1
|
Zhang Z, Running KLD, Seneviratne S, Peters Haugrud AR, Szabo-Hever A, Singh G, Holušová K, Molnár I, Doležel J, Friesen TL, Faris JD. Protein Kinase-Major Sperm Protein (PK-MSP) Genes Mediate Recognition of the Fungal Necrotrophic Effector SnTox3 to Cause Septoria nodorum Blotch in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:315-327. [PMID: 40159102 DOI: 10.1094/mpmi-10-24-0125-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The wheat-Parastagonospora nodorum pathosystem has emerged as a model system for plant-necrotrophic fungal pathogen interactions. In this system, fungal necrotrophic effectors are recognized by specific host genes in an inverse gene-for-gene manner to induce programmed cell death and other host responses, which leads to disease. We previously cloned a wheat gene (Snn3-D1) encoding protein kinase and major sperm protein domains that recognizes the P. nodorum necrotrophic effector SnTox3. Here, we identified an Snn3-D1 homoeolog (Snn3-B1) and a paralog (Snn3-B2) that also recognize SnTox3, leading to susceptibility. DNA sequence divergence of Snn3-B1 and Snn3-B2 and differences in transcriptional expression patterns and three-dimensional protein conformation were associated with a more severe programmed cell death response conferred by Snn3-B2 compared with Snn3-B1. Both Snn3 proteins were localized to the nucleus and cytoplasm in wheat protoplasts, suggesting that they may have acquired novel functions compared with previously characterized major sperm protein domain-containing proteins in other species. Snn3-B2 was previously shown to govern osmotic stress and salt tolerance, indicating that protein kinase-major sperm protein genes can act in plant defense responses to both biotic and abiotic stresses. Evaluation of a large collection of wheat lines showed that several alleles of each gene, including absent alleles, exist within the germplasm. Diagnostic markers were developed for the absent alleles of both genes, which will prove useful for marker-assisted selection in wheat to eliminate SnTox3 sensitivity and achieve better disease resistance. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2025.
Collapse
Affiliation(s)
- Zengcui Zhang
- USDA-ARS, Cereal Crops Research Improvement Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | | | - Sudeshi Seneviratne
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Amanda R Peters Haugrud
- USDA-ARS, Cereal Crops Research Improvement Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Agnes Szabo-Hever
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Gurminder Singh
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc 77900, Czech Republic
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc 77900, Czech Republic
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc 77900, Czech Republic
| | - Timothy L Friesen
- USDA-ARS, Cereal Crops Research Improvement Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Improvement Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| |
Collapse
|
2
|
Sthapit SR, Ruff TM, Hooker MA, Zhang B, Li X, See DR. Candidate selective sweeps in US wheat populations. THE PLANT GENOME 2024; 17:e20513. [PMID: 39323003 PMCID: PMC11628914 DOI: 10.1002/tpg2.20513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/27/2024]
Abstract
Exploration of novel alleles from ex situ collection is still limited in modern plant breeding as these alleles exist in genetic backgrounds of landraces that are not adapted to modern production environments. The practice of backcross breeding results in preservation of the adapted background of elite parents but leaves little room for novel alleles from landraces to be incorporated. Selection of adaptation-associated linkage blocks instead of the entire adapted background may allow breeders to incorporate more of the landrace's genetic background and to observe and evaluate novel alleles. Important adaptation-associated linkage blocks would have been selected over multiple cycles of breeding and hence are likely to exhibit signatures of positive selection or selective sweeps. We conducted genome-wide scan for candidate selective sweeps (CSS) using Fst, Rsb, and xpEHH in state, regional, spring, winter, and market-class population pairs and reported 446 CSS in 19 population pairs over time and 1033 CSS in 44 population pairs across geography and class. Further validation of these CSS in specific breeding programs may lead to identification of sets of loci that can be selected to restore population-specific adaptation in pre-breeding germplasms.
Collapse
Affiliation(s)
- Sajal R. Sthapit
- Department of Plant PathologyWashington State UniversityPullmanWashingtonUSA
- The Land InstituteSalinaKansasUSA
| | - Travis M. Ruff
- USDA‐ARS Wheat Health, Genetics, and Quality Research UnitWashington State UniversityPullmanWashingtonUSA
| | - Marcus A. Hooker
- Department of Crop and Soil SciencesWashington State UniversityPullmanWashingtonUSA
- Department of Biological SciencesCollege of Southern NevadaHendersonNevadaUSA
| | - Bosen Zhang
- Washington State UniversityPullmanWashingtonUSA
| | - Xianran Li
- USDA‐ARS Wheat Health, Genetics, and Quality Research UnitWashington State UniversityPullmanWashingtonUSA
- Department of Crop and Soil SciencesWashington State UniversityPullmanWashingtonUSA
| | - Deven R. See
- Department of Plant PathologyWashington State UniversityPullmanWashingtonUSA
- USDA‐ARS Wheat Health, Genetics, and Quality Research UnitWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
3
|
Levy AA, Feldman M. Evolution and origin of bread wheat. THE PLANT CELL 2022; 34:2549-2567. [PMID: 35512194 PMCID: PMC9252504 DOI: 10.1093/plcell/koac130] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 05/12/2023]
Abstract
Bread wheat (Triticum aestivum, genome BBAADD) is a young hexaploid species formed only 8,500-9,000 years ago through hybridization between a domesticated free-threshing tetraploid progenitor, genome BBAA, and Aegilops tauschii, the diploid donor of the D subgenome. Very soon after its formation, it spread globally from its cradle in the fertile crescent into new habitats and climates, to become a staple food of humanity. This extraordinary global expansion was probably enabled by allopolyploidy that accelerated genetic novelty through the acquisition of new traits, new intergenomic interactions, and buffering of mutations, and by the attractiveness of bread wheat's large, tasty, and nutritious grain with high baking quality. New genome sequences suggest that the elusive donor of the B subgenome is a distinct (unknown or extinct) species rather than a mosaic genome. We discuss the origin of the diploid and tetraploid progenitors of bread wheat and the conflicting genetic and archaeological evidence on where it was formed and which species was its free-threshing tetraploid progenitor. Wheat experienced many environmental changes throughout its evolution, therefore, while it might adapt to current climatic changes, efforts are needed to better use and conserve the vast gene pool of wheat biodiversity on which our food security depends.
Collapse
Affiliation(s)
- Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Moshe Feldman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
4
|
Sthapit SR, Ruff TM, Hooker MA, See DR. Population structure and genetic diversity of U.S. wheat varieties. THE PLANT GENOME 2022; 15:e20196. [PMID: 35274473 DOI: 10.1002/tpg2.20196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
The United States is a major wheat producer with more than a century of wheat (Triticum aestivum L.) research and breeding. Using a panel of 753 historical and modern wheat varieties grown in the United States from the early 1800s to present day, we examined population structure and changes in genetic diversity. We used previously mapped high-quality single-nucleotide polymorphism (SNP) markers from the wheat 90K SNP array for genotyping. The wheat varieties had a slight hierarchical population structure based on growth habit and then by kernel color within spring varieties and by kernel hardness within winter varieties, which corresponds with geographical distribution of the varieties. Classifying varieties by market class, which is a combination of habit, hardness, and color, accounted for the greatest amount of variation (13.3%). We did not find evidence of decreased genetic diversity of either spring or winter varieties after the release of the first semidwarf wheat variety in 1961. On the contrary, northern and Pacific spring varieties, hard red spring (HRS), hard white spring (HWS), and soft white winter (SWW) had increases in both SNP and haplotype genetic diversity after 1961. The soft white spring (SWS) and soft red winter (SRW) market classes already had high genetic diversity in varieties before 1961 and showed some evidence of decreased diversity after 1961. Examination of temporal trends in genetic diversity also did not indicate long-term decline in diversity despite occasional fluctuations.
Collapse
Affiliation(s)
- Sajal R Sthapit
- Dep. of Plant Pathology, Washington State Univ., Pullman, WA, 99164, USA
- The Land Institute, 2440 E Water Well Rd, Salina, KS, 67401, USA
| | - Travis M Ruff
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, 99164, USA
| | - Marcus A Hooker
- Dep. of Plant Pathology, Washington State Univ., Pullman, WA, 99164, USA
| | - Deven R See
- Dep. of Plant Pathology, Washington State Univ., Pullman, WA, 99164, USA
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, 99164, USA
| |
Collapse
|
5
|
Salina E, Muterko A, Kiseleva A, Liu Z, Korol A. Dissection of Structural Reorganization of Wheat 5B Chromosome Associated With Interspecies Recombination Suppression. FRONTIERS IN PLANT SCIENCE 2022; 13:884632. [PMID: 36340334 PMCID: PMC9629394 DOI: 10.3389/fpls.2022.884632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 06/16/2023]
Abstract
Chromosomal rearrangements that lead to recombination suppression can have a significant impact on speciation, and they are also important for breeding. The regions of recombination suppression in wheat chromosome 5B were identified based on comparisons of the 5B map of a cross between the Chinese Spring (CS) variety of hexaploid wheat and CS-5Bdic (genotype CS with 5B substituted with its homologue from tetraploid Triticum dicoccoides) with several 5B maps of tetraploid and hexaploid wheat. In total, two regions were selected in which recombination suppression occurred in cross CS × CS-5Bdic when compared with other maps: one on the short arm, 5BS_RS, limited by markers BS00009810/BS00022336, and the second on the long arm, 5BL_RS, between markers Ra_c10633_2155 and BS00087043. The regions marked as 5BS_RS and 5BL_RS, with lengths of 5 Mb and 3.6 Mb, respectively, were mined from the 5B pseudomolecule of CS and compared to the homoeologous regions (7.6 and 3.8 Mb, respectively) of the 5B pseudomolecule of Zavitan (T. dicoccoides). It was shown that, in the case of 5BS_RS, the local heterochromatin islands determined by the satellite DNA (119.2) and transposable element arrays, as well as the dissimilarity caused by large insertions/deletions (chromosome rearrangements) between 5BSs aestivum/dicoccoides, are likely the key determinants of recombination suppression in the region. Two major and two minor segments with significant loss of similarity were recognized within the 5BL_RS region. It was shown that the loss of similarity, which can lead to suppression of recombination in the 5BL_RS region, is caused by chromosomal rearrangements, driven by the activity of mobile genetic elements (both DNA transposons and long terminal repeat retrotransposons) and their divergence during evolution. It was noted that the regions marked as 5BS_RS and 5BL_RS are associated with chromosomal rearrangements identified earlier by С-banding analysis of intraspecific polymorphism of tetraploid emmer wheat. The revealed divergence in 5BS_RS and 5BL_RS may be a consequence of interspecific hybridization, plant genetic adaptation, or both.
Collapse
Affiliation(s)
- Elena Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - Alexander Muterko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Antonina Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - Zhiyong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Sharma JS, Overlander M, Faris JD, Klindworth DL, Rouse MN, Kang H, Long Y, Jin Y, Lagudah ES, Xu SS. Characterization of synthetic wheat line Largo for resistance to stem rust. G3 (BETHESDA, MD.) 2021; 11:6292116. [PMID: 34849816 PMCID: PMC8496286 DOI: 10.1093/g3journal/jkab193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
Resistance breeding is an effective approach against wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The synthetic hexaploid wheat line Largo (pedigree: durum wheat “Langdon” × Aegilops tauschii PI 268210) was found to have resistance to a broad spectrum of Pgt races including the Ug99 race group. To identify the stem rust resistance (Sr) genes, we genotyped a population of 188 recombinant inbred lines developed from a cross between the susceptible wheat line ND495 and Largo using the wheat Infinium 90 K SNP iSelect array and evaluated the population for seedling resistance to the Pgt races TTKSK, TRTTF, and TTTTF in the greenhouse conditions. Based on genetic linkage analysis using the marker and rust data, we identified six quantitative trait loci (QTL) with effectiveness against different races. Three QTL on chromosome arms 6AL, 2BL, and 2BS corresponded to Sr genes Sr13c, Sr9e, and a likely new gene from Langdon, respectively. Two other QTL from PI 268210 on 2DS and 1DS were associated with a potentially new allele of Sr46 and a likely new Sr gene, respectively. In addition, Sr7a was identified as the underlying gene for the 4AL QTL from ND495. Knowledge of the Sr genes in Largo will help to design breeding experiments aimed to develop new stem rust-resistant wheat varieties. Largo and its derived lines are particularly useful for introducing two Ug99-effective genes Sr13c and Sr46 into modern bread wheat varieties. The 90 K SNP-based high-density map will be useful for identifying the other important genes in Largo.
Collapse
Affiliation(s)
- Jyoti Saini Sharma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Megan Overlander
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Justin D Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Daryl L Klindworth
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Matthew N Rouse
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Houyang Kang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.,Triticeae Research Institute, Sichuan Agricultural University, Sichuan 611130, China
| | - Yunming Long
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yue Jin
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Evans S Lagudah
- Agriculture Flagship, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| | - Steven S Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.,Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| |
Collapse
|
7
|
Zhang Z, Running KLD, Seneviratne S, Peters Haugrud AR, Szabo-Hever A, Shi G, Brueggeman R, Xu SS, Friesen TL, Faris JD. A protein kinase-major sperm protein gene hijacked by a necrotrophic fungal pathogen triggers disease susceptibility in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:720-732. [PMID: 33576059 DOI: 10.1111/tpj.15194] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 05/12/2023]
Abstract
Septoria nodorum blotch (SNB), a disease caused by the necrotrophic fungal pathogen Parastagonospora nodorum, is a threat to wheat (Triticum aestivum) production worldwide. Multiple inverse gene-for-gene interactions involving the recognition of necrotrophic effectors (NEs) by wheat sensitivity genes play major roles in causing SNB. One interaction involves the wheat gene Snn3 and the P. nodorum NE SnTox3. Here, we used a map-based strategy to clone the Snn3-D1 gene from Aegilops tauschii, the D-genome progenitor of common wheat. Snn3-D1 contained protein kinase and major sperm protein domains, both of which were essential for function as confirmed by mutagenesis. As opposed to other characterized interactions in this pathosystem, a compatible Snn3-D1-SnTox3 interaction was light-independent, and Snn3-D1 transcriptional expression was downregulated by light and upregulated by darkness. Snn3-D1 likely emerged in Ae. tauschii due to an approximately 218-kb insertion that occurred along the west bank of the Caspian Sea. The identification of this new class of NE sensitivity genes combined with the previously cloned sensitivity genes demonstrates that P. nodorum can take advantage of diverse host targets to trigger SNB susceptibility in wheat.
Collapse
Affiliation(s)
- Zengcui Zhang
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, 58102, USA
| | | | - Sudeshi Seneviratne
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Agnes Szabo-Hever
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, 58102, USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Robert Brueggeman
- Department of Crop and Soil Science, Washington State University, Pullman, WA, 99164, USA
| | - Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, 58102, USA
| | - Timothy L Friesen
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, 58102, USA
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, 58102, USA
| |
Collapse
|
8
|
Faris JD, Overlander ME, Kariyawasam GK, Carter A, Xu SS, Liu Z. Identification of a major dominant gene for race-nonspecific tan spot resistance in wild emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:829-841. [PMID: 31863156 DOI: 10.1007/s00122-019-03509-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
A single dominant gene found in tetraploid and hexaploid wheat controls broad-spectrum race-nonspecific resistance to the foliar disease tan spot caused by Pyrenophora tritici-repentis. Tan spot is an important foliar disease of durum and common wheat caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis. Genetic studies in common wheat have shown that pathogen-produced necrotrophic effectors interact with host genes in an inverse gene-for-gene manner to cause disease, but quantitative trait loci (QTLs) with broad race-nonspecific resistance also exist. Less work has been done to understand the genetics of tan spot interactions in durum wheat. Here, we evaluated a set of Langdon durum-wild emmer (Triticum turgidum ssp. dicoccoides) disomic chromosome substitution lines for reaction to four P. tritici-repentis isolates representing races 1, 2, 3, and 5 to identify wild emmer chromosomes potentially containing tan spot resistance genes. Chromosome 3B from the wild emmer accession IsraelA rendered the tan spot-susceptible durum cultivar Langdon resistant to all four fungal isolates. Genetic analysis indicated that a single dominant gene, designated Tsr7, governed resistance. Detailed mapping experiments showed that the Tsr7 locus is likely the same as the race-nonspecific QTL previously identified in the hexaploid wheat cultivars BR34 and Penawawa. Four user-friendly SNP-based semi-thermal asymmetric reverse PCR (STARP) markers cosegregated with Tsr7 and should be useful for marker-assisted selection of resistance. In addition to 3B, other wild emmer chromosomes contributed moderate levels of tan spot resistance, and, as has been shown previously for tetraploid wheat, the Tsn1-Ptr ToxA interaction was not associated with susceptibility. This is the first report of a major dominant gene governing resistance to tan spot in tetraploid wheat.
Collapse
Affiliation(s)
- Justin D Faris
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA.
| | - Megan E Overlander
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, 306 Walster Hall, Fargo, ND, 58105, USA
| | - Arron Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Steven S Xu
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, 306 Walster Hall, Fargo, ND, 58105, USA.
| |
Collapse
|
9
|
Zhang D, Zhu K, Dong L, Liang Y, Li G, Fang T, Guo G, Wu Q, Xie J, Chen Y, Lu P, Li M, Zhang H, Wang Z, Zhang Y, Sun Q, Liu Z. Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Schuy C, Groth J, Ammon A, Eydam J, Baier S, Schweizer G, Hanemann A, Herz M, Voll LM, Sonnewald U. Deciphering the genetic basis for vitamin E accumulation in leaves and grains of different barley accessions. Sci Rep 2019; 9:9470. [PMID: 31263124 PMCID: PMC6602966 DOI: 10.1038/s41598-019-45572-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/04/2019] [Indexed: 01/22/2023] Open
Abstract
Tocopherols and tocotrienols, commonly referred to as vitamin E, are essential compounds in food and feed. Due to their lipophilic nature they protect biomembranes by preventing the propagation of lipid-peroxidation especially during oxidative stress. Since their synthesis is restricted to photosynthetic organisms, plant-derived products are the major source of natural vitamin E. In the present study the genetic basis for high vitamin E accumulation in leaves and grains of different barley (Hordeum vulgare L.) accessions was uncovered. A genome wide association study (GWAS) allowed the identification of two genes located on chromosome 7H, homogentisate phytyltransferase (HPT-7H) and homogentisate geranylgeranyltransferase (HGGT) that code for key enzymes controlling the accumulation of tocopherols in leaves and tocotrienols in grains, respectively. Transcript profiling showed a correlation between HPT-7H expression and vitamin E content in leaves. Allele sequencing allowed to decipher the allelic variation of HPT-7H and HGGT genes corresponding to high and low vitamin E contents in the respective tissues. Using the obtained sequence information molecular markers have been developed which can be used to assist smart breeding of high vitamin E barley varieties. This will facilitate the selection of genotypes more tolerant to oxidative stress and producing high-quality grains.
Collapse
Affiliation(s)
- Christian Schuy
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany.
| | - Jennifer Groth
- Institut für Pflanzenbau und Pflanzenzüchtung, Bavarian State Research Center for Agriculture, Am Gereuth 8, D-85354, Freising, Germany
| | - Alexandra Ammon
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Julia Eydam
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Steffen Baier
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
- Saatzucht Josef Breun GmbH & Co. KG, Amselweg 1, D-91074, Herzogenaurach, Germany
| | - Günther Schweizer
- Institut für Pflanzenbau und Pflanzenzüchtung, Bavarian State Research Center for Agriculture, Am Gereuth 8, D-85354, Freising, Germany
| | - Anja Hanemann
- Saatzucht Josef Breun GmbH & Co. KG, Amselweg 1, D-91074, Herzogenaurach, Germany
| | - Markus Herz
- Institut für Pflanzenbau und Pflanzenzüchtung, Bavarian State Research Center for Agriculture, Am Gereuth 8, D-85354, Freising, Germany
| | - Lars M Voll
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
- Division of Plant Physiology, Department Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043, Marburg, Germany
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| |
Collapse
|
11
|
Peters Haugrud AR, Zhang Z, Richards JK, Friesen TL, Faris JD. Genetics of Variable Disease Expression Conferred by Inverse Gene-For-Gene Interactions in the Wheat- Parastagonospora nodorum Pathosystem. PLANT PHYSIOLOGY 2019; 180:420-434. [PMID: 30858234 PMCID: PMC6501074 DOI: 10.1104/pp.19.00149] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/24/2019] [Indexed: 05/18/2023]
Abstract
The wheat-Parastagonospora nodorum pathosystem involves the recognition of pathogen-secreted necrotrophic effectors (NEs) by corresponding wheat NE sensitivity genes. This inverse gene-for-gene recognition leads to necrotrophic effector-triggered susceptibility and ultimately septoria nodorum blotch disease. Here, we used multiple pathogen isolates to individually evaluate the effects of the host gene-NE interactions Tan spot necrosis1-Stagonospora nodorum ToxinA (Tsn1-SnToxA), Stagonospora nodorum necrosis1-Stagonospora nodorum Toxin1 (Snn1-SnTox1), and Stagonospora nodorum necrosis3-B genome homeolog1-Stagonospora nodorum Toxin3 (Snn3-B1-SnTox3), alone and in various combinations, to determine the relative importance of these interactions in causing disease. Genetic analysis of a recombinant inbred wheat population inoculated separately with three P. nodorum isolates, all of which produce all three NEs, indicated that the Tsn1-SnToxA and Snn3-B1-SnTox3 interactions contributed to disease caused by all four isolates, but their effects varied and ranged from epistatic to additive. The Snn1-SnTox1 interaction was associated with increased disease for one isolate, but for other isolates, there was evidence that this interaction inhibited the expression of other host gene-NE interactions. RNA sequencing analysis in planta showed that SnTox1 was differentially expressed between these three isolates after infection. Further analysis of NE gene-knockout isolates showed that the effect of some interactions could be masked or inhibited by other compatible interactions, and the regulation of this occurs at the level of NE gene transcription. Collectively, these results show that the inverse gene-for-gene interactions leading to necrotrophic effector-triggered susceptibility in the wheat-P. nodorum pathosystem vary in their effects depending on the genetic backgrounds of the pathogen and host, and interplay among the interactions is complex and intricately regulated.
Collapse
Affiliation(s)
| | - Zengcui Zhang
- United States Department of Agriculture-Agriculture Research Service, Cereal Crops Research Unit, Eduard T. Schafer Agricultural Research Center, Fargo, North Dakota 58102
| | - Jonathan K Richards
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Timothy L Friesen
- United States Department of Agriculture-Agriculture Research Service, Cereal Crops Research Unit, Eduard T. Schafer Agricultural Research Center, Fargo, North Dakota 58102
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Justin D Faris
- United States Department of Agriculture-Agriculture Research Service, Cereal Crops Research Unit, Eduard T. Schafer Agricultural Research Center, Fargo, North Dakota 58102
| |
Collapse
|
12
|
Ma G, Zhang W, Liu L, Chao WS, Gu YQ, Qi L, Xu SS, Cai X. Cloning and characterization of the homoeologous genes for the Rec8-like meiotic cohesin in polyploid wheat. BMC PLANT BIOLOGY 2018; 18:224. [PMID: 30305022 PMCID: PMC6180652 DOI: 10.1186/s12870-018-1442-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/27/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Meiosis is a specialized cell division critical for gamete production in the sexual reproduction of eukaryotes. It ensures genome integrity and generates genetic variability as well. The Rec8-like cohesin is a cohesion protein essential for orderly chromosome segregation in meiotic cell division. The Rec8-like genes and cohesins have been cloned and characterized in diploid models, but not in polyploids. The present study aimed to clone the homoeologous genes (homoeoalleles) for Rec8-like cohesin in polyploid wheat, an important food crop for humans, and to characterize their structure and function under a polyploid condition. RESULTS We cloned two Rec8-like homoeoalleles from tetraploid wheat (TtRec8-A1 and TtRec8-B1) and one from hexaploid wheat (TaRec8-D1), and performed expression and functional analyses of the homoeoalleles. Also, we identified other two Rec8 homoeoalleles in hexaploid wheat (TaRec8-A1 and TaRec8-B1) and the one in Aegilops tauschii (AetRec8-D1) by referencing the DNA sequences of the Rec8 homoeoalleles cloned in this study. The coding DNA sequences (CDS) of these six Rec8 homoeoalleles are all 1,827 bp in length, encoding 608 amino acids. They differed from each other primarily in introns although single nucleotide polymorphisms were detected in CDS. Substantial difference was observed between the homoeoalleles from the subgenome B (TtRec8-B1 and TaRec8-B1) and those from the subgenomes A and D (TtRec8-A1, TaRec8-A1, and TaRec8-D1). TtRec8-A1 expressed dominantly over TtRec8-B1, but comparably to TaRec8-D1, in polyploid wheat. In addition, we developed the antibody against wheat Rec8 and used the antibody to detect Rec8 cohesin in the Western blotting and subcellular localization analyses. CONCLUSIONS The Rec8 homoeoalleles from the subgenomes A and D are transcriptionally more active than the one from the subgenome B in polyploid wheat. The structural variation and differential expression of the Rec8 homoeoalleles indicate a unique cross-genome coordination of the homoeologous genes in polyploid wheat, and imply the distinction of the wheat subgenome B from the subgenomes A and D in the origin and evolution.
Collapse
Affiliation(s)
- Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Liwang Liu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
- Present address: National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Wun S. Chao
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND 58102 USA
| | - Yong Qiang Gu
- USDA-ARS, Western Regional Research Center, Albany, CA 94710 USA
| | - Lili Qi
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND 58102 USA
| | - Steven S. Xu
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND 58102 USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
- North Dakota State University, NDSU Dept. 7670, P.O. Box 6050, Fargo, ND 58108 USA
| |
Collapse
|
13
|
Kumari S, Jaiswal V, Mishra VK, Paliwal R, Balyan HS, Gupta PK. QTL mapping for some grain traits in bread wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:909-920. [PMID: 30150865 PMCID: PMC6103944 DOI: 10.1007/s12298-018-0552-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/07/2018] [Accepted: 05/08/2018] [Indexed: 05/19/2023]
Abstract
Grain traits are important agronomic attributes with the market value as well as milling yield of bread wheat. In the present study, quantitative trait loci (QTL) regulating grain traits in wheat were identified. Data for grain area size (GAS), grain width (GWid), factor form density (FFD), grain length-width ratio (GLWR), thousand grain weight (TGW), grain perimeter length (GPL) and grain length (GL) were recorded on a recombinant inbred line derived from the cross of NW1014 × HUW468 at Meerut and Varanasi locations. A linkage map of 55 simple sequence repeat markers for 8 wheat chromosomes was used for QTL analysis by Composite interval mapping. Eighteen QTLs distributed on 8 chromosomes were identified for seven grain traits. Of these, five QTLs for GLWR were found on chromosomes 1A, 6A, 2B, and 7B, three QTLs for GPL were located on chromosomes 4A, 5A and 7B and three QTLs for GAS were mapped on 5D and 7D. Two QTLs were identified on chromosomes 4A and 5A for GL and two QTLs for GWid were identified on chromosomes 7D and 6A. Similarly, two QTLs for FFD were found on chromosomes 1A and 5D. A solitary QTL for TGW was identified on chromosome 2B. For several traits, QTLs were also co-localized on chromosomes 2B, 4A, 5A, 6A, 5D, 7B and 7D. The QTLs detected in the present study may be validated for specific crosses and then used for marker-assisted selection to improve grain quality in bread wheat.
Collapse
Affiliation(s)
- Supriya Kumari
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P. India
| | - Vandana Jaiswal
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P. India
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P. India
| | - Rajneesh Paliwal
- International Institute of Tropical Agriculture (IITA), Ibadan, PMB 5320 Nigeria
| | - Harindra Singh Balyan
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P. India
| | - Pushpendra Kumar Gupta
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P. India
| |
Collapse
|
14
|
Ma GJ, Song QJ, Markell SG, Qi LL. High-throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R 15 , in sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1423-1432. [PMID: 29564500 DOI: 10.1007/s00122-018-3087-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
A novel rust resistance gene, R 15 , derived from the cultivated sunflower HA-R8 was assigned to linkage group 8 of the sunflower genome using a genotyping-by-sequencing approach. SNP markers closely linked to R 15 were identified, facilitating marker-assisted selection of resistance genes. The rust virulence gene is co-evolving with the resistance gene in sunflower, leading to the emergence of new physiologic pathotypes. This presents a continuous threat to the sunflower crop necessitating the development of resistant sunflower hybrids providing a more efficient, durable, and environmentally friendly host plant resistance. The inbred line HA-R8 carries a gene conferring resistance to all known races of the rust pathogen in North America and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments of 140 F2 individuals derived from a cross of HA 89 with HA-R8, rust resistance in the population was found to be conferred by a single dominant gene (R 15 ) originating from HA-R8. Genotypic analysis with the currently available SSR markers failed to find any association between rust resistance and any markers. Therefore, we used genotyping-by-sequencing (GBS) analysis to achieve better genomic coverage. The GBS data showed that R 15 was located at the top end of linkage group (LG) 8. Saturation with 71 previously mapped SNP markers selected within this region further showed that it was located in a resistance gene cluster on LG8, and mapped to a 1.0-cM region between three co-segregating SNP makers SFW01920, SFW00128, and SFW05824 as well as the NSA_008457 SNP marker. These closely linked markers will facilitate marker-assisted selection and breeding in sunflower.
Collapse
Affiliation(s)
- G J Ma
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Q J Song
- Soybean Genomics and Improvement Laboratory, USDA-Agricultural Research Service, Beltsville, MD, 20705-2350, USA
| | - S G Markell
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - L L Qi
- Red River Valley Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
15
|
High-Resolution Mapping of Crossover Events in the Hexaploid Wheat Genome Suggests a Universal Recombination Mechanism. Genetics 2017; 206:1373-1388. [PMID: 28533438 DOI: 10.1534/genetics.116.196014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/12/2017] [Indexed: 11/18/2022] Open
Abstract
During meiosis, crossovers (COs) create new allele associations by reciprocal exchange of DNA. In bread wheat (Triticum aestivum L.), COs are mostly limited to subtelomeric regions of chromosomes, resulting in a substantial loss of breeding efficiency in the proximal regions, though these regions carry ∼60-70% of the genes. Identifying sequence and/or chromosome features affecting recombination occurrence is thus relevant to improve and drive recombination. Using the recent release of a reference sequence of chromosome 3B and of the draft assemblies of the 20 other wheat chromosomes, we performed fine-scale mapping of COs and revealed that 82% of COs located in the distal ends of chromosome 3B representing 19% of the chromosome length. We used 774 SNPs to genotype 180 varieties representative of the Asian and European genetic pools and a segregating population of 1270 F6 lines. We observed a common location for ancestral COs (predicted through linkage disequilibrium) and the COs derived from the segregating population. We delineated 73 small intervals (<26 kb) on chromosome 3B that contained 252 COs. We observed a significant association of COs with genic features (73 and 54% in recombinant and nonrecombinant intervals, respectively) and with those expressed during meiosis (67% in recombinant intervals and 48% in nonrecombinant intervals). Moreover, while the recombinant intervals contained similar amounts of retrotransposons and DNA transposons (42 and 53%), nonrecombinant intervals had a higher level of retrotransposons (63%) and lower levels of DNA transposons (28%). Consistent with this, we observed a higher frequency of a DNA motif specific to the TIR-Mariner DNA transposon in recombinant intervals.
Collapse
|
16
|
Tiwari VK, Heesacker A, Riera-Lizarazu O, Gunn H, Wang S, Wang Y, Gu YQ, Paux E, Koo DH, Kumar A, Luo MC, Lazo G, Zemetra R, Akhunov E, Friebe B, Poland J, Gill BS, Kianian S, Leonard JM. A whole-genome, radiation hybrid mapping resource of hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:195-207. [PMID: 26945524 DOI: 10.1111/tpj.13153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole-genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics-based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole-genome using these approaches is nearly impossible. We developed a whole-genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high-density single nucleotide polymorphism (SNP) array. At the whole-genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500 . The 7296 unique mapping bins provided a five- to eight-fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low-cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS-WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high-quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Adam Heesacker
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | | | - Hilary Gunn
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Shichen Wang
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Yi Wang
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, NY, USA
| | - Young Q Gu
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, NY, USA
| | - Etienne Paux
- Diversité et Ecophysiologie des Céréales, INRA, UMR 1095 Génétique, 5 chemin de Beaulieu, F-63039, Clermont-Ferrand, France
- Diversité et Ecophysiologie des Céréales, UMR 1095 Génétique, Université Blaise Pascal, F-63177, Aubière Cedex, France
| | - Dal-Hoe Koo
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Gerard Lazo
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, NY, USA
| | - Robert Zemetra
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Bikram S Gill
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Shahryar Kianian
- Cereal Disease Laboratory, University of Minnesota, Saint Paul, MN, USA
| | - Jeffrey M Leonard
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
17
|
Qi LL, Foley ME, Cai XW, Gulya TJ. Genetics and mapping of a novel downy mildew resistance gene, Pl(18), introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:741-752. [PMID: 26747047 DOI: 10.1007/s00122-015-2662-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 05/20/2023]
Abstract
A novel downy mildew resistance gene, Pl(18), was introgressed from wild Helianthus argophyllus into cultivated sunflower and genetically mapped to linkage group 2 of the sunflower genome. The new germplasm, HA-DM1, carrying Pl(18) has been released to the public. Sunflower downy mildew (DM) is considered to be the most destructive foliar disease that has spread to every major sunflower-growing country of the world, except Australia. A new dominant downy mildew resistance gene (Pl 18) transferred from wild Helianthus argophyllus (PI 494573) into cultivated sunflower was mapped to linkage group (LG) 2 of the sunflower genome using bulked segregant analysis with 869 simple sequence repeat (SSR) markers. Phenotyping 142 BC1F2:3 families derived from the cross of HA 89 and H. argophyllus confirmed the single gene inheritance of resistance. Since no other Pl gene has been mapped to LG2, this gene was novel and designated as Pl (18). SSR markers CRT214 and ORS203 flanked Pl(18) at a genetic distance of 1.1 and 0.4 cM, respectively. Forty-six single nucleotide polymorphism (SNP) markers that cover the Pl(18) region were surveyed for saturation mapping of the region. Six co-segregating SNP markers were 1.2 cM distal to Pl(18), and another four co-segregating SNP markers were 0.9 cM proximal to Pl(18). The new BC2F4-derived germplasm, HA-DM1, carrying Pl(18) has been released to the public. This new line is highly resistant to all Plasmopara halstedii races identified in the USA providing breeders with an effective new source of resistance against downy mildew in sunflower. The molecular markers that were developed will be especially useful in marker-assisted selection and pyramiding of Pl resistance genes because of their close proximity to the gene and the availability of high-throughput SNP detection assays.
Collapse
Affiliation(s)
- L L Qi
- USDA-Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA.
| | - M E Foley
- USDA-Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA
| | - X W Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - T J Gulya
- USDA-Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA
| |
Collapse
|
18
|
Zhu X, Zhong S, Chao S, Gu YQ, Kianian SF, Elias E, Cai X. Toward a better understanding of the genomic region harboring Fusarium head blight resistance QTL Qfhs.ndsu-3AS in durum wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:31-43. [PMID: 26385373 DOI: 10.1007/s00122-015-2606-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/07/2015] [Indexed: 05/08/2023]
Abstract
New molecular markers were developed and mapped to the FHB resistance QTL region in high resolution. Micro-collinearity of the QTL region with rice and Brachypodium was revealed for a better understanding of the genomic region. The wild emmer wheat (Triticum dicoccoides)-derived Fusarium head blight (FHB) resistance quantitative trait locus (QTL) Qfhs.ndsu-3AS previously mapped to the short arm of chromosome 3A (3AS) in a population of recombinant inbred chromosome lines (RICLs). This study aimed to attain a better understanding of the genomic region harboring Qfhs.ndsu-3AS and to improve the utility of the QTL in wheat breeding. Micro-collinearity of the QTL region with rice chromosome 1 and Brachypodium chromosome 2 was identified and used for marker development in saturation mapping. A total of 42 new EST-derived sequence tagged site (STS) and simple sequence repeat (SSR) markers were developed and mapped to the QTL and nearby regions on 3AS. Further comparative analysis revealed a complex collinearity of the 3AS genomic region with their collinear counterparts of rice and Brachypodium. Fine mapping of the QTL region resolved five co-segregating markers (Xwgc1186/Xwgc716/Xwgc1143/Xwgc501/Xwgc1204) into three distinct loci proximal to Xgwm2, a marker previously reported to be closely linked to the QTL. Four other markers (Xwgc1226, Xwgc510, Xwgc1296, and Xwgc1301) mapped farther proximal to the above markers in the QTL region with a higher resolution. Five homozygous recombinants with shortened T. dicoccoides chromosomal segments in the QTL region were recovered by molecular marker analysis and evaluated for FHB resistance. Qfhs.ndsu-3AS was positioned to a 5.2 cM interval flanked by the marker Xwgc501 and Xwgc510. The recombinants containing Qfhs.ndsu-3AS and new markers defining the QTL will facilitate utilization of this resistance source in wheat breeding.
Collapse
Affiliation(s)
- Xianwen Zhu
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Shaobin Zhong
- Departments of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Shiaoman Chao
- The Red River Valley Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Yong Qiang Gu
- The Western Regional Research Center, USDA-ARS, Albany, CA, 94710, USA
| | - Shahryar F Kianian
- The Cereal Disease Laboratory, USDA-ARS, 1551 Lindig Street, St. Paul, MN, 55108, USA
| | - Elias Elias
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xiwen Cai
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
19
|
Sehgal D, Singh R, Rajpal VR. Quantitative Trait Loci Mapping in Plants: Concepts and Approaches. MOLECULAR BREEDING FOR SUSTAINABLE CROP IMPROVEMENT 2016. [DOI: 10.1007/978-3-319-27090-6_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Shi G, Zhang Z, Friesen TL, Bansal U, Cloutier S, Wicker T, Rasmussen JB, Faris JD. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Mol Genet Genomics 2015; 291:107-19. [PMID: 26187026 DOI: 10.1007/s00438-015-1091-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022]
Abstract
Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a severe foliar and glume disease on durum and common wheat. Pathogen-produced necrotrophic effectors (NEs) are the major determinants for SNB on leaves. One such NE is SnTox3, which evokes programmed cell death and leads to disease when recognized by the wheat Snn3-B1 gene. Here, we developed saturated genetic linkage maps of the Snn3-B1 region using two F2 populations derived from the SnTox3-sensitive line Sumai 3 crossed with different SnTox3-insensitive lines. Markers were identified and/or developed from various resources including previously mapped simple sequence repeats, bin-mapped expressed sequence tags, single nucleotide polymorphisms, and whole genome survey sequences. Subsequent high-resolution mapping of the Snn3-B1 locus in 5600 gametes delineated the gene to a 1.5 cM interval. Analysis of micro-colinearity of the Snn3-B1 region indicated that it was highly disrupted compared to rice and Brachypodium distachyon. The screening of a collection of durum and common wheat cultivars with tightly linked markers indicated they are not diagnostic for the presence of Snn3-B1, but can be useful for marker-assisted selection if the SnTox3 reactions of lines are first determined. Finally, we developed an ethyl methanesulfonate-induced mutant population of Sumai 3 where the screening of 408 M2 families led to the identification of 17 SnTox3-insensitive mutants. These mutants along with the markers and high-resolution map developed in this research provide a strong foundation for the map-based cloning of Snn3-B1, which will broaden our understanding of the wheat-P. nodorum system and plant-necrotrophic pathogen interactions in general.
Collapse
Affiliation(s)
- Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Zengcui Zhang
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA
| | - Timothy L Friesen
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA
| | - Urmil Bansal
- The University of Sydney PBI-Cobbity, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Sylvie Cloutier
- Eastern Cereal and Oil Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
21
|
Qi LL, Long YM, Jan CC, Ma GJ, Gulya TJ. Pl(17) is a novel gene independent of known downy mildew resistance genes in the cultivated sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:757-67. [PMID: 25673143 DOI: 10.1007/s00122-015-2470-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/26/2015] [Indexed: 05/02/2023]
Abstract
Pl 17, a novel downy mildew resistance gene independent of known downy mildew resistance genes in sunflowers, was genetically mapped to linkage group 4 of the sunflower genome. Downy mildew (DM), caused by Plasmopara halstedii (Farl.). Berl. et de Toni, is one of the serious sunflower diseases in the world due to its high virulence and the variability of the pathogen. DM resistance in the USDA inbred line, HA 458, has been shown to be effective against all virulent races of P. halstedii currently identified in the USA. To determine the chromosomal location of this resistance, 186 F 2:3 families derived from a cross of HA 458 with HA 234 were phenotyped for their resistance to race 734 of P. halstedii. The segregation ratio of the population supported that the resistance was controlled by a single dominant gene, Pl 17. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) primers were used to identify molecular markers linked to Pl 17. Bulked segregant analysis using 849 SSR markers located Pl 17 to linkage group (LG) 4, which is the first DM gene discovered in this linkage group. An F2 population of 186 individuals was screened with polymorphic SSR and SNP primers from LG4. Two flanking markers, SNP SFW04052 and SSR ORS963, delineated Pl 17 in an interval of 3.0 cM. The markers linked to Pl 17 were validated in a BC3 population. A search for the physical location of flanking markers in sunflower genome sequences revealed that the Pl 17 region had a recombination frequency of 0.59 Mb/cM, which was a fourfold higher recombination rate relative to the genomic average. This region can be considered amenable to molecular manipulation for further map-based cloning of Pl 17.
Collapse
Affiliation(s)
- L L Qi
- USDA-Agricultural Research Service, Northern Crop Science Laboratory, 1605 Albrecht Blvd N, Fargo, ND, 58102-2765, USA,
| | | | | | | | | |
Collapse
|
22
|
Kapanigowda MH, Payne WA, Rooney WL, Mullet JE, Balota M. Quantitative trait locus mapping of the transpiration ratio related to preflowering drought tolerance in sorghum (Sorghum bicolor). FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:1049-1065. [PMID: 32481057 DOI: 10.1071/fp13363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/01/2014] [Indexed: 05/25/2023]
Abstract
To meet future food needs, grain production must increase despite reduced water availability, so waterproductivity must rise. One way to do this is to raise the ratio of biomass produced to water transpired, which is controlled by the ratio of CO2 assimilation (A) to transpiration (E) (i.e. the transpiration ratio, A : E divided by vapour pressure deficit) or anything affecting stomatal movement.. We describe the genetic variation and basis of A, E and A : E among 70 recombinant inbred lines (RILs) of sorghum (Sorghum bicolor (L.) Moench), using greenhouse experiments. Experiment 1 used 40% and 80% of field capacity (FC) as water regimes; Experiment 2 used 80% FC. Genotype had a significant effect on A, E and A : E. In Experiment 1, mean values for A : E were 1.2-4.4 mmol CO2 mol-1 H2O kPa-1 and 1.6-3.1 mmol CO2 mol-1 H2O kPa-1 under 40% and 80% FC, respectively. In Experiment 2, values were 5.6-9.8 mmol CO2 mol-1 H2O kPa-1. Pooled data for A : E and A : E VPD-1 from Experiment 1 indicate that A : E fell quickly at temperatures >32.3°C. A : E distributions were skewed. Mean heritabilities for A : E were 0.9 (40% FC) and 0.8 (80% FC). Three significant quantitative trait loci (QTLs) associated with A:E, two on SBI-09 and one on SBI-10, accounted for 17-21% of the phenotypic variation. Subsequent experiments identified 38 QTLs controlling variation in height, flowering, biomass, leaf area, greenness and stomatal density. Colocalisation of A : E QTLs with agronomic traits indicated that these QTLs can be used for improving sorghum performance through marker assisted selection (MAS) under preflowering drought stress.
Collapse
Affiliation(s)
| | - William A Payne
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - William L Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - John E Mullet
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Maria Balota
- Virginia Tech Tidewater Agricultural Research and Extension Center, 6321 Holland Road, Suffolk, VA 23437, USA
| |
Collapse
|
23
|
Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication. Gene 2014; 542:198-208. [DOI: 10.1016/j.gene.2014.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
|
24
|
Faris JD, Zhang Z, Garvin DF, Xu SS. Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat. Mol Genet Genomics 2014; 289:641-51. [PMID: 24652470 DOI: 10.1007/s00438-014-0836-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/26/2014] [Indexed: 12/23/2022]
Abstract
The development and morphology of the wheat spike is important because the spike is where reproduction occurs and it holds the grains until harvest. Therefore, genes that influence spike morphology are of interest from both theoretical and practical stand points. When substituted for the native chromosome 2A in the tetraploid Langdon (LDN) durum wheat background, the Triticum turgidum ssp. dicoccoides chromosome 2A from accession IsraelA confers a short, compact spike with fewer spikelets per spike compared to LDN. Molecular mapping and quantitative trait loci (QTL) analysis of these traits in a homozygous recombinant population derived from LDN × the chromosome 2A substitution line (LDNIsA-2A) indicated that the number of spikelets per spike and spike length were controlled by linked, but different, loci on the long arm of 2A. A QTL explaining most of the variation for spike compactness coincided with the QTL for spike length. Comparative mapping indicated that the QTL for number of spikelets per spike overlapped with a previously mapped QTL for Fusarium head blight susceptibility. The genes governing spike length and compactness were not orthologous to either sog or C, genes known to confer compact spikes in diploid and hexaploid wheat, respectively. Mapping and sequence analysis indicated that the gene governing spike length and compactness derived from wild emmer could be an ortholog of the barley Cly1/Zeo gene, which research indicates is an AP2-like gene pleiotropically affecting cleistogamy, flowering time, and rachis internode length. This work provides researchers with knowledge of new genetic loci and associated markers that may be useful for manipulating spike morphology in durum wheat.
Collapse
Affiliation(s)
- Justin D Faris
- USDA-Agricultural Research Service NPA NCSL, Cereal Crops Research Unit, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA,
| | | | | | | |
Collapse
|
25
|
Shatalina M, Messmer M, Feuillet C, Mascher F, Paux E, Choulet F, Wicker T, Keller B. High-resolution analysis of a QTL for resistance to Stagonospora nodorum glume blotch in wheat reveals presence of two distinct resistance loci in the target interval. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:573-586. [PMID: 24306318 DOI: 10.1007/s00122-013-2240-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/19/2013] [Indexed: 06/02/2023]
Abstract
Stagonospora nodorum glume blotch (SNG), caused by the necrotrophic fungus Stagonospora nodorum, is one of the economically important diseases of bread wheat (Triticum aestivum L.). Resistance to SNG is known to be quantitative and previous studies of a recombinant inbred line (RIL) population identified a major quantitative trait locus (QTL) for resistance to SNG on the short arm of chromosome 3B. To localize this QTL (QSng.sfr-3BS) with high resolution, we constructed a genetic map for the QTL target region using information from sequenced flow-sorted chromosomes 3B of the two parental cultivars 'Arina' and 'Forno', the physical map of chromosome 3B of cultivar 'Chinese Spring' and BAC-clone sequences. The mapping population of near-isogenic lines (NIL) was evaluated for SNG resistance in field infection tests. NILs segregated for disease resistance as well as for plant height; additionally, we observed a high environmental influence on the trait. Our analysis detected a strong negative correlation of SNG resistance and plant height. Further analysis of the target region identified two linked loci associated with SNG resistance. One of them was also associated with plant height, revealing an effect of QSng.sfr-3BS on plant height that was hidden in the RIL population. This result demonstrates an unexpectedly high genetic complexity of resistance controlled by QSng.sfr-3BS and shows the importance of the study of QTL in mendelized form in NILs.
Collapse
Affiliation(s)
- Margarita Shatalina
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Timonova EM, Dobrovol’skaya OB, Sergeeva EM, Bildanova LL, Sourdille P, Feuillet C, Salina EA. A comparative genetic and cytogenetic mapping of wheat chromosome 5B using introgression lines. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413120132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Bolton MD, de Jonge R, Inderbitzin P, Liu Z, Birla K, Van de Peer Y, Subbarao KV, Thomma BPHJ, Secor GA. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution. Fungal Genet Biol 2013; 62:43-54. [PMID: 24216224 DOI: 10.1016/j.fgb.2013.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 12/23/2022]
Abstract
Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species.
Collapse
Affiliation(s)
- Melvin D Bolton
- Northern Crop Science Laboratory, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States.
| | - Ronnie de Jonge
- Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Patrik Inderbitzin
- Department of Plant Pathology, University of California, Davis, CA, United States
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Keshav Birla
- Northern Crop Science Laboratory, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States; Department of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, CA, United States
| | - Bart P H J Thomma
- Department of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Gary A Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
28
|
Faris JD, Liu Z, Xu SS. Genetics of tan spot resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2197-217. [PMID: 23884599 DOI: 10.1007/s00122-013-2157-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/12/2013] [Indexed: 05/20/2023]
Abstract
Tan spot is a devastating foliar disease of wheat caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis. Much has been learned during the past two decades about the genetics of wheat-P. tritici-repentis interactions. Research has shown that the fungus produces at least three host-selective toxins (HSTs), known as Ptr ToxA, Ptr ToxB, and Ptr ToxC, that interact directly or indirectly with the products of the dominant host genes Tsn1, Tsc2, and Tsc1, respectively. The recent cloning and characterization of Tsn1 provided strong evidence that the pathogen utilizes HSTs to subvert host resistance mechanisms to cause disease. However, in addition to host-HST interactions, broad-spectrum, race non-specific resistance QTLs and recessively inherited qualitative 'resistance' genes have been identified. Molecular markers suitable for marker-assisted selection against HST sensitivity genes and for race non-specific resistance QTLs have been developed and used to generate adapted germplasm with good levels of tan spot resistance. Future research is needed to identify novel HSTs and corresponding host sensitivity genes, determine if the recessively inherited resistance genes are HST insensitivities, extend the current race classification system to account for new HSTs, and determine the molecular basis of race non-specific resistance QTLs and their relationships with host-HST interactions at the molecular level. Necrotrophic pathogens such as P. tritici-repentis are likely to become increasingly significant under a changing global climate making it imperative to further characterize the wheat-P. tritici-repentis pathosystem and develop tan spot resistant wheat varieties.
Collapse
Affiliation(s)
- Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, 1605 Albrecht Blvd., Fargo, ND 58102-2765, USA.
| | | | | |
Collapse
|
29
|
Wang ZN, Banik M, Cloutier S. Divergent evolutionary mechanisms of co-located Tak/Lrk and Glu-D3 loci revealed by comparative analysis of grass genomes. Genome 2013; 56:195-204. [PMID: 23706072 DOI: 10.1139/gen-2012-0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seed storage and disease resistance proteins are major traits of wheat. The study of their gene organization and evolution has some implications in breeding. In this study, we characterized the hexaploid wheat D-genome BAC clone TaBAC703A9 that contains a low molecular weight glutenin locus (Glu-D3) and a resistance gene analogue cluster. With a gene density of one gene per 4.8 kb, the cluster contains four resistance gene analogues, namely Tak703-1, Lrr703, Tak703, and Lrk703. This structural cluster unit was conserved across nine grass genomes, but divergent evolutionary mechanisms have been involved in shaping the Tak/Lrk loci in the different species. Gene duplication was the major force for the Tak/Lrk evolution in oats, maize, barley, wheat, sorghum, and Brachypodium, while tandem duplication drove the expansion of this locus in japonica rice. Despite the close proximity of the Glu-D3 and the Tak/Lrk loci in wheat, the evolutionary mechanisms that drove their amplification differ. The Glu-D3 region had a lower gene density, and its amplification was driven by retroelements.
Collapse
Affiliation(s)
- Zi-Ning Wang
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg MB R3T 2M9, Canada
| | | | | |
Collapse
|
30
|
Chancerel E, Lamy JB, Lesur I, Noirot C, Klopp C, Ehrenmann F, Boury C, Provost GL, Label P, Lalanne C, Léger V, Salin F, Gion JM, Plomion C. High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biol 2013; 11:50. [PMID: 23597128 PMCID: PMC3660193 DOI: 10.1186/1741-7007-11-50] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/16/2013] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND The availability of a large expressed sequence tags (EST) resource and recent advances in high-throughput genotyping technology have made it possible to develop highly multiplexed SNP arrays for multi-objective genetic applications, including the construction of meiotic maps. Such approaches are particularly useful in species with a large genome size, precluding the use of whole-genome shotgun assembly with current technologies. RESULTS In this study, a 12 k-SNP genotyping array was developed for maritime pine from an extensive EST resource assembled into a unigene set. The offspring of three-generation outbred and inbred mapping pedigrees were then genotyped. The inbred pedigree consisted of a classical F2 population resulting from the selfing of a single inter-provenance (Landes x Corsica) hybrid tree, whereas the outbred pedigree (G2) resulted from a controlled cross of two intra-provenance (Landes x Landes) hybrid trees. This resulted in the generation of three linkage maps based on SNP markers: one from the parental genotype of the F2 population (1,131 markers in 1,708 centimorgan (cM)), and one for each parent of the G2 population (1,015 and 1,110 markers in 1,447 and 1,425 cM for the female and male parents, respectively). A comparison of segregation patterns in the progeny obtained from the two types of mating (inbreeding and outbreeding) led to the identification of a chromosomal region carrying an embryo viability locus with a semi-lethal allele. Following selfing and segregation, zygote mortality resulted in a deficit of Corsican homozygous genotypes in the F2 population. This dataset was also used to study the extent and distribution of meiotic recombination along the length of the chromosomes and the effect of sex and/or genetic background on recombination. The genetic background of trees in which meiotic recombination occurred was found to have a significant effect on the frequency of recombination. Furthermore, only a small proportion of the recombination hot- and cold-spots were common to all three genotypes, suggesting that the spatial pattern of recombination was genetically variable. CONCLUSION This study led to the development of classical genomic tools for this ecologically and economically important species. It also identified a chromosomal region bearing a semi-lethal recessive allele and demonstrated the genetic variability of recombination rate over the genome.
Collapse
|
31
|
Marone D, Laidò G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM. A high-density consensus map of A and B wheat genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1619-38. [PMID: 22872151 PMCID: PMC3493672 DOI: 10.1007/s00122-012-1939-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/03/2012] [Indexed: 05/18/2023]
Abstract
A durum wheat consensus linkage map was developed by combining segregation data from six mapping populations. All of the crosses were derived from durum wheat cultivars, except for one accession of T. ssp. dicoccoides. The consensus map was composed of 1,898 loci arranged into 27 linkage groups covering all 14 chromosomes. The length of the integrated map and the average marker distance were 3,058.6 and 1.6 cM, respectively. The order of the loci was generally in agreement with respect to the individual maps and with previously published maps. When the consensus map was aligned to the deletion bin map, 493 markers were assigned to specific bins. Segregation distortion was found across many durum wheat chromosomes, with a higher frequency for the B genome. This high-density consensus map allowed the scanning of the genome for chromosomal rearrangements occurring during the wheat evolution. Translocations and inversions that were already known in literature were confirmed, and new putative rearrangements are proposed. The consensus map herein described provides a more complete coverage of the durum wheat genome compared with previously developed maps. It also represents a step forward in durum wheat genomics and an essential tool for further research and studies on evolution of the wheat genome.
Collapse
Affiliation(s)
- Daniela Marone
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Giovanni Laidò
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Agata Gadaleta
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Pasqualina Colasuonno
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | | | - Angelica Giancaspro
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Stefania Giove
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Giosué Panio
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Maria A. Russo
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | | | - Luigi Cattivelli
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
- CRA-Genomics Research Centre, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, PC Italy
| | - Roberto Papa
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Antonio Blanco
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | | |
Collapse
|
32
|
Tiwari VK, Riera-Lizarazu O, Gunn HL, Lopez K, Iqbal MJ, Kianian SF, Leonard JM. Endosperm tolerance of paternal aneuploidy allows radiation hybrid mapping of the wheat D-genome and a measure of γ ray-induced chromosome breaks. PLoS One 2012; 7:e48815. [PMID: 23144983 PMCID: PMC3492231 DOI: 10.1371/journal.pone.0048815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/01/2012] [Indexed: 11/21/2022] Open
Abstract
Physical mapping and genome sequencing are underway for the ≈17 Gb wheat genome. Physical mapping methods independent of meiotic recombination, such as radiation hybrid (RH) mapping, will aid precise anchoring of BAC contigs in the large regions of suppressed recombination in Triticeae genomes. Reports of endosperm development following pollination with irradiated pollen at dosages that cause embryo abortion prompted us to investigate endosperm as a potential source of RH mapping germplasm. Here, we report a novel approach to construct RH based physical maps of all seven D-genome chromosomes of the hexaploid wheat ‘Chinese Spring’, simultaneously. An 81-member subset of endosperm samples derived from 20-Gy irradiated pollen was genotyped for deletions, and 737 markers were mapped on seven D-genome chromosomes. Analysis of well-defined regions of six chromosomes suggested a map resolution of ∼830 kb could be achieved; this estimate was validated with assays of markers from a sequenced contig. We estimate that the panel contains ∼6,000 deletion bins for D-genome chromosomes and will require ∼18,000 markers for high resolution mapping. Map-based deletion estimates revealed a majority of 1–20 Mb interstitial deletions suggesting mutagenic repair of double-strand breaks in pollen provides a useful resource for RH mapping and map based cloning studies.
Collapse
Affiliation(s)
- Vijay K. Tiwari
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Oscar Riera-Lizarazu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India
| | - Hilary L. Gunn
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - KaSandra Lopez
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - M. Javed Iqbal
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Shahryar F. Kianian
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jeffrey M. Leonard
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
33
|
Developing tools for investigating the multiple roles of ethylene: identification and mapping genes for ethylene biosynthesis and reception in barley. Mol Genet Genomics 2012; 287:793-802. [PMID: 22915301 DOI: 10.1007/s00438-012-0716-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
The plant hormone ethylene is important to many plant processes from germination through senescence, including responses to in vitro growth and plant regeneration. Knowledge of the number and function of genes that are involved in ethylene biosynthesis and reception is necessary to determine the role of specific genes within gene families known to influence ethylene biosynthesis and other aspects of ethylene function in plants. Our objective was built on previous studies that have established the critical role of ethylene in the in vitro response of barley (Hordeum vulgare L.), and that have identified ethylene-related QTL in the barley genome. In this study, we have identified the locations of genes in the barley 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO), and ethylene receptor (ETR) gene families. Specific primers for PCR amplification of each gene were developed and used to map these genes in the Oregon Wolf Barley mapping population. Five ACS, 8 ACO, and 7 ETR genes were identified and mapped to six of the barley chromosomes. Gene locations were syntenous to the orthologs in rice except for two that mapped to chromosome 6H. Gene duplication was evident for ACO genes on chromosomes 5H and 6H. Gene-specific primers will be useful for determining expression of each gene under various environmental conditions, including in vitro environments, to better understand the role of ethylene. Of the six known QTL for green plant regeneration in barley, three were located near the genes mapped in this study.
Collapse
|
34
|
Xue F, Ji W, Wang C, Zhang H, Yang B. High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1549-1560. [PMID: 22350087 DOI: 10.1007/s00122-012-1809-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important foliar disease of wheat worldwide. The dominant powdery mildew resistance gene PmAS846 was transferred to the hexaploid wheat lines N9134 and N9738 from wild emmer wheat (Triticum dicoccoides) in 1995, and it is still one of the most effective resistance genes in China. A high resolution genetic map for PmAS846 locus was constructed using two F(2) populations and corresponding F(2:3) families developed from the crosses of N9134/Shaanyou 225 and N9738/Huixianhong. Synteny between wheat and Brachypodium distachyon and rice was used to develop closely linked molecular markers to reduce the genetic interval around PmAS846. Twenty-six expressed sequence tag-derived markers were mapped to the PmAS846 locus. Five markers co-segregated with PmAS846 in the F(2) population of N9134/Shaanyou 225. PmAS846 was physically located to wheat chromosome 5BL bin 0.75-0.76 within a gene-rich region. The markers order is conserved between wheat and Brachypodium distachyon, but rearrangements are present in rice. Two markers, BJ261635 and CJ840011 flanked PmAS846 and narrowed PmAS846 to a region that is collinear with 197 and 112 kb genomic regions on Brachypodium chromosome 4 and rice chromosome 9, respectively. The genes located on the corresponding homologous regions in Brachypodium, rice and barley could be considered for further marker saturation and identification of potential candidate genes for PmAS846. The markers co-segregating with PmAS846 provide a potential target site for positional cloning of PmAS846, and can be used for marker-assisted selection of this gene.
Collapse
Affiliation(s)
- Fei Xue
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | |
Collapse
|
35
|
Crook AD, Friesen TL, Liu ZH, Ojiambo PS, Cowger C. Novel necrotrophic effectors from Stagonospora nodorum and corresponding host sensitivities in winter wheat germplasm in the southeastern United States. PHYTOPATHOLOGY 2012; 102:498-505. [PMID: 22494247 DOI: 10.1094/phyto-08-11-0238] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Stagonospora nodorum blotch (SNB), caused by the necrotrophic fungus Stagonospora nodorum (teleomorph: Phaeosphaeria nodorum), is among the most common diseases of winter wheat in the United States. New opportunities in resistance breeding have arisen from the recent discovery of several necrotrophic effectors (NEs, also known as host-selective toxins) produced by S. nodorum, along with their corresponding host sensitivity (Snn) genes. Thirty-nine isolates of S. nodorum collected from wheat debris or grain from seven states in the southeastern United States were used to investigate the production of NEs in the region. Twenty-nine cultivars with varying levels of resistance to SNB, representing 10 eastern-U.S. breeding programs, were infiltrated with culture filtrates from the S. nodorum isolates in a randomized complete block design. Three single-NE Pichia pastoris controls, two S. nodorum isolate controls, and six Snn-differential wheat controls were also used. Cultivar-isolate interactions were visually evaluated for sensitivity at 7 days after infiltration. Production of NEs was detected in isolates originating in each sampled state except Maryland. Of the 39 isolates, 17 produced NEs different from those previously characterized in the upper Great Plains region. These novel NEs likely correspond to unidentified Snn genes in Southeastern wheat cultivars, because NEs are thought to arise under selection pressure from genes for resistance to biotrophic pathogens of wheat cultivars that differ by geographic region. Only 3, 0, and 23% of the 39 isolates produced SnToxA, SnTox1, and SnTox3, respectively, by the culture-filtrate test. A Southern dot-blot test showed that 15, 74, and 39% of the isolates carried the genes for those NEs, respectively; those percentages were lower than those found previously in larger international samples. Only two cultivars appeared to contain known Snn genes, although half of the cultivars displayed sensitivity to culture filtrates containing unknown NEs. Effector sensitivity was more frequent in SNB-susceptible cultivars than in moderately resistant (MR) cultivars (P = 0.008), although some susceptible cultivars did not exhibit sensitivity to NEs produced by isolates in this study and some MR cultivars were sensitive to NEs of multiple isolates. Our results suggest that NE sensitivities influence but may not be the only determinant of cultivar resistance to S. nodorum. Specific knowledge of NE and Snn gene frequencies in this region can be used by wheat breeding programs to improve SNB resistance.
Collapse
Affiliation(s)
- A D Crook
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|
36
|
The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog 2012; 8:e1002467. [PMID: 22241993 PMCID: PMC3252377 DOI: 10.1371/journal.ppat.1002467] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/17/2011] [Indexed: 12/14/2022] Open
Abstract
The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins) that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the first necrotrophic effector identified in S. nodorum, and was shown to induce necrosis on wheat lines carrying Snn1. Here, we report the molecular cloning and validation of SnTox1 as well as the preliminary characterization of the mechanism underlying the SnTox1-Snn1 interaction which leads to susceptibility. SnTox1 was identified using bioinformatics tools and verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid protein with the first 17 amino acids predicted as a signal peptide, and strikingly, the mature protein contains 16 cysteine residues, a common feature for some avirulence effectors. The transformation of SnTox1 into an avirulent S. nodorum isolate was sufficient to make the strain pathogenic. Additionally, the deletion of SnTox1 in virulent isolates rendered the SnTox1 mutated strains avirulent on the Snn1 differential wheat line. SnTox1 was present in 85% of a global collection of S. nodorum isolates. We identified a total of 11 protein isoforms and found evidence for strong diversifying selection operating on SnTox1. The SnTox1-Snn1 interaction results in an oxidative burst, DNA laddering, and pathogenesis related (PR) gene expression, all hallmarks of a defense response. In the absence of light, the development of SnTox1-induced necrosis and disease symptoms were completely blocked. By comparing the infection processes of a GFP-tagged avirulent isolate and the same isolate transformed with SnTox1, we conclude that SnTox1 may play a critical role during fungal penetration. This research further demonstrates that necrotrophic fungal pathogens utilize small effector proteins to exploit plant resistance pathways for their colonization, which provides important insights into the molecular basis of the wheat-S. nodorum interaction, an emerging model for necrotrophic pathosystems. In this manuscript we describe the cloning of SnTox1 from Stagonospora nodorum, the gene encoding the first host selective toxin (SnTox1) identified in this fungus. SnTox1 induces necrosis and promotes disease on wheat lines harboring the Snn1 gene. We verified the function of the SnTox1 gene by expressing it in a yeast culture where the resulting culture filtrate induced necrosis but only on wheat lines that carried a functional Snn1. The SnTox1 gene was also transformed into an avirulent S. nodorum isolate, resulting in an isolate that was virulent on wheat lines harboring Snn1. SnTox1 was also disrupted in virulent S. nodorum isolates resulting in the elimination of disease on Snn1 differential wheat lines. Additionally, we investigated the host response to SnTox1 and S. nodorum strains producing SnTox1 and discovered that several hallmarks of a resistance response were present during the susceptible reaction, showing that the necrotrophic pathogen S. nodorum is likely using SnTox1 to stimulate a host resistance pathway involving Snn1 to induce disease.
Collapse
|
37
|
Tabib Ghaffary SM, Faris JD, Friesen TL, Visser RGF, van der Lee TAJ, Robert O, Kema GHJ. New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:125-42. [PMID: 21912855 PMCID: PMC3249545 DOI: 10.1007/s00122-011-1692-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 08/18/2011] [Indexed: 05/04/2023]
Abstract
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola, is one of the most devastating foliar diseases of wheat. We screened five synthetic hexaploid wheats (SHs), 13 wheat varieties that represent the differential set of cultivars and two susceptible checks with a global set of 20 isolates and discovered exceptionally broad STB resistance in SHs. Subsequent development and analyses of recombinant inbred lines (RILs) from a cross between the SH M3 and the highly susceptible bread wheat cv. Kulm revealed two novel resistance loci on chromosomes 3D and 5A. The 3D resistance was expressed in the seedling and adult plant stages, and it controlled necrosis (N) and pycnidia (P) development as well as the latency periods of these parameters. This locus, which is closely linked to the microsatellite marker Xgwm494, was tentatively designated Stb16q and explained from 41 to 71% of the phenotypic variation at seedling stage and 28-31% in mature plants. The resistance locus on chromosome 5A was specifically expressed in the adult plant stage, associated with SSR marker Xhbg247, explained 12-32% of the variation in disease, was designated Stb17, and is the first unambiguously identified and named QTL for adult plant resistance to M. graminicola. Our results confirm that common wheat progenitors might be a rich source of new Stb resistance genes/QTLs that can be deployed in commercial breeding programs.
Collapse
Affiliation(s)
- S. Mahmod Tabib Ghaffary
- Plant Research International, Biointeractions and Plant Health, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
- Present Address: Safiabad Agricultural Research Centre, P.O. Box 333, Dezfoul, Iran
| | - Justin D. Faris
- Northern Crop Science Laboratory, USDA-ARS Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765 USA
| | - Timothy L. Friesen
- Northern Crop Science Laboratory, USDA-ARS Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765 USA
| | - Richard G. F. Visser
- Department of Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Theo A. J. van der Lee
- Plant Research International, Biointeractions and Plant Health, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Olivier Robert
- Bioplante, Florimond Desprez, BP41, 59242 Cappelle-en-Pévèle, France
| | - Gert H. J. Kema
- Plant Research International, Biointeractions and Plant Health, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
38
|
Abeysekara NS, Faris JD, Chao S, McClean PE, Friesen TL. Whole-genome QTL analysis of Stagonospora nodorum blotch resistance and validation of the SnTox4-Snn4 interaction in hexaploid wheat. PHYTOPATHOLOGY 2012; 102:94-104. [PMID: 21864084 DOI: 10.1094/phyto-02-11-0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Necrotrophic effectors (also known as host-selective toxins) are important determinants of disease in the wheat-Stagonospora nodorum pathosystem. To date, five necrotrophic effector-host gene interactions have been identified in this system. Most of these interactions have additive effects while some are epistatic. The Snn4-SnTox4 interaction was originally identified in a recombinant-inbred population derived from a cross between the Swiss winter wheat cultivars 'Arina' and 'Forno' using the S. nodorum isolate Sn99CH 1A7a. Here, we used a recombinant-inbred population consisting of 121 lines developed from a cross between the hexaploid land race Salamouni and the hexaploid wheat 'Katepwa' (SK population). The SK population was used for the construction of linkage maps and quantitative trait loci (QTL) detection using the Swiss S. nodorum isolate Sn99CH 1A7a. The linkage maps developed in the SK population spanned 3,228 centimorgans (cM) and consisted of 441 simple-sequence repeats, 9 restriction fragment length polymorphisms, 29 expressed sequence tag sequence-tagged site markers, and 5 phenotypic markers. The average marker density was 6.7 cM/marker. Two QTL, designated QSnb.fcu-1A and QSnb.fcu-7A on chromosome arms 1AS and 7AS, respectively, were associated with disease caused by the S. nodorum isolate Sn99CH 1A7a. The effects of QSnb.fcu-1A were determined by the Snn4-SnTox4 interaction and accounted for 23.5% of the phenotypic variation in this population, whereas QSnb.fcu-7A accounted for 16.4% of the phenotypic variation for disease but was not associated with any known effector sensitivity locus. The effects of both QTL were largely additive and collectively accounted for 35.7% of the total phenotypic variation. The results of this research validate the effects of a compatible Snn4-SnTox4 interaction in a different genetic background, and it provides knowledge regarding genomic regions and molecular markers that can be used to improve Stagonospora nodorum blotch resistance in wheat germplasm.
Collapse
|
39
|
A Novel Retrotransposon Inserted in the Dominant Vrn-B1 Allele Confers Spring Growth Habit in Tetraploid Wheat (Triticum turgidum L.). G3-GENES GENOMES GENETICS 2011; 1:637-45. [PMID: 22384375 PMCID: PMC3276170 DOI: 10.1534/g3.111.001131] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 10/27/2011] [Indexed: 12/27/2022]
Abstract
Vernalization genes determine winter/spring growth habit in temperate cereals and play important roles in plant development and environmental adaptation. In wheat (Triticum L. sp.), it was previously shown that allelic variation in the vernalization gene VRN1 was due to deletions or insertions either in the promoter or in the first intron. Here, we report a novel Vrn-B1 allele that has a retrotransposon in its promoter conferring spring growth habit. The VRN-B1 gene was mapped in a doubled haploid population that segregated for winter-spring growth habit but was derived from two spring tetraploid wheat genotypes, the durum wheat (T. turgidum subsp. durum) variety ‘Lebsock’ and T. turgidum subsp. carthlicum accession PI 94749. Genetic analysis revealed that Lebsock carried the dominant Vrn-A1 and recessive vrn-B1 alleles, whereas PI 94749 had the recessive vrn-A1 and dominant Vrn-B1 alleles. The Vrn-A1 allele in Lebsock was the same as the Vrn-A1c allele previously reported in hexaploid wheat. No differences existed between the vrn-B1 and Vrn-B1 alleles, except that a 5463-bp insertion was detected in the 5′-UTR region of the Vrn-B1 allele. This insertion was a novel retrotransposon (designated as retrotrans_VRN), which was flanked by a 5-bp target site duplication and contained primer binding site and polypurine tract motifs, a 325-bp long terminal repeat, and an open reading frame encoding 1231 amino acids. The insertion of retrotrans_VRN resulted in expression of Vrn-B1 without vernalization. Retrotrans_VRN is prevalent among T. turgidum subsp. carthlicum accessions, less prevalent among T. turgidum subsp. dicoccum accessions, and rarely found in other tetraploid wheat subspecies.
Collapse
|
40
|
Faris JD, Zhang Z, Rasmussen JB, Friesen TL. Variable expression of the Stagonospora nodorum effector SnToxA among isolates is correlated with levels of disease in wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1419-26. [PMID: 21770771 DOI: 10.1094/mpmi-04-11-0094] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Most research on host?pathogen interactions is focused on mechanisms of resistance, but less is known regarding mechanisms of susceptibility. The wheat?Stagonospora nodorum pathosystem involves pathogen-produced effectors, also known as host-selective toxins, that interact with corresponding dominant host genes to cause disease. Recognition of the S. nodorum effectors SnToxA and SnTox2 is mediated by the wheat genes Tsn1 and Snn2, respectively. Here, we inoculated a population of wheat recombinant inbred lines that segregates for Tsn1 and Snn2 with conidia from two S. nodorum isolates, Sn4 and Sn5, which both produce SnToxA and SnTox2 to compare the effects of compatible Tsn1?SnToxA and Snn2?SnTox2 interactions between the two isolates. Genetic analysis revealed that the two interactions contribute equally to disease caused by isolate Sn4 but the Tsn1?SnToxA interaction contributed substantially more to disease conferred by Sn5 than did the Snn2?SnTox2 interaction. Sequence analysis of the SnToxA locus from Sn4 and Sn5 indicated that they were 99.5% identical, with no polymorphisms in the coding region or the predicted promoters. Analysis of transcription levels showed that expression levels of SnToxA peaked at 26 h postinoculation for both isolates but SnToxA expression in Sn5 was more than twice that of Sn4. This work demonstrates that necrotrophic effectors of different isolates can be expressed at different levels in planta, and that higher levels of expression lead to increased levels of disease in the wheat?S. nodorum pathosystem.
Collapse
Affiliation(s)
- Justin D Faris
- United States Department of Agriculture, Fargo, ND, USA.
| | | | | | | |
Collapse
|
41
|
Klindworth DL, Miller JD, Williams ND, Xu SS. Resistance to recombinant stem rust race TPPKC in hard red spring wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:603-613. [PMID: 21573955 DOI: 10.1007/s00122-011-1610-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/26/2011] [Indexed: 05/30/2023]
Abstract
The wheat (Triticum aestivum L.) stem rust (Puccinia graminis Pers.:Pers. f.sp. tritici Eriks. and Henn.) resistance gene SrWld1 conditions resistance to all North American stem rust races and is an important gene in hard red spring (HRS) wheat cultivars. A sexually recombined race having virulence to SrWld1 was isolated in the 1980s. Our objective was to determine the genetics of resistance to the race. The recombinant race was tested with the set of stem rust differentials and with a set of 36 HRS and 6 durum cultivars. Chromosomal location studies in cultivars Len, Coteau, and Stoa were completed using aneuploid analysis, molecular markers, and allelism tests. Stem rust differential tests coded the race as TPPKC, indicating it differed from TPMKC by having added virulence on Sr30 as well as SrWld1. Genes effective against TPPKC were Sr6, Sr9a, Sr9b, Sr13, Sr24, Sr31, and Sr38. Genetic studies of resistance to TPPKC indicated that Len, Coteau, and Stoa likely carried Sr9b, that Coteau and Stoa carried Sr6, and Stoa carried Sr24. Tests of HRS and durum cultivars indicated that five HRS and one durum cultivar were susceptible to TPPKC. Susceptible HRS cultivars were postulated to have SrWld1 as their major stem rust resistance gene. Divide, the susceptible durum cultivar, was postulated to lack Sr13. We concluded that although TPPKC does not constitute a threat similar to TTKSK and its variants, some cultivars would be lost from production if TPPKC became established in the field.
Collapse
Affiliation(s)
- D L Klindworth
- USDA-ARS, Northern Crop Science Laboratory, Fargo, ND 58102-2765, USA.
| | | | | | | |
Collapse
|
42
|
Nelson JC, Wang S, Wu Y, Li X, Antony G, White FF, Yu J. Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genomics 2011; 12:352. [PMID: 21736744 PMCID: PMC3146956 DOI: 10.1186/1471-2164-12-352] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eight diverse sorghum (Sorghum bicolor L. Moench) accessions were subjected to short-read genome sequencing to characterize the distribution of single-nucleotide polymorphisms (SNPs). Two strategies were used for DNA library preparation. Missing SNP genotype data were imputed by local haplotype comparison. The effect of library type and genomic diversity on SNP discovery and imputation are evaluated. RESULTS Alignment of eight genome equivalents (6 Gb) to the public reference genome revealed 283,000 SNPs at ≥82% confirmation probability. Sequencing from libraries constructed to limit sequencing to start at defined restriction sites led to genotyping 10-fold more SNPs in all 8 accessions, and correctly imputing 11% more missing data, than from semirandom libraries. The SNP yield advantage of the reduced-representation method was less than expected, since up to one fifth of reads started at noncanonical restriction sites and up to one third of restriction sites predicted in silico to yield unique alignments were not sampled at near-saturation. For imputation accuracy, the availability of a genomically similar accession in the germplasm panel was more important than panel size or sequencing coverage. CONCLUSIONS A sequence quantity of 3 million 50-base reads per accession using a BsrFI library would conservatively provide satisfactory genotyping of 96,000 sorghum SNPs. For most reliable SNP-genotype imputation in shallowly sequenced genomes, germplasm panels should consist of pairs or groups of genomically similar entries. These results may help in designing strategies for economical genotyping-by-sequencing of large numbers of plant accessions.
Collapse
Affiliation(s)
- James C Nelson
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Aruna C, Bhagwat VR, Madhusudhana R, Sharma V, Hussain T, Ghorade RB, Khandalkar HG, Audilakshmi S, Seetharama N. Identification and validation of genomic regions that affect shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1617-30. [PMID: 21387095 DOI: 10.1007/s00122-011-1559-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/12/2011] [Indexed: 05/20/2023]
Abstract
Shoot fly is one of the most important pests affecting the sorghum production. The identification of quantitative trait loci (QTL) affecting shoot fly resistance enables to understand the underlying genetic mechanisms and genetic basis of complex interactions among the component traits. The aim of the present study was to detect QTL for shoot fly resistance and the associated traits using a population of 210 RILs of the cross 27B (susceptible) × IS2122 (resistant). RIL population was phenotyped in eight environments for shoot fly resistance (deadheart percentage), and in three environments for the component traits, such as glossiness, seedling vigor and trichome density. Linkage map was constructed with 149 marker loci comprising 127 genomic-microsatellite, 21 genic-microsatellite and one morphological marker. QTL analysis was performed by using MQM approach. 25 QTL (five each for leaf glossiness and seedling vigor, 10 for deadhearts, two for adaxial trichome density and three for abaxial trichome density) were detected in individual and across environments. The LOD and R (2) (%) values of QTL ranged from 2.44 to 24.1 and 4.3 to 44.1%, respectively. For most of the QTLs, the resistant parent, IS2122 contributed alleles for resistance; while at two QTL regions, the susceptible parent 27B also contributed for resistance traits. Three genomic regions affected multiple traits, suggesting the phenomenon of pleiotrophy or tight linkage. Stable QTL were identified for the traits across different environments, and genetic backgrounds by comparing the QTL in the study with previously reported QTL in sorghum. For majority of the QTLs, possible candidate genes were identified. The QTLs identified will enable marker assisted breeding for shoot fly resistance in sorghum.
Collapse
Affiliation(s)
- C Aruna
- Directorate of Sorghum Research, Hyderabad, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lu S, Friesen TL, Faris JD. Molecular characterization and genomic mapping of the pathogenesis-related protein 1 (PR-1) gene family in hexaploid wheat (Triticum aestivum L.). Mol Genet Genomics 2011; 285:485-503. [PMID: 21516334 DOI: 10.1007/s00438-011-0618-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/30/2011] [Indexed: 12/30/2022]
Abstract
The group 1 pathogenesis-related (PR-1) proteins, known as hallmarks of defense pathways, are encoded by multigene families in plants as evidenced by the presence of 22 and 32 PR-1 genes in the finished Arabidopsis and rice genomes, respectively. Here, we report the initial characterization and mapping of 23 PR-1-like (TaPr-1) genes in hexaploid wheat (Triticum aestivum L.), which possesses one of the largest (>16,000 megabases) genomes among monocot crop plants. Sequence analysis revealed that the 23 TaPr-1 genes all contain intron-free open reading frames that encode a signal peptide at the N-terminus and a conserved PR-1-like domain. Phylogenetic analysis indicated that TaPr-1 genes form three major monophyletic groups along with their counterparts in other monocots; each group consists of genes encoding basic, basic with a C-terminal extension, and acidic PR-1 proteins, respectively, suggesting diversity and conservation of PR-1 gene functions in monocot plants. Mapping analysis assisted by untranslated region-specified discrimination (USD) markers and various cytogenetic stocks located the 23 TaPr-1 genes to seven different chromosomes, with the majority mapping to chromosomes of homoeologous groups 5 and 7. Reverse transcriptase (RT)-PCR analysis revealed that 12 TaPr-1 genes were induced or up-regulated upon pathogen challenge. Together, this study provides insights to the origin, evolution, homoeologous relationships, and expression patterns of the TaPr-1 genes. The data presented provide critical information for further genome-wide characterization of the wheat PR-1 gene family and the USD markers developed will facilitate genetic and functional analysis of PR-1 genes associated with plant defense and/or other important traits.
Collapse
Affiliation(s)
- Shunwen Lu
- USDA-ARS, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND 58102-2765, USA.
| | | | | |
Collapse
|
45
|
Zhang Z, Friesen TL, Xu SS, Shi G, Liu Z, Rasmussen JB, Faris JD. Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:27-38. [PMID: 21175887 DOI: 10.1111/j.1365-313x.2010.04407.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The pathogen Stagonospora nodorum produces multiple effectors, also known as host-selective toxins (HSTs), that interact with corresponding host sensitivity genes in an inverse gene-for-gene manner to cause the disease Stagonospora nodorum blotch (SNB) in wheat. In this study, a sensitivity gene was identified in Aegilops tauschii, the diploid D-genome donor of common wheat. The gene was mapped to the short arm of chromosome 5D and mediated recognition of the effector SnTox3, which was previously shown to be recognized by the wheat gene Snn3 on chromosome arm 5BS. Comparative mapping suggested that Snn3 and the gene on 5DS are probably homoeologous and derived from a common ancestor. Therefore, we propose to designate these genes as Snn3-B1 and Snn3-D1, respectively. Compatible Snn3-D1-SnTox3 interactions resulted in more severe necrosis in both effector infiltration and spore inoculation experiments than compatible Snn3-B1-SnTox3 interactions, indicating that Snn3-B1 and Snn3-D1 may have different affinities in SnTox3 recognition or signal transduction. Wheat bin-mapped expressed sequence tags and good levels of collinearity among the wheat Snn3 regions, rice (Oryza sativa), and Brachypodium distachyon were exploited for saturation and fine mapping of the Snn3-D1 locus. Markers delineating the Snn3-D1 locus to a 1.4 cM interval will be useful for initiating positional cloning. Further characterization of how these homoeologous genes mediate recognition of the same pathogen effector should enhance understanding of host manipulation by necrotrophic pathogens in causing disease.
Collapse
Affiliation(s)
- Zengcui Zhang
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Timothy L Friesen
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Steven S Xu
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Gongjun Shi
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Zhaohui Liu
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Jack B Rasmussen
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Justin D Faris
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| |
Collapse
|
46
|
Xu SS, Chu CG, Harris MO, Williams CE. Comparative analysis of genetic background in eight near-isogenic wheat lines with different H genes conferring resistance to Hessian fly. Genome 2011; 54:81-9. [DOI: 10.1139/g10-095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Near-isogenic lines (NILs) are useful for plant genetic and genomic studies. However, the strength of conclusions from such studies depends on the similarity of the NILs’ genetic backgrounds. In this study, we investigated the genetic similarity for a set of NILs developed in the 1990s to study gene-for-gene interactions between wheat ( Triticum aestivum L.) and the Hessian fly ( Mayetiola destructor (Say)), an important pest of wheat. Each of the eight NILs carries a single H resistance gene and was created by successive backcrossing for two to six generations to susceptible T. aestivum ‘Newton’. We generated 256 target region amplification polymorphism (TRAP) markers and used them to calculate genetic similarity, expressed by the Nei and Li (NL) coefficient. Six of the NILs (H3, H5, H6, H9, H11, and H13) had the highly uniform genetic background of Newton, with NL coefficients from 0.97 to 0.99. However, genotypes with H10 or H12 were less similar to Newton, with NL coefficients of 0.86 and 0.93, respectively. Cluster analysis based on NL coefficients and pedigree analysis showed that the genetic similarity between each of the NILs and Newton was affected by both the number of backcrosses and the genetic similarity between Newton and the H gene donors. We thus generated an equation to predict the number of required backcrosses, given varying similarity of donor and recurrent parent. We also investigated whether the genetic residues of the donor parents that remained in the NILs were related to linkage drag. By using a complete set of ‘Chinese Spring’ nullisomic-tetrasomic lines, one third of the TRAP markers that showed polymorphism between the NILs and Newton were assigned to a specific chromosome. All of the assigned markers were located on chromosomes other than the chromosome carrying the H gene, suggesting that the genetic residues detected in this study were not due to linkage drag. Results will aid in the development and use of near-isogenic lines for studies of the functional genomics of wheat.
Collapse
Affiliation(s)
- S. S. Xu
- United States Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
- Department of Entomology, North Dakota State University, Fargo, ND 58108, USA
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - C. G. Chu
- United States Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
- Department of Entomology, North Dakota State University, Fargo, ND 58108, USA
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - M. O. Harris
- United States Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
- Department of Entomology, North Dakota State University, Fargo, ND 58108, USA
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - C. E. Williams
- United States Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
- Department of Entomology, North Dakota State University, Fargo, ND 58108, USA
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| |
Collapse
|
47
|
Wiebe K, Harris NS, Faris JD, Clarke JM, Knox RE, Taylor GJ, Pozniak CJ. Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1047-58. [PMID: 20559817 DOI: 10.1007/s00122-010-1370-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/21/2010] [Indexed: 05/08/2023]
Abstract
Some durum wheat (Triticum turgidum L. var durum) cultivars have the genetic propensity to accumulate cadmium (Cd) in the grain. A major gene controlling grain Cd concentration designated as Cdu1 has been reported on 5B, but the genetic factor(s) conferring the low Cd phenotype are currently unknown. The objectives of this study were to saturate the chromosomal region harboring Cdu1 with newly developed PCR-based markers and to investigate the colinearity of this wheat chromosomal region with rice (Oryza sativa L.) and Brachypodium distachyon genomes. Genetic mapping of markers linked to Cdu1 in a population of recombinant inbred substitution lines revealed that the gene(s) associated with variation in Cd concentration resides in wheat bin 5BL9 between fraction breakpoints 0.76 and 0.79. Genetic mapping and quantitative trait locus (QTL) analysis of grain Cd concentration was performed in 155 doubled haploid lines from the cross W9262-260D3 (low Cd) by Kofa (high Cd) revealed two expressed sequence tag markers (ESMs) and one sequence tagged site (STS) marker that co-segregated with Cdu1 and explained >80% of the phenotypic variation in grain Cd concentration. A second, minor QTL for grain Cd concentration was also identified on 5B, 67 cM proximal to Cdu1. The Cdu1 interval spans 286 kbp of rice chromosome 3 and 282 kbp of Brachypodium chromosome 1. The markers and rice and Brachypodium colinearity described here represent tools that will assist in the positional cloning of Cdu1 and can be used to select for low Cd accumulation in durum wheat breeding programs targeting this trait. The isolation of Cdu1 will further our knowledge of Cd accumulation in cereals as well as metal accumulation in general.
Collapse
Affiliation(s)
- K Wiebe
- Department of Plant Sciences, Crop Development Center, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley. Mol Genet Genomics 2010; 284:319-31. [DOI: 10.1007/s00438-010-0570-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 08/13/2010] [Indexed: 11/26/2022]
|
49
|
Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, Michelmore RW, Dubcovsky J. Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 2010; 11:408. [PMID: 20584339 PMCID: PMC2996936 DOI: 10.1186/1471-2164-11-408] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/29/2010] [Indexed: 12/15/2022] Open
Abstract
Background More than 80% of the wheat genome is composed of transposable elements (TEs). Since active TEs can move to different locations and potentially impose a significant mutational load, their expression is suppressed in the genome via small non-coding RNAs (sRNAs). sRNAs guide silencing of TEs at the transcriptional (mainly 24-nt sRNAs) and post-transcriptional (mainly 21-nt sRNAs) levels. In this study, we report the distribution of these two types of sRNAs among the different classes of wheat TEs, the regions targeted within the TEs, and their impact on the methylation patterns of the targeted regions. Results We constructed an sRNA library from hexaploid wheat and developed a database that included our library and three other publicly available sRNA libraries from wheat. For five completely-sequenced wheat BAC contigs, most perfectly matching sRNAs represented TE sequences, suggesting that a large fraction of the wheat sRNAs originated from TEs. An analysis of all wheat TEs present in the Triticeae Repeat Sequence database showed that sRNA abundance was correlated with the estimated number of TEs within each class. Most of the sRNAs perfectly matching miniature inverted repeat transposable elements (MITEs) belonged to the 21-nt class and were mainly targeted to the terminal inverted repeats (TIRs). In contrast, most of the sRNAs matching class I and class II TEs belonged to the 24-nt class and were mainly targeted to the long terminal repeats (LTRs) in the class I TEs and to the terminal repeats in CACTA transposons. An analysis of the mutation frequency in potentially methylated sites revealed a three-fold increase in TE mutation frequency relative to intron and untranslated genic regions. This increase is consistent with wheat TEs being preferentially methylated, likely by sRNA targeting. Conclusions Our study examines the wheat epigenome in relation to known TEs. sRNA-directed transcriptional and post-transcriptional silencing plays important roles in the short-term suppression of TEs in the wheat genome, whereas DNA methylation and increased mutation rates may provide a long-term mechanism to inactivate TEs.
Collapse
Affiliation(s)
- Dario Cantu
- Department of Plant Sciences, University of California Davis, One Shields Ave, Davis, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Breen J, Wicker T, Kong X, Zhang J, Ma W, Paux E, Feuillet C, Appels R, Bellgard M. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block. BMC PLANT BIOLOGY 2010; 10:98. [PMID: 20507561 PMCID: PMC3017796 DOI: 10.1186/1471-2229-10-98] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 05/27/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase) level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features. RESULTS BAC shotgun sequencing of the hexaploid wheat (Triticum aestivum cv. Chinese Spring) genome has been used to assemble a group of 15 wheat BACs from the chromosome 3B physical map FPC contig ctg1034 into a 783,553 bp genomic sequence. This ctg1034 sequence was annotated for biological features such as genes and transposable elements. A three-gene island was identified among >80% repetitive DNA sequence. Using bioinformatics analysis there were no observable similarity in their gene functions. The ctg1034 gene island also displayed complete conservation of gene order and orientation with syntenic gene islands found in publicly available genome sequences of Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, even though the intergenic space and introns were divergent. CONCLUSION We propose that ctg1034 is located within the heterochromatic C-band region of deletion bin 3BL7 based on the identification of heterochromatic tandem repeats and presence of significant matches to chromodomain-containing gypsy LTR retrotransposable elements. We also speculate that this location, among other highly repetitive sequences, may account for the relative stability in gene order and orientation within the gene island.Sequence data from this article have been deposited with the GenBank Data Libraries under accession no. GQ422824.
Collapse
Affiliation(s)
- James Breen
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- Molecular Plant Breeding Co-operative Research Centre (MPBCRC) Murdoch University, South Street, Perth 6150, Australia
| | - Thomas Wicker
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, Zurich, CH-8008 Switzerland
| | - Xiuying Kong
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Juncheng Zhang
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Wujun Ma
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- State Agricultural Biotechnology Centre (SABC), Murdoch University, South Street, Perth 6150, Australia
- Department of Agriculture and Food, Western Australia (DAFWA), 3 Baron Hay Court, Perth, 6151 Australia
| | - Etienne Paux
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, INRA Site de Crouël, 63100 Clermont-ferrand, France
| | - Catherine Feuillet
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, INRA Site de Crouël, 63100 Clermont-ferrand, France
| | - Rudi Appels
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
| | - Matthew Bellgard
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
| |
Collapse
|