advanced Technology Program, SAIC—Frederick, Inc., NCI—Frederick, Frederick, Maryland 21702-1201
| | - Stephen J. Lockett
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research National Cancer Institute, Frederick, Maryland 21702-1201, Advanced Technology Program, SAIC—Frederick, Inc., NCI—Frederick, Frederick, Maryland 21702-1201
| | - Katherine M. Nyswaner
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research National Cancer Institute, Frederick, Maryland 21702-1201, Advanced Technology Program, SAIC—Frederick, Inc., NCI—Frederick, Frederick, Maryland 21702-1201
| | - David J. Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research National Cancer Institute, Frederick, Maryland 21702-1201, Advanced Technology Program, SAIC—Frederick, Inc., NCI—Frederick, Frederick, Maryland 21702-1201
| |
Collapse
|
13
|
Beauregard A, Curcio MJ, Belfort M. The take and give between retrotransposable elements and their hosts. Annu Rev Genet 2009; 42:587-617. [PMID: 18680436 DOI: 10.1146/annurev.genet.42.110807.091549] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retrotransposons mobilize via RNA intermediates and usually carry with them the agent of their mobility, reverse transcriptase. Retrotransposons are streamlined, and therefore rely on host factors to proliferate. However, retrotransposons are exposed to cellular forces that block their paths. For this review, we have selected for our focus elements from among target-primed (TP) retrotransposons, also called non-LTR retrotransposons, and extrachromosomally-primed (EP) retrotransposons, also called LTR retrotransposons. The TP retrotransposons considered here are group II introns, LINEs and SINEs, whereas the EP elements considered are the Ty and Tf retrotransposons, with a brief comparison to retroviruses. Recurring themes for these elements, in hosts ranging from bacteria to humans, are tie-ins of the retrotransposons to RNA metabolism, DNA replication and repair, and cellular stress. Likewise, there are parallels among host-cell defenses to combat rampant retrotransposon spread. The interactions between the retrotransposon and the host, and their coevolution to balance the tension between retrotransposon proliferation and host survival, form the basis of this review.
Collapse
Affiliation(s)
- Arthur Beauregard
- New York State Department of Health, Center for Medical Sciences, Albany, New York 12208, 12201-2002, USA.
| | | | | |
Collapse
|
14
|
Interactions of Transposons with the Cellular DNA Repair Machinery. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2008_043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Abstract
Chromosomal genes modulate Ty retrotransposon movement in the genome of Saccharomyces cerevisiae. We have screened a collection of 4739 deletion mutants to identify those that increase Ty1 mobility (Ty1 restriction genes). Among the 91 identified mutants, 80% encode products involved in nuclear processes such as chromatin structure and function, DNA repair and recombination, and transcription. However, bioinformatic analyses encompassing additional Ty1 and Ty3 screens indicate that 264 unique genes involved in a variety of biological processes affect Ty mobility in yeast. Further characterization of 33 of the mutants identified here show that Ty1 RNA levels increase in 5 mutants and the rest affect mobility post-transcriptionally. RNA and cDNA levels remain unchanged in mutants defective in transcription elongation, including ckb2Delta and elf1Delta, suggesting that Ty1 integration may be more efficient in these strains. Insertion-site preference at the CAN1 locus requires Ty1 restriction genes involved in histone H2B ubiquitination by Paf complex subunit genes, as well as BRE1 and RAD6, histone H3 acetylation by RTT109 and ASF1, and transcription elongation by SPT5. Our results indicate that multiple pathways restrict Ty1 mobility and histone modifications may protect coding regions from insertional mutagenesis.
Collapse
|
16
|
Abstract
Retrosequences generated by reverse transcription of mRNA transcripts have a substantial influence on gene expression patterns, generation of novel gene functions, and genome organization. The Ty1 retrotransposon is a major source of RT activity in the yeast, Saccharomyces cerevisiae, and Ty1 retromobility is greatly elevated in strains lacking telomerase. We report that Ty1-dependent formation of retrosequences derived from single-copy gene transcripts is progressively elevated as yeast cells senesce in the absence of telomerase. Retrosequences are frequently fused to Ty1 sequences, and occasionally to sequences from other mRNA transcripts, forming chimeric pseudogenes. Efficient retrosequence formation requires the homologous recombination gene RAD52. Selection for retrosequence formation is correlated with a high frequency of chromosome rearrangements in telomerase-negative yeast. Ty1-associated retrosequences were present at the breakpoint junctions of four chromosomes analyzed in detail. Our results support a role for reverse transcripts in promoting chromosome rearrangements.
Collapse
Affiliation(s)
- Patrick H Maxwell
- Laboratory of Developmental Genetics, Wadsworth Center, and Department of Biomedical Sciences University at Albany School of Public Health, Albany, New York 12201, USA
| | | |
Collapse
|
17
|
S-phase checkpoint pathways stimulate the mobility of the retrovirus-like transposon Ty1. Mol Cell Biol 2007; 27:8874-85. [PMID: 17923678 DOI: 10.1128/mcb.01095-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mobility of the Ty1 retrotransposon in the yeast Saccharomyces cerevisiae is restricted by a large collection of proteins that preserve the integrity of the genome during replication. Several of these repressors of Ty1 transposition (Rtt)/genome caretakers are orthologs of mammalian retroviral restriction factors. In rtt/genome caretaker mutants, levels of Ty1 cDNA and mobility are increased; however, the mechanisms underlying Ty1 hypermobility in most rtt mutants are poorly characterized. Here, we show that either or both of two S-phase checkpoint pathways, the replication stress pathway and the DNA damage pathway, partially or strongly stimulate Ty1 mobility in 19 rtt/genome caretaker mutants. In contrast, neither checkpoint pathway is required for Ty1 hypermobility in two rtt mutants that are competent for genome maintenance. In rtt101delta mutants, hypermobility is stimulated through the DNA damage pathway components Rad9, Rad24, Mec1, Rad53, and Dun1 but not Chk1. We provide evidence that Ty1 cDNA is not the direct target of the DNA damage pathway in rtt101delta mutants; instead, levels of Ty1 integrase and reverse transcriptase proteins, as well as reverse transcriptase activity, are significantly elevated. We propose that DNA lesions created in the absence of Rtt/genome caretakers trigger S-phase checkpoint pathways to stimulate Ty1 reverse transcriptase activity.
Collapse
|
18
|
Maxwell PH, Curcio MJ. Host factors that control long terminal repeat retrotransposons in Saccharomyces cerevisiae: implications for regulation of mammalian retroviruses. EUKARYOTIC CELL 2007; 6:1069-80. [PMID: 17496126 PMCID: PMC1951103 DOI: 10.1128/ec.00092-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Patrick H Maxwell
- Center for Medical Sciences, Wadsworth Center, PO Box 2002, Albany, NY 12201-2002, USA
| | | |
Collapse
|
19
|
Sawyer SL, Malik HS. Positive selection of yeast nonhomologous end-joining genes and a retrotransposon conflict hypothesis. Proc Natl Acad Sci U S A 2006; 103:17614-9. [PMID: 17101967 PMCID: PMC1693795 DOI: 10.1073/pnas.0605468103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transposable elements have clearly played a major role in shaping both the size and organization of eukaryotic genomes. However, the evolution of essential genes in core biological processes may also have been shaped by coevolution with these elements. This would be predicted to occur in instances where host proteins are either hijacked for use by mobile elements or recruited to defend against them. To detect such cases, we have used the Saccharomyces cerevisiae-Saccharomyces paradoxus sibling species pair to identify genes that have evolved under positive selection. We identify 72 such genes, which participate in a variety of biological processes but are enriched for genes involved in meiosis and DNA repair by nonhomologous end-joining (NHEJ). We confirm the signature of positive selection acting on NHEJ genes using orthologous sequences from all seven Saccharomyces sensu stricto species. Previous studies have found altered rates of Ty retrotransposition when these NHEJ genes are disrupted. We propose that the evolution of these repair proteins is likely to have been shaped by their interactions with Ty elements. Antagonistic pleiotropy, where critical genes like those involved in DNA repair are also subject to selective pressures imposed by mobile elements, could favor alleles that might be otherwise deleterious for their normal roles related to genome stability.
Collapse
Affiliation(s)
- Sara L. Sawyer
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- To whom correspondence should be addressed at:
1100 Fairview Avenue North, A1-162, Seattle, WA 98109. E-mail:
| |
Collapse
|
20
|
Desfarges S, San Filippo J, Fournier M, Calmels C, Caumont-Sarcos A, Litvak S, Sung P, Parissi V. Chromosomal integration of LTR-flanked DNA in yeast expressing HIV-1 integrase: down regulation by RAD51. Nucleic Acids Res 2006; 34:6215-24. [PMID: 17090598 PMCID: PMC1693895 DOI: 10.1093/nar/gkl843] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
HIV-1 integrase (IN) is the key enzyme catalyzing the proviral DNA integration step. Although the enzyme catalyzes the integration step accurately in vitro, whether IN is sufficient for in vivo integration and how it interacts with the cellular machinery remains unclear. We set up a yeast cellular integration system where integrase was expressed as the sole HIV-1 protein and targeted the chromosomes. In this simple eukaryotic model, integrase is necessary and sufficient for the insertion of a DNA containing viral LTRs into the genome, thereby allowing the study of the isolated integration step independently of other viral mechanisms. Furthermore, the yeast system was used to identify cellular mechanisms involved in the integration step and allowed us to show the role of homologous recombination systems. We demonstrated physical interactions between HIV-1 IN and RAD51 protein and showed that HIV-1 integrase activity could be inhibited both in the cell and in vitro by RAD51 protein. Our data allowed the identification of RAD51 as a novel in vitro IN cofactor able to down regulate the activity of this retroviral enzyme, thereby acting as a potential cellular restriction factor to HIV infection.
Collapse
Affiliation(s)
- S. Desfarges
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - J. San Filippo
- Deptartment of Molecular Biophysics and Biochemistry, Yale University School of Medicine333 Cedar Street, SHM C130, New Haven, CT 06520, USA
| | - M. Fournier
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - C. Calmels
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - A. Caumont-Sarcos
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - S. Litvak
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - P. Sung
- Deptartment of Molecular Biophysics and Biochemistry, Yale University School of Medicine333 Cedar Street, SHM C130, New Haven, CT 06520, USA
| | - V. Parissi
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
- To whom correspondence should be addressed. Tel: +33 5 57 57 1740; Fax: +33 5 57 57 1766;
| |
Collapse
|
21
|
Garfinkel DJ, Stefanisko KM, Nyswaner KM, Moore SP, Oh J, Hughes SH. Retrotransposon suicide: formation of Ty1 circles and autointegration via a central DNA flap. J Virol 2006; 80:11920-34. [PMID: 17005648 PMCID: PMC1676259 DOI: 10.1128/jvi.01483-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite their evolutionary distance, the Saccharomyces cerevisiae retrotransposon Ty1 and retroviruses use similar strategies for replication, integration, and interactions with their hosts. Here we examine the formation of circular Ty1 DNA, which is comparable to the dead-end circular products that arise during retroviral infection. Appreciable levels of circular Ty1 DNA are present with one-long terminal repeat (LTR) circles and deleted circles comprising major classes, while two-LTR circles are enriched when integration is defective. One-LTR circles persist when homologous recombination pathways are blocked by mutation, suggesting that they result from reverse transcription. Ty1 autointegration events readily occur, and many are coincident with and dependent upon DNA flap structures that result from DNA synthesis initiated at the central polypurine tract. These results suggest that Ty1-specific mechanisms minimize copy number and raise the possibility that special DNA structures are a targeting determinant.
Collapse
Affiliation(s)
- David J Garfinkel
- National Cancer Institute, P.O. Box B, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Lesage P, Todeschini AL. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 2005; 110:70-90. [PMID: 16093660 DOI: 10.1159/000084940] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/18/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to describe the level of intimacy between Ty retrotransposons (Ty1-Ty5) and their host the yeast Saccharomyces cerevisiae. The effects of Ty location in the genome and of host proteins on the expression and mobility of Ty elements are highlighted. After a brief overview of Ty diversity and evolution, we describe the factors that dictate Ty target-site preference and the impact of targeting on Ty and adjacent gene expression. Studies on Ty3 and Ty5 have been especially informative in unraveling the role of host factors (Pol III machinery and silencing proteins, respectively) and integrase in controlling the specificity of integration. In contrast, not much is known regarding Ty1, Ty2 and Ty4, except that their insertion depends on the transcriptional competence of the adjacent Pol III gene and might be influenced by some chromatin components. This review also brings together recent findings on the regulation of Ty1 retrotransposition. A large number of host proteins (over 30) involved in a wide range of cellular processes controls either directly or indirectly Ty1 mobility, primarily at post-transcriptional steps. We focus on several genes for which more detailed analyses have permitted the elaboration of regulatory models. In addition, this review describes new data revealing that repression of Ty1 mobility also involves two forms of copy number control that act at both the trancriptional and post-transcriptional levels. Since S. cerevisiae lacks the conserved pathways for copy number control via transcriptional and post-transcriptional gene silencing found in other eukaryotes, Ty1 copy number control must be via another mechanism whose features are outlined. Ty1 response to stress also implicates activation at both transcriptional and postranscriptional steps of Ty1. Finally, we provide several insights in the role of Ty elements in chromosome evolution and yeast adaptation and discuss the factors that might limit Ty ectopic recombination.
Collapse
Affiliation(s)
- P Lesage
- Institut de Biologie Physico-Chimique, CNRS UPR 9073, Paris, France.
| | | |
Collapse
|
23
|
Irwin B, Aye M, Baldi P, Beliakova-Bethell N, Cheng H, Dou Y, Liou W, Sandmeyer S. Retroviruses and yeast retrotransposons use overlapping sets of host genes. Genome Res 2005; 15:641-54. [PMID: 15837808 PMCID: PMC1088292 DOI: 10.1101/gr.3739005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A collection of 4457 Saccharomyces cerevisiae mutants deleted for nonessential genes was screened for mutants with increased or decreased mobilization of the gypsylike retroelement Ty3. Of these, 64 exhibited increased and 66 decreased Ty3 transposition compared with the parental strain. Genes identified in this screen were grouped according to function by using GOnet software developed as part of this study. Gene clusters were related to chromatin and transcript elongation, translation and cytoplasmic RNA processing, vesicular trafficking, nuclear transport, and DNA maintenance. Sixty-six of the mutants were tested for Ty3 proteins and cDNA. Ty3 cDNA and transposition were increased in mutants affected in nuclear pore biogenesis and in a subset of mutants lacking proteins that interact physically or genetically with a replication clamp loader. Our results suggest that nuclear entry is linked mechanistically to Ty3 cDNA synthesis but that host replication factors antagonize Ty3 replication. Some of the factors we identified have been previously shown to affect Ty1 transposition and others to affect retroviral budding. Host factors, such as these, shared by distantly related Ty retroelements and retroviruses are novel candidates for antiviral targets.
Collapse
Affiliation(s)
- Becky Irwin
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Radford SJ, Boyle ML, Sheely CJ, Graham J, Haeusser DP, Zimmerman L, Keeney JB. Increase in Ty1 cDNA recombination in yeast sir4 mutant strains at high temperature. Genetics 2005; 168:89-101. [PMID: 15454529 PMCID: PMC1448086 DOI: 10.1534/genetics.102.012708] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposition of the Ty1 element of the yeast Saccharomyces cerevisiae is temperature sensitive. We have identified a null allele of the silent information regulator gene SIR4 as a host mutant that allows for transposition at high temperature. We show that the apparent increase in transposition activity in sir4 mutant strains at high temperature is dependent on the RAD52 gene and is thus likely resulting from an increase in Ty1 cDNA recombination, rather than in IN-mediated integration. General cellular recombination is not increased at high temperature, suggesting that the increase in recombination at high temperature in sir4 mutants is specific for Ty1 cDNA. Additionally, this high-temperature Ty1 recombination was found to be dependent on functional Sir2p and Sir3p. We speculate that the increase in recombination seen in sir4 mutants at high temperature may be due to changes in chromatin structure or Ty1 interactions with chromosomal structures resulting in higher recombination rates.
Collapse
Affiliation(s)
- Sarah J Radford
- Department of Biology, Juniata College, Huntingdon, Pennsylvania 16652, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Weitzman MD, Carson CT, Schwartz RA, Lilley CE. Interactions of viruses with the cellular DNA repair machinery. DNA Repair (Amst) 2005; 3:1165-73. [PMID: 15279805 DOI: 10.1016/j.dnarep.2004.03.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammalian cells are equipped with complex machinery to monitor and repair damaged DNA. In addition to responding to breaks in cellular DNA, recent studies have revealed that the DNA repair machinery also recognizes viral genetic material. We review some examples that highlight the different strategies that viruses have developed to interact with the host DNA repair apparatus. While adenovirus (Ad) inactivates the host machinery to prevent signaling and concatemerization of the viral genome, other viruses may utilize DNA repair to their own advantage. Viral interactions with the repair machinery can also have detrimental consequences for the host cells and their ability to maintain the integrity of the host genome. Exploring the interactions between viruses and the host DNA repair machinery has revealed novel host responses to virus infections and has provided new tools to study the DNA damage response.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
26
|
Garfinkel DJ, Nyswaner KM, Stefanisko KM, Chang C, Moore SP. Ty1 copy number dynamics in Saccharomyces. Genetics 2005; 169:1845-57. [PMID: 15687270 PMCID: PMC1449601 DOI: 10.1534/genetics.104.037317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand long terminal repeat (LTR)-retrotransposon copy number dynamics, Ty1 elements were reintroduced into a "Ty-less" Saccharomyces strain where elements had been lost by LTR-LTR recombination. Repopulated strains exhibited alterations in chromosome size that were associated with Ty1 insertions, but did not become genetically isolated. The rates of element gain and loss under genetic and environmental conditions known to affect Ty1 retrotransposition were determined using genetically tagged reference elements. The results show that Ty1 retrotransposition varies with copy number, temperature, and cell type. In contrast to retrotransposition, Ty1 loss by LTR-LTR recombination was more constant and not markedly influenced by copy number. Endogenous Ty1 cDNA was poorly utilized for recombination when compared with LTR-LTR recombination or ectopic gene conversion. Ty1 elements also appear to be more susceptible to copy number fluctuation in haploid cells. Ty1 gain/loss ratios obtained under different conditions suggest that copy number oscillates over time by altering the rate of retrotransposition, resulting in the diverse copy numbers observed in Saccharomyces.
Collapse
Affiliation(s)
- David J Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21701-1201, USA.
| | | | | | | | | |
Collapse
|
27
|
Sacerdot C, Mercier G, Todeschini AL, Dutreix M, Springer M, Lesage P. Impact of ionizing radiation on the life cycle ofSaccharomyces cerevisiae Ty1 retrotransposon. Yeast 2005; 22:441-55. [PMID: 15849797 DOI: 10.1002/yea.1222] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Ty1 elements, LTR-retrotransposons of Saccharomyces cerevisiae, are known to be activated by genetic and environmental stress. Several DNA-damaging agents have been shown to increase both Ty1 transcription and retrotransposition. To explore further the relationship between Ty1 mobility and DNA damage, we have studied the impact of ionizing radiation at different steps of the Ty1 life cycle. We have shown that Ty1 transposition is strongly activated by gamma-irradiation and we have analysed its effect on Ty1 transcription, TyA1 protein and Ty1 cDNA levels. The activation of transposition rises with increasing doses of gamma-rays and is stronger for Ty1 elements than for the related Ty2 elements. Ty1 RNA levels are markedly elevated upon irradiation; however, no significant increase of TyA1 protein was detected as measured by TYA1-lacZ fusions and by Western blot. A moderate increase in Ty1 cDNA levels was also observed, indicating that ionizing radiation can induce the synthesis of Ty1 cDNA. In diploid cells and ste12 mutants, where both Ty1 transcription and transposition are repressed, gamma-irradiation is able to activate Ty1 transposition and increases Ty1 RNA levels. These results suggest the existence of a specific regulatory pathway involved in Ty1 response to the gamma-irradiation that would be independent of Ste12 and mating-type factors. Our findings also indicate that ionizing radiation acts on several steps of the Ty1 life cycle.
Collapse
Affiliation(s)
- Christine Sacerdot
- UPR 9073 du CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
28
|
Scholes DT, Kenny AE, Gamache ER, Mou Z, Curcio MJ. Activation of a LTR-retrotransposon by telomere erosion. Proc Natl Acad Sci U S A 2003; 100:15736-41. [PMID: 14673098 PMCID: PMC307637 DOI: 10.1073/pnas.2136609100] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Indexed: 11/18/2022] Open
Abstract
Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA lesions are created by the loss of telomere function. Inactivation of telomerase in yeast results in progressive shortening of telomeric DNA, eventually triggering a DNA-damage checkpoint that arrests cells in G2/M. A fraction of cells, termed survivors, recover from arrest by forming alternative telomere structures. When telomerase is inactivated, Ty1 retrotransposition increases substantially in parallel with telomere erosion and then partially declines when survivors emerge. Retrotransposition is stimulated at the level of Ty1 cDNA synthesis, causing cDNA levels to increase 20-fold or more before survivors form. This response is elicited through a signaling pathway that includes Rad24, Rad17, and Rad9, three components of the DNA-damage checkpoint. Our findings indicate that Ty1 retrotransposons are activated as part of the cellular response to telomere dysfunction.
Collapse
Affiliation(s)
- Derek T Scholes
- Department of Biomedical Sciences, University at Albany School of Public Health, PO Box 22002, Albany, NY 12201-2002, USA
| | | | | | | | | |
Collapse
|
29
|
Garfinkel DJ, Nyswaner K, Wang J, Cho JY. Post-transcriptional Cosuppression of Ty1 Retrotransposition. Genetics 2003; 165:83-99. [PMID: 14504219 PMCID: PMC1462740 DOI: 10.1093/genetics/165.1.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
To determine whether homology-dependent gene silencing or cosuppression mechanisms underlie copy number control (CNC) of Ty1 retrotransposition, we introduced an active Ty1 element into a naïve strain. Single Ty1 element retrotransposition was elevated in a Ty1-less background, but decreased dramatically when additional elements were present. Transcription from the suppressing Ty1 elements enhanced CNC but translation or reverse transcription was not required. Ty1 CNC occurred with a transcriptionally active Ty2 element, but not with Ty3 or Ty5 elements. CNC also occurred when the suppressing Ty1 elements were transcriptionally silenced, fused to the constitutive PGK1 promoter, or contained a minimal segment of mostly TYA1-gag sequence. Ty1 transcription of a multicopy element expressed from the GAL1 promoter abolished CNC, even when the suppressing element was defective for transposition. Although Ty1 RNA and TyA1-gag protein levels increased with the copy number of expressible elements, a given element's transcript level varied less than twofold regardless of whether the suppressing elements were transcriptionally active or repressed. Furthermore, a decrease in the synthesis of Ty1 cDNA is strongly associated with Ty1 CNC. Together our results suggest that Ty1 cosuppression can occur post-transcriptionally, either prior to or during reverse transcription.
Collapse
Affiliation(s)
- David J Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | | | | | |
Collapse
|
30
|
Griffith JL, Coleman LE, Raymond AS, Goodson SG, Pittard WS, Tsui C, Devine SE. Functional genomics reveals relationships between the retrovirus-like Ty1 element and its host Saccharomyces cerevisiae. Genetics 2003; 164:867-79. [PMID: 12871900 PMCID: PMC1462630 DOI: 10.1093/genetics/164.3.867] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retroviruses and their relatives, the long terminal repeat (LTR) retrotransposons, carry out complex life cycles within the cells of their hosts. We have exploited a collection of gene deletion mutants developed by the Saccharomyces Genome Deletion Project to perform a functional genomics screen for host factors that influence the retrovirus-like Ty1 element in yeast. A total of 101 genes that presumably influence many different aspects of the Ty1 retrotransposition cycle were identified from our analysis of 4483 homozygous diploid deletion strains. Of the 101 identified mutants, 46 had significantly altered levels of Ty1 cDNA, whereas the remaining 55 mutants had normal levels of Ty1 cDNA. Thus, approximately half of the mutants apparently affected the early stages of retrotransposition leading up to the assembly of virus-like particles and cDNA replication, whereas the remaining half affected steps that occur after cDNA replication. Although most of the mutants retained the ability to target Ty1 integration to tRNA genes, 2 mutants had reduced levels of tRNA gene targeting. Over 25% of the gene products identified in this study were conserved in other organisms, suggesting that this collection of host factors can serve as a starting point for identifying host factors that influence LTR retroelements and retroviruses in other organisms. Overall, our data indicate that Ty1 requires a large number of cellular host factors to complete its retrotransposition cycle efficiently.
Collapse
Affiliation(s)
- Jacqulyn L Griffith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Olivares M, López MC, García-Pérez JL, Briones P, Pulgar M, Thomas MC. The endonuclease NL1Tc encoded by the LINE L1Tc from Trypanosoma cruzi protects parasites from daunorubicin DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1626:25-32. [PMID: 12697326 DOI: 10.1016/s0167-4781(03)00022-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present paper we show that the overexpression of the NL1Tc protein, encoded by the L1Tc non-LTR retrotransposon from Trypanosoma cruzi, led to a reduction of about 60% of DNA damage caused by daunorubicin treatment. This repair effect is not observed in transfected parasites overexpressing the NL1Tc mutated in the aspartic acid located in the active site of the enzyme. In addition, NL1Tc overexpression protects the parasite from the negative effect that daunorubicin has on parasite's growth rate. Thus, parasites overexpressing NL1Tc show, after treatment with 4 microM of daunorubicin, growth rate two to three times higher than the growth rate observed in treated control parasites transformed with the empty vector or overexpressing the mutated NL1Tc. Likewise, parasites overexpressing the NL1Tc protein and irradiated with a single dose of gamma-radiation (6 or 9 Gy) show higher growth rates than the parasites overexpressing the mutated NL1Tc or the control transfected parasites.
Collapse
Affiliation(s)
- M Olivares
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18001, Granada, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Sundararajan A, Lee BS, Garfinkel DJ. The Rad27 (Fen-1) nuclease inhibits Ty1 mobility in Saccharomyces cerevisiae. Genetics 2003; 163:55-67. [PMID: 12586696 PMCID: PMC1462422 DOI: 10.1093/genetics/163.1.55] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although most Ty1 elements in Saccharomyces cerevisiae are competent for retrotransposition, host defense genes can inhibit different steps of the Ty1 life cycle. Here, we demonstrate that Rad27, a structure-specific nuclease that plays an important role in DNA replication and genome stability, inhibits Ty1 at a post-translational level. We have examined the effects of various rad27 mutations on Ty1 element retrotransposition and cDNA recombination, termed Ty1 mobility. The point mutations rad27-G67S, rad27-G240D, and rad27-E158D that cause defects in certain enzymatic activities in vitro result in variable increases in Ty1 mobility, ranging from 4- to 22-fold. The C-terminal frameshift mutation rad27-324 confers the maximum increase in Ty1 mobility (198-fold), unincorporated cDNA, and insertion at preferred target sites. The null mutation differs from the other rad27 alleles by increasing the frequency of multimeric Ty1 insertions and cDNA recombination with a genomic element. The rad27 mutants do not markedly alter the levels of Ty1 RNA or the TyA1-gag protein. However, there is an increase in the stability of unincorporated Ty1 cDNA in rad27-324 and the null mutant. Our results suggest that Rad27 inhibits Ty1 mobility by destabilizing unincorporated Ty1 cDNA and preventing the formation of Ty1 multimers.
Collapse
Affiliation(s)
- Anuradha Sundararajan
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
33
|
Abstract
Cosuppression, the silencing of dispersed homologous genes triggered by high copy number, may have evolved in eukaryotic organisms to control molecular parasites such as viruses and transposons. Ty1 retrotransposons are dispersed gene repeats in Saccharomyces cerevisiae, where no cosuppression has been previously observed. Ty1 elements are seemingly expressed undeterred to a level as high as 10% of total mRNA. Using Ty1-URA3 reporters and negative selection with 5-fluoroorotic acid, it is shown that Ty1 genes can undergo transcriptional cosuppression that is independent of DNA methylation and polycomb-mediated repression. Expression of Ty1-related genes was shown to be in one of two states, the coexpressed state with all Ty1-related genes transcribed or the cosuppressed state with all Ty1-related genes shut off, without uncoordinated or mosaic expression in any individual cell. Rapid switches between the two states were observed. A high copy number of Ty1 elements was shown to be required for the initiation of Ty1 homology-dependent gene silencing, implying that Ty1 gene expression is under negative feedback control. Ty1 transcriptional repressors facilitated the onset of Ty1 cosuppression, and the native Ty1 promoters were required for Ty1 cosuppression, indicating that Ty1 cosuppression occurs at the transcriptional level.
Collapse
Affiliation(s)
- Yi Wei Jiang
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA.
| |
Collapse
|
34
|
Scholes DT, Banerjee M, Bowen B, Curcio MJ. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 2001; 159:1449-65. [PMID: 11779788 PMCID: PMC1461915 DOI: 10.1093/genetics/159.4.1449] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most Ty1 retrotransposons in the genome of Saccharomyces cerevisiae are transpositionally competent but rarely transpose. We screened yeast mutagenized by insertion of the mTn3-lacZ/LEU2 transposon for mutations that result in elevated Ty1 cDNA-mediated mobility, which occurs by cDNA integration or recombination. Here, we describe the characterization of mTn3 insertions in 21 RTT (regulation of Ty1 transposition) genes that result in 5- to 111-fold increases in Ty1 mobility. These 21 RTT genes are EST2, RRM3, NUT2, RAD57, RRD2, RAD50, SGS1, TEL1, SAE2, MED1, MRE11, SCH9, KAP122, and 8 previously uncharacterized genes. Disruption of RTT genes did not significantly increase Ty1 RNA levels but did enhance Ty1 cDNA levels, suggesting that most RTT gene products act at a step after mRNA accumulation but before cDNA integration. The rtt mutations had widely varying effects on integration of Ty1 at preferred target sites. Mutations in RTT101 and NUT2 dramatically stimulated Ty1 integration upstream of tRNA genes. In contrast, a mutation in RRM3 increased Ty1 mobility >100-fold without increasing integration upstream of tRNA genes. The regulation of Ty1 transposition by components of fundamental pathways required for genome maintenance suggests that Ty1 and yeast have coevolved to link transpositional dormancy to the integrity of the genome.
Collapse
Affiliation(s)
- D T Scholes
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York, Albany, New York 12201-2002, USA
| | | | | | | |
Collapse
|
35
|
Bryk M, Banerjee M, Conte D, Curcio MJ. The Sgs1 helicase of Saccharomyces cerevisiae inhibits retrotransposition of Ty1 multimeric arrays. Mol Cell Biol 2001; 21:5374-88. [PMID: 11463820 PMCID: PMC87260 DOI: 10.1128/mcb.21.16.5374-5388.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ty1 retrotransposons in the yeast Saccharomyces cerevisiae are maintained in a genetically competent but transpositionally dormant state. When located in the ribosomal DNA (rDNA) locus, Ty1 elements are transcriptionally silenced by the specialized heterochromatin that inhibits rDNA repeat recombination. In addition, transposition of all Ty1 elements is repressed at multiple posttranscriptional levels. Here, we demonstrate that Sgs1, a RecQ helicase required for genome stability, inhibits the mobility of Ty1 elements by a posttranslational mechanism. Using an assay for the mobility of Ty1 cDNA via integration or homologous recombination, we found that the mobility of both euchromatic and rDNA-Ty1 elements was increased 32- to 79-fold in sgs1Delta mutants. Increased Ty1 mobility was not due to derepression of silent rDNA-Ty1 elements, since deletion of SGS1 reduced the mitotic stability of rDNA-Ty1 elements but did not stimulate their transcription. Furthermore, deletion of SGS1 did not significantly increase the levels of total Ty1 RNA, protein, or cDNA and did not alter the level or specificity of Ty1 integration. Instead, Ty1 cDNA molecules recombined at a high frequency in sgs1Delta mutants, resulting in transposition of heterogeneous Ty1 multimers. Formation of Ty1 multimers required the homologous recombination protein Rad52 but did not involve recombination between Ty1 cDNA and genomic Ty1 elements. Therefore, Ty1 multimers that transpose at a high frequency in sgs1Delta mutants are formed by intermolecular recombination between extrachromosomal Ty1 cDNA molecules before or during integration. Our data provide the first evidence that the host cell promotes retrotransposition of monomeric Ty1 elements by repressing cDNA recombination.
Collapse
Affiliation(s)
- M Bryk
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York at Albany, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Population genetics is a highly theoretical field in which many models and theories of broad significance have received little experimental testing. Microbes are well-suited for empirical population genetics since populations of almost any size may be studied genetically, and because many have easily controlled life cycles. Saccharomyces cerevisiae is almost ideal for such studies as the growing body of knowledge and techniques that have made it the best characterized eukaryote genome also allow the experimental manipulation and analysis of its population genetics. In experiments to date, the evolution of laboratory yeast populations has been observed for up to 1000 generations. In several cases, adaptation has occurred by gene duplications. The interaction between mutation, selection and genetic drift at varying population sizes is a major area of theoretical study in which yeast experiments can provide particularly valuable data. Conflicts between gene-level and among-cell selection, and co-evolution between genes within a genome, are additional topics in which a population genetics perspective may be particularly helpful. The growing field of genomics is increasingly complementary with that of population genetics. The characterization of the yeast genome presents unprecedented opportunities for the detailed study of evolutionary and population genetics. Conversely, the redundancy of the yeast genome means that, for many open reading frames, deletion has only a quantitative effect that is most readily observed in competitions with a wild-type strain.
Collapse
Affiliation(s)
- C Zeyl
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA.
| |
Collapse
|
37
|
Lee BS, Bi L, Garfinkel DJ, Bailis AM. Nucleotide excision repair/TFIIH helicases RAD3 and SSL2 inhibit short-sequence recombination and Ty1 retrotransposition by similar mechanisms. Mol Cell Biol 2000; 20:2436-45. [PMID: 10713167 PMCID: PMC85430 DOI: 10.1128/mcb.20.7.2436-2445.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1999] [Accepted: 01/14/2000] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic genomes contain potentially unstable sequences whose rearrangement threatens genome structure and function. Here we show that certain mutant alleles of the nucleotide excision repair (NER)/TFIIH helicase genes RAD3 and SSL2 (RAD25) confer synthetic lethality and destabilize the Saccharomyces cerevisiae genome by increasing both short-sequence recombination and Ty1 retrotransposition. The rad3-G595R and ssl2-rtt mutations do not markedly alter Ty1 RNA or protein levels or target site specificity. However, these mutations cause an increase in the physical stability of broken DNA molecules and unincorporated Ty1 cDNA, which leads to higher levels of short-sequence recombination and Ty1 retrotransposition. Our results link components of the core NER/TFIIH complex with genome stability, homologous recombination, and host defense against Ty1 retrotransposition via a mechanism that involves DNA degradation.
Collapse
Affiliation(s)
- B S Lee
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|