1
|
Valim HF, Grande FD, Wong ELY, Schmitt I. Circadian clock- and temperature-associated genes contribute to overall genomic differentiation along elevation in lichenized fungi. Mol Ecol 2024; 33:e17252. [PMID: 38146927 DOI: 10.1111/mec.17252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Circadian regulation is linked to local environmental adaptation, and many species with broad climatic niches display variation in circadian genes. Here, we hypothesize that lichenizing fungi occupying different climate zones tune their metabolism to local environmental conditions with the help of their circadian systems. We study two species of the genus Umbilicaria occupying similar climatic niches (Mediterranean and the cold temperate) in different continents. Using homology to Neurospora crassa genes, we identify gene sets associated with circadian rhythms (11 core, 39 peripheral genes) as well as temperature response (37 genes). Nucleotide diversity of these genes is significantly correlated with mean annual temperature, minimum temperature of the coldest month and mean temperature of the coldest quarter. Furthermore, we identify altitudinal clines in allele frequencies in several non-synonymous substitutions in core clock components, for example, white collar-like, frh-like and various ccg-like genes. A dN/dS approach revealed a few significant peripheral clock- and temperature-associated genes (e.g. ras-1-like, gna-1-like) that may play a role in fine-tuning the circadian clock and temperature-response machinery. An analysis of allele frequency changes demonstrated the strongest evidence for differentiation above the genomic background in the clock-associated genes in U. pustulata. These results highlight the likely relevance of the circadian clock in environmental adaptation, particularly frost tolerance, of lichens. Whether or not the fungal clock modulates the symbiotic interaction within the lichen consortium remains to be investigated. We corroborate the finding of genetic variation in clock components along altitude-not only latitude-as has been reported in other species.
Collapse
Affiliation(s)
- Henrique F Valim
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padua, Italy
| | - Edgar L Y Wong
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Pelham JF, Mosier AE, Altshuler SC, Rhodes ML, Kirchhoff CL, Fall WB, Mann C, Baik LS, Chiu JC, Hurley JM. Conformational changes in the negative arm of the circadian clock correlate with dynamic interactomes involved in post-transcriptional regulation. Cell Rep 2023; 42:112376. [PMID: 37043358 PMCID: PMC10562519 DOI: 10.1016/j.celrep.2023.112376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/16/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Biology is tuned to the Earth's diurnal cycle by the circadian clock, a transcriptional/translational negative feedback loop that regulates physiology via transcriptional activation and other post-transcriptional mechanisms. We hypothesize that circadian post-transcriptional regulation might stem from conformational shifts in the intrinsically disordered proteins that comprise the negative arm of the feedback loop to coordinate variation in negative-arm-centered macromolecular complexes. This work demonstrates temporal conformational fluidity in the negative arm that correlates with 24-h variation in physiologically diverse macromolecular complex components in eukaryotic clock proteins. Short linear motifs on the negative-arm proteins that correspond with the interactors localized to disordered regions and known temporal phosphorylation sites suggesting changes in these macromolecular complexes could be due to conformational changes imparted by the temporal phospho-state. Interactors that oscillate in the macromolecular complexes over circadian time correlate with post-transcriptionally regulated proteins, highlighting how time-of-day variation in the negative-arm protein complexes may tune cellular physiology.
Collapse
Affiliation(s)
- Jacqueline F Pelham
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexander E Mosier
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Samuel C Altshuler
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Morgan L Rhodes
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - William B Fall
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Catherine Mann
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lisa S Baik
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
3
|
Camponeschi I, Montanari A, Mazzoni C, Bianchi MM. Light Stress in Yeasts: Signaling and Responses in Creatures of the Night. Int J Mol Sci 2023; 24:ijms24086929. [PMID: 37108091 PMCID: PMC10139380 DOI: 10.3390/ijms24086929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Living organisms on the surface biosphere are periodically yet consistently exposed to light. The adaptive or protective evolution caused by this source of energy has led to the biological systems present in a large variety of organisms, including fungi. Among fungi, yeasts have developed essential protective responses against the deleterious effects of light. Stress generated by light exposure is propagated through the synthesis of hydrogen peroxide and mediated by regulatory factors that are also involved in the response to other stressors. These have included Msn2/4, Crz1, Yap1, and Mga2, thus suggesting that light stress is a common factor in the yeast environmental response.
Collapse
Affiliation(s)
- Ilaria Camponeschi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Cristina Mazzoni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Michele Maria Bianchi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Valim HF, Dal Grande F, Otte J, Singh G, Merges D, Schmitt I. Identification and expression of functionally conserved circadian clock genes in lichen-forming fungi. Sci Rep 2022; 12:15884. [PMID: 36151124 PMCID: PMC9508176 DOI: 10.1038/s41598-022-19646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Lichen-forming fungi establish stable symbioses with green algae or cyanobacteria. Many species have broad distributions, both in geographic and ecological space, making them ideal subjects to study organism-environment interactions. However, little is known about the specific mechanisms that contribute to environmental adaptation in lichen-forming fungi. The circadian clock provides a well-described mechanism that contributes to regional adaptation across a variety of species, including fungi. Here, we identify the putative circadian clock components in phylogenetically divergent lichen-forming fungi. The core circadian genes (frq, wc-1, wc-2, frh) are present across the Fungi, including 31 lichen-forming species, and their evolutionary trajectories mirror overall fungal evolution. Comparative analyses of the clock genes indicate conserved domain architecture among lichen- and non-lichen-forming taxa. We used RT-qPCR to examine the core circadian loop of two unrelated lichen-forming fungi, Umbilicaria pustulata (Lecanoromycetes) and Dermatocarpon miniatum (Eurotiomycetes), to determine that the putative frq gene is activated in a light-dependent manner similar to the model fungus Neurospora crassa. Together, these results demonstrate that lichen-forming fungi retain functional light-responsive mechanisms, including a functioning circadian clock. Our findings provide a stepping stone into investigating the circadian clock in the lichen symbiosis, e.g. its role in adaptation, and in synchronizing the symbiotic interaction.
Collapse
Affiliation(s)
- Henrique F Valim
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Department of Biology, University of Padua, Via U. Bassi 58/B, Padua, Italy
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Garima Singh
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Department of Biology, University of Padua, Via U. Bassi 58/B, Padua, Italy
| | - Dominik Merges
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7070, 750 07, Uppsala, Sweden
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Srimani S, Schmidt CX, Gómez-Serranillos MP, Oster H, Divakar PK. Modulation of Cellular Circadian Rhythms by Secondary Metabolites of Lichens. Front Cell Neurosci 2022; 16:907308. [PMID: 35813500 PMCID: PMC9260025 DOI: 10.3389/fncel.2022.907308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Background Most mammalian cells harbor molecular circadian clocks that synchronize physiological functions with the 24-h day-night cycle. Disruption of circadian rhythms, through genetic or environmental changes, promotes the development of disorders like obesity, cardiovascular diseases, and cancer. At the cellular level, circadian, mitotic, and redox cycles are functionally coupled. Evernic (EA) and usnic acid (UA), two lichen secondary metabolites, show various pharmacological activities including anti-oxidative, anti-inflammatory, and neuroprotective action. All these effects have likewise been associated with a functional circadian clock. Hypothesis/Purpose To test, if the lichen compounds EA and UA modulate circadian clock function at the cellular level. Methods We used three different cell lines and two circadian luminescence reporter systems for evaluating dose- and time-dependent effects of EA/UA treatment on cellular clock regulation at high temporal resolution. Output parameters studied were circadian luminescence rhythm period, amplitude, phase, and dampening rate. Results Both compounds had marked effects on clock rhythm amplitudes and dampening independent of cell type, with UA generally showing a higher efficiency than EA. Only in fibroblast cells, significant effects on clock period were observed for UA treated cells showing shorter and EA treated cells showing longer period lengths. Transient treatment of mouse embryonic fibroblasts at different phases had only minor clock resetting effects for both compounds. Conclusion Secondary metabolites of lichen alter cellular circadian clocks through amplitude reduction and increased rhythm dampening.
Collapse
Affiliation(s)
- Soumi Srimani
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Cosima Xenia Schmidt
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Maria Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Pradeep K. Divakar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Lee SJ, Morse D, Hijri M. Holobiont chronobiology: mycorrhiza may be a key to linking aboveground and underground rhythms. MYCORRHIZA 2019; 29:403-412. [PMID: 31190278 DOI: 10.1007/s00572-019-00903-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Circadian clocks are nearly ubiquitous timing mechanisms that can orchestrate rhythmic behavior and gene expression in a wide range of organisms. Clock mechanisms are becoming well understood in fungal, animal, and plant model systems, yet many of these organisms are surrounded by a complex and diverse microbiota which should be taken into account when examining their biology. Of particular interest are the symbiotic relationships between organisms that have coevolved over time, forming a unit called a holobiont. Several studies have now shown linkages between the circadian rhythms of symbiotic partners. Interrelated regulation of holobiont circadian rhythms seems thus important to coordinate shifts in activity over the day for all the partners. Therefore, we suggest that the classical view of "chronobiological individuals" should include "a holobiont" rather than an organism. Unfortunately, mechanisms that may regulate interspecies temporal acclimation and the evolution of the circadian clock in holobionts are far from being understood. For the plant holobiont, our understanding is particularly limited. In this case, the holobiont encompasses two different ecosystems, one above and the other below the ground, with the two potentially receiving timing information from different synchronizing signals (Zeitgebers). The arbuscular mycorrhizal (AM) symbiosis, formed by plant roots and fungi, is one of the oldest and most widespread associations between organisms. By mediating the nutritional flux between the plant and the many microbes in the soil, AM symbiosis constitutes the backbone of the plant holobiont. Even though the importance of the AM symbiosis has been well recognized in agricultural and environmental sciences, its circadian chronobiology remains almost completely unknown. We have begun to study the circadian clock of arbuscular mycorrhizal fungi, and we compile and here discuss the available information on the subject. We propose that analyzing the interrelated temporal organization of the AM symbiosis and determining its underlying mechanisms will advance our understanding of the role and coordination of circadian clocks in holobionts in general.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - David Morse
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
| |
Collapse
|
7
|
Sánchez-Arreguin JA, Cabrera-Ponce JL, León-Ramírez CG, Camargo-Escalante MO, Ruiz-Herrera J. Analysis of the photoreceptors involved in the light-depending basidiocarp formation in Ustilago maydis. Arch Microbiol 2019; 202:93-103. [DOI: 10.1007/s00203-019-01725-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
|
8
|
The contribution of the White Collar complex to Cryptococcus neoformans virulence is independent of its light-sensing capabilities. Fungal Genet Biol 2018; 121:56-64. [PMID: 30266690 DOI: 10.1016/j.fgb.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 01/09/2023]
Abstract
The White Collar complex is responsible for sensing light and transmitting that signal in many fungal species. In Cryptococcus neoformans and C. deneoformans the complex is involved in protection against damage from ultraviolet (UV) light, repression of mating in response to light, and is also required for virulence. The mechanism by which the Bwc1 photoreceptor contributes to virulence is unknown. In this study, a bwc1 deletion mutant of C. neoformans was transformed with three versions of the BWC1 gene, the wild type, BWC1C605A or BWC1C605S, in which the latter two have the conserved cysteine residue replaced with either alanine or serine within the light-oxygen-voltage (LOV) domain that interacts with the flavin chromophore. The bwc1+ BWC1 strain complemented the UV sensitivity and the repression of mating in the light. The bwc1+ BWC1C605A and bwc1+ BWC1C605S strains were not fully complemented for either of the phenotypes, indicating that these BWC1 alleles impair the light responses for strains with them. Transcript analysis showed that neither of the mutated strains (bwc1+ BWC1C605A and bwc1+ BWC1C605S) showed the light-inducible expression pattern of the HEM15 and UVE1 genes as occurs in the wild type strain. These results indicate that the conserved flavin-binding site in the LOV domain of Bwc1 is required for sensing and responding to light in C. neoformans. In contrast to defects in light responses, the wild type, bwc1+ BWC1, bwc1+ BWC1C605A and bwc1+ BWC1C605S strains were equally virulent, whereas the bwc1 knock out mutant was less virulent. Furthermore, pre-exposure of the strains to light prior to inoculation had no influence on the outcome of infection. These findings define a division in function of the White Collar complex in fungi, in that in C. neoformans the role of Bwc1 in virulence is independent of light sensing.
Collapse
|
9
|
Liversage J, Coetzee MP, Bluhm BH, Berger DK, Crampton BG. LOVe across kingdoms: Blue light perception vital for growth and development in plant–fungal interactions. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
de Paula RM, Lewis ZA, Greene AV, Seo KS, Morgan LW, Vitalini MW, Bennett L, Gomer RH, Bell-Pedersen D. Two Circadian Timing Circuits in Neurospora crassa Cells Share Components and Regulate Distinct Rhythmic Processes. J Biol Rhythms 2016; 21:159-68. [PMID: 16731655 DOI: 10.1177/0748730406288338] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Neurospora crassa, FRQ, WC-1, and WC-2 proteins comprise the core circadian FRQ-based oscillator that is directly responsive to light and drives daily rhythms in spore development and gene expression. However, physiological and biochemical studies have demonstrated the existence of additional oscillators in the cell that function in the absence of FRQ (collectively termed FRQ-less oscillators [FLOs]). Whether or not these represent temperature-compensated, entrainable circadian oscillators is not known. The authors previously identified an evening-peaking gene, W06H2 (now called clock-controlled gene 16 [ ccg-16]), which is expressed with a robust daily rhythm in cells that lack FRQ protein, suggesting that ccg-16 is regulated by a FLO. In this study, the authors provide evidence that the FLO driving ccg-16 rhythmicity is a circadian oscillator. They find that ccg-16 rhythms are generated by a temperature-responsive, temperature-compensated circadian FLO that, similar to the FRQ-based oscillator, requires functional WC-1 and WC-2 proteins for activity. They also find that FRQ is not essential for rhythmic WC-1 protein levels, raising the possibility that this WCFLO is involved in the generation of WC-1 rhythms. The results are consistent with the presence of 2 circadian oscillators within Neurospora cells, which the authors speculate may interact with each other through the shared WC proteins.
Collapse
Affiliation(s)
- Renato M de Paula
- Department of Biology, Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The eukaryotic filamentous fungus Neurospora crassa has proven to be a durable and dependable model system for the analysis of the cellular and molecular bases of circadian rhythms. Pioneering genetic analyses identified clock genes, and beginning with the cloning of frequency ( frq), work over the past 2 decades has revealed the molecular basis of a core circadian clock feedback loop that has illuminated our understanding of circadian oscillators in microbes, plants, and animals. In this transcription/translation-based feedback loop, a heterodimer of the White Collar-1 (WC-1) and WC-2 proteins acts both as the circadian photoreceptor and, in the dark, as a transcription factor that promotes the expression of the frq gene. FRQ dimerizes and feeds back to block the activity of its activators (making a negative feedback loop), as well as feeding forward to promote the synthesis of its activator, WC-1. Phosphorylation of FRQ by several kinases leads to its ubiquitination and turnover, releasing the WC-1/WC-2 dimer to reactivate frq expression and restart the circadian cycle. Light resetting of the clock can be understood through the rapid light induction of frq expression and temperature resetting through the influence of elevated temperaturesin driving higher levels of FRQ. Several FRQ- and WC-independent, noncircadian FRQ-less oscillators (FLOs) have been described, each of which appears to regulate aspects of Neurospora growth or development. Overall, the FRQ/white collar complex feedback loop appears to coordinate the circadian system through its activity to regulate downstream-target clock-controlled genes, either directly or via regulation of driven FLOs.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hannover, NH 03755-3844, USA.
| | | |
Collapse
|
12
|
Abstract
Plants and animals use day or night length for seasonal control of reproduction and other biological functions. Overwhelming evidence suggests that this photoperiodic mechanism relies on a functional circadian system. Recent progress has defined how flowering time in plants is regulated by photoperiodic control of output pathways, but the underlying mechanisms of photoperiodism remain to be described. The authors investigate photoperiodism in a genetic model system for circadian rhythms research, Neurospora crassa. They find that both propagation and reproduction respond systematically to photoperiod. Furthermore, a nonreproductive light-regulated function is also enhanced under certain photoperiodic conditions. All of these photoperiodic responses require a functional circadian clock, in that they are absent in a clock mutant. Night break experiments show that measuring night length is one of the mechanisms used for photoperiod assessment. This represents the first formal report of photoperiodism in the fungi.
Collapse
Affiliation(s)
- Ying Tan
- Institute for Medical Psychology, University of Munich, Munich, Germany
| | | | | |
Collapse
|
13
|
Fuller K, Dunlap J, Loros J. Fungal Light Sensing at the Bench and Beyond. ADVANCES IN GENETICS 2016; 96:1-51. [DOI: 10.1016/bs.adgen.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Alternative Use of DNA Binding Domains by the Neurospora White Collar Complex Dictates Circadian Regulation and Light Responses. Mol Cell Biol 2015; 36:781-93. [PMID: 26711258 DOI: 10.1128/mcb.00841-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/15/2015] [Indexed: 01/09/2023] Open
Abstract
In the Neurospora circadian system, the White Collar complex (WCC) of WC-1 and WC-2 drives transcription of the circadian pacemaker gene frequency (frq), whose gene product, FRQ, as a part of the FRQ-FRH complex (FFC), inhibits its own expression. The WCC is also the principal Neurospora photoreceptor; WCC-mediated light induction of frq resets the clock, and all acute light induction is triggered by WCC binding to promoters of light-induced genes. However, not all acutely light-induced genes are also clock regulated, and conversely, not all clock-regulated direct targets of WCC are light induced; the structural determinants governing the shift from WCC's dark circadian role to its light activation role are poorly described. We report that the DBD region (named for being defective in binding DNA), a basic region in WC-1 proximal to the DNA-binding zinc finger (ZnF) whose function was previously ascribed to nuclear localization, instead plays multiple essential roles assisting in DNA binding and mediating interactions with the FFC. DNA binding for light induction by the WCC requires only WC-2, whereas DNA binding for circadian functions requires WC-2 as well as the ZnF and DBD motif of WC-1. The data suggest a means by which alterations in the tertiary and quaternary structures of the WCC can lead to its distinct functions in the dark and in the light.
Collapse
|
15
|
Dasgupta A, Fuller KK, Dunlap JC, Loros JJ. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 2015; 18:5-20. [PMID: 26373782 DOI: 10.1111/1462-2920.13055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022]
Abstract
Light plays an important role for most organisms on this planet, serving either as a source of energy or information for the adaptation of biological processes to specific times of day. The fungal kingdom is estimated to contain well over a million species, possibly 10-fold more, and it is estimated that a majority of the fungi respond to light, eliciting changes in several physiological characteristics including pathogenesis, development and secondary metabolism. Two model organisms for photobiological studies have taken centre-stage over the last few decades--Neurospora crassa and Aspergillus nidulans. In this review, we will first discuss our understanding of the light response in N. crassa, about which the most is known, and will then juxtapose N. crassa with A. nidulans, which, as will be described below, provides an excellent template for understanding photosensory cross-talk. Finally, we will end with a commentary on the variability of the light response among other relevant fungi, and how our molecular understanding in the aforementioned model organisms still provides a strong base for dissecting light responses in such species.
Collapse
Affiliation(s)
- Arko Dasgupta
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
16
|
Abstract
The circadian clock exists to synchronize inner physiology with the external world, allowing life to anticipate and adapt to the continual changes that occur in an organism's environment. The clock architecture is highly conserved, present in almost all major branches of life. Within eukaryotes, the filamentous fungus Neurospora crassa has consistently been used as an excellent model organism to uncover the basic circadian physiology and molecular biology. The Neurospora model has elucidated our fundamental understanding of the clock as nested positive and negative feedback loop, regulated by transcriptional and posttranscriptional processes. This review will examine the basics of circadian rhythms in the model filamentous fungus N. crassa as well as highlight the output of the clock in Neurospora and the reasons that N. crassa has continued to be a strong model for the study of circadian rhythms. It will also synopsize classical and emerging methods in the study of the circadian clock.
Collapse
Affiliation(s)
- Jennifer Hurley
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jennifer J Loros
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
| |
Collapse
|
17
|
Fuller KK, Loros JJ, Dunlap JC. Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet 2014; 61:275-88. [PMID: 25323429 DOI: 10.1007/s00294-014-0451-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/25/2022]
Abstract
Visible light is an important source of energy and information for much of life on this planet. Though fungi are neither photosynthetic nor capable of observing adjacent objects, it is estimated that the majority of fungal species display some form of light response, ranging from developmental decision-making to metabolic reprogramming to pathogenesis. As such, advances in our understanding of fungal photobiology will likely reach the broad fields impacted by these organisms, including agriculture, industry and medicine. In this review, we will first describe the mechanisms by which fungi sense light and then discuss the selective advantages likely imparted by their ability to do so.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA,
| | | | | |
Collapse
|
18
|
The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. mBio 2013; 4:mBio.00142-13. [PMID: 23532976 PMCID: PMC3604765 DOI: 10.1128/mbio.00142-13] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Light is a pervasive environmental factor that regulates development, stress resistance, and even virulence in numerous fungal species. Though much research has focused on signaling pathways in Aspergillus fumigatus, an understanding of how this pathogen responds to light is lacking. In this report, we demonstrate that the fungus does indeed respond to both blue and red portions of the visible spectrum. Included in the A. fumigatus light response is a reduction in conidial germination rates, increased hyphal pigmentation, enhanced resistance to acute ultraviolet and oxidative stresses, and an increased susceptibility to cell wall perturbation. By performing gene deletion analyses, we have found that the predicted blue light receptor LreA and red light receptor FphA play unique and overlapping roles in regulating the described photoresponsive behaviors of A. fumigatus. However, our data also indicate that the photobiology of this fungus is complex and likely involves input from additional photosensory pathways beyond those analyzed here. Finally, whole-genome microarray analysis has revealed that A. fumigatus broadly regulates a variety of metabolic genes in response to light, including those involved in respiration, amino acid metabolism, and metal homeostasis. Together, these data demonstrate the importance of the photic environment on the physiology of A. fumigatus and provide a basis for future studies into this unexplored area of its biology.
Collapse
|
19
|
Hunt S, Elvin M, Heintzen C. Temperature-sensitive and circadian oscillators of Neurospora crassa share components. Genetics 2012; 191:119-31. [PMID: 22367035 PMCID: PMC3338254 DOI: 10.1534/genetics.111.137976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/06/2012] [Indexed: 11/18/2022] Open
Abstract
In Neurospora crassa, the interactions between products of the frequency (frq), frequency-interacting RNA helicase (frh), white collar-1 (wc-1), and white collar-2 (wc-2) genes establish a molecular circadian clockwork, called the FRQ-WC-Oscillator (FWO), which is required for the generation of molecular and overt circadian rhythmicity. In strains carrying nonfunctional frq alleles, circadian rhythms in asexual spore development (conidiation) are abolished in constant conditions, yet conidiation remains rhythmic in temperature cycles. Certain characteristics of these temperature-synchronized rhythms have been attributed to the activity of a FRQ-less oscillator (FLO). The molecular components of this FLO are as yet unknown. To test whether the FLO depends on other circadian clock components, we created a strain that carries deletions in the frq, wc-1, wc-2, and vivid (vvd) genes. Conidiation in this ΔFWO strain was still synchronized to cyclic temperature programs, but temperature-induced rhythmicity was distinct from that seen in single frq knockout strains. These results and other evidence presented indicate that components of the FWO are part of the temperature-induced FLO.
Collapse
Affiliation(s)
- Suzanne Hunt
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mark Elvin
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Christian Heintzen
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
20
|
Jolma IW, Laerum OD, Lillo C, Ruoff P. Circadian oscillators in eukaryotes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:533-549. [PMID: 20836046 DOI: 10.1002/wsbm.81] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The biological clock, present in nearly all eukaryotes, has evolved such that organisms can adapt to our planet's rotation in order to anticipate the coming day or night as well as unfavorable seasons. As all modern high-precision chronometers, the biological clock uses oscillation as a timekeeping element. In this review, we describe briefly the discovery, historical development, and general properties of circadian oscillators. The issue of temperature compensation (TC) is discussed, and our present understanding of the underlying genetic and biochemical mechanisms in circadian oscillators are described with special emphasis on Neurospora crassa, mammals, and plants.
Collapse
Affiliation(s)
- Ingunn W Jolma
- Centre of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ole Didrik Laerum
- The Gade Institute, Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Cathrine Lillo
- Centre of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Peter Ruoff
- Centre of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
21
|
Chen CH, Dunlap JC, Loros JJ. Neurospora illuminates fungal photoreception. Fungal Genet Biol 2010; 47:922-9. [PMID: 20637887 PMCID: PMC3649881 DOI: 10.1016/j.fgb.2010.07.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Light not only is indispensable as an energy source for life on earth but also serves as an essential environmental cue conveying the information of daily and seasonal time to organisms across different kingdoms. Although the molecular mechanisms underlying light responses are actively explored in various light-sensitive organisms, these studies are either hindered by the complexity of the systems or an incomplete familiarity with the light signaling components involved in the scheme. Therefore, study of a simple and well-characterized model system is desirable to expand our knowledge of basic properties underlying the regulation of biological light responses. This review will briefly introduce the basic light sensing machinery in Neurospora crassa, a filamentous fungus, and then focus on the most recent advances in employing Neurospora as a model to study light signaling cascades, photoadaptation, and circadian clock-modulated effects in eukaryotic cells. Also, we will summarize the functions of a number of putative photoreceptors in Neurospora, and discuss the implications of the study of Neurospora to the field of fungal photobiology and some challenges for future studies.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755
| | - Jay C. Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755
| | - Jennifer J. Loros
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
| |
Collapse
|
22
|
Akman OE, Rand DA, Brown PE, Millar AJ. Robustness from flexibility in the fungal circadian clock. BMC SYSTEMS BIOLOGY 2010; 4:88. [PMID: 20576110 PMCID: PMC2913929 DOI: 10.1186/1752-0509-4-88] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 06/24/2010] [Indexed: 12/01/2022]
Abstract
BACKGROUND Robustness is a central property of living systems, enabling function to be maintained against environmental perturbations. A key challenge is to identify the structures in biological circuits that confer system-level properties such as robustness. Circadian clocks allow organisms to adapt to the predictable changes of the 24-hour day/night cycle by generating endogenous rhythms that can be entrained to the external cycle. In all organisms, the clock circuits typically comprise multiple interlocked feedback loops controlling the rhythmic expression of key genes. Previously, we showed that such architectures increase the flexibility of the clock's rhythmic behaviour. We now test the relationship between flexibility and robustness, using a mathematical model of the circuit controlling conidiation in the fungus Neurospora crassa. RESULTS The circuit modelled in this work consists of a central negative feedback loop, in which the frequency (frq) gene inhibits its transcriptional activator white collar-1 (wc-1), interlocked with a positive feedback loop in which FRQ protein upregulates WC-1 production. Importantly, our model reproduces the observed entrainment of this circuit under light/dark cycles with varying photoperiod and cycle duration. Our simulations show that whilst the level of frq mRNA is driven directly by the light input, the falling phase of FRQ protein, a molecular correlate of conidiation, maintains a constant phase that is uncoupled from the times of dawn and dusk. The model predicts the behaviour of mutants that uncouple WC-1 production from FRQ's positive feedback, and shows that the positive loop enhances the buffering of conidiation phase against seasonal photoperiod changes. This property is quantified using Kitano's measure for the overall robustness of a regulated system output. Further analysis demonstrates that this functional robustness is a consequence of the greater evolutionary flexibility conferred on the circuit by the interlocking loop structure. CONCLUSIONS Our model shows that the behaviour of the fungal clock in light-dark cycles can be accounted for by a transcription-translation feedback model of the central FRQ-WC oscillator. More generally, we provide an example of a biological circuit in which greater flexibility yields improved robustness, while also introducing novel sensitivity analysis techniques applicable to a broader range of cellular oscillators.
Collapse
Affiliation(s)
- Ozgur E Akman
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Edinburgh, UK
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Systems Biology Centre, University of Warwick, Coventry, UK
- School of Engineering, Computing & Mathematics, University of Exeter, Exeter, UK
| | - David A Rand
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Systems Biology Centre, University of Warwick, Coventry, UK
| | - Paul E Brown
- Systems Biology Centre, University of Warwick, Coventry, UK
| | - Andrew J Millar
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Edinburgh, UK
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Chen CH, Loros JJ. Neurospora sees the light: light signaling components in a model system. Commun Integr Biol 2010; 2:448-51. [PMID: 19907715 DOI: 10.4161/cib.2.5.8835] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/24/2009] [Indexed: 12/29/2022] Open
Abstract
Light is a key environmental signal for most life on earth. Over 5% of Neurospora crassa genes are expressed in response to light stimulation in a temporally regulated cascade that includes several transcription factors. Fungal genomes, including Neurospora's, may encode several different proteins capable of binding chromophores with the ability to harvest light energy as well as proteins that can interact with primary photoreceptors or further propogate the light signal. The best understood photo- receptors are the evolutionarily conserved White Collar proteins, and the related Vivid protein, but fungi may also encode phytochromes, cryptochromes and opsins.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Department of Genetics, Dartmouth Medical School, Hanover, NH, USA
| | | |
Collapse
|
24
|
Salichos L, Rokas A. The diversity and evolution of circadian clock proteins in fungi. Mycologia 2010; 102:269-78. [PMID: 20361495 DOI: 10.3852/09-073] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Circadian rhythms are endogenous cellular patterns that associate multiple physiological and molecular functions with time. The Neurospora circadian system contains at least three oscillators: the FRQ/WC-dependent circadian oscillator (FWO), whose core components are the FRQ, WC-1, WC-2, FRH, and FWD-1 proteins; the WC-dependent circadian oscillator (WC-FLO); and one or more FRQ/ WC-independent oscillators (FLO). Little is known about the distribution of homologs of the Neurospora clock proteins or about the molecular foundations of circadian rhythms across fungi. Here, we examined 64 diverse fungal proteomes for homologs of all five Neurospora clock proteins and retraced their evolutionary history. The FRH and FWD-1 proteins were likely present in the fungal ancestor. WC-1 and WC-2 homologs are absent from the early diverging chytrids and Microsporidia but are present in all other major clades. In contrast to the deep origins of these four clock proteins FRQ homologs are taxonomically restricted within Sordariomycetes, Leotiomycetes and Dothideomycetes. The large number of FRH and FWD-1 homologs identified and their lack of concordance with the fungal species phylogeny indicate that they likely underwent multiple rounds of duplications and losses. In contrast, the FRQ, WC-1 and WC-2 proteins exhibit relatively few duplications and losses. A notable exception is the 10 FRQ-like proteins in Fusarium oxysporum, which resulted from nine duplication events. Our results suggest that the machinery required for FWO oscillator function is taxonomically restricted within Ascomycetes. Although the WC proteins are widely distributed, the functional diversity of the few non-Neurospora circadian oscillators suggests that a WC-FLO oscillator is unlikely to fully explain the observed rhythms. The contrast between the diversity of circadian oscillators and the conservation of most of their machinery is likely best explained by considering the centrality of noncircadian functions in which RNA helicase (FRH), F-box (FWD-1), WC-1 and WC-2 (light-sensing) proteins participate in fungi and eukaryotes.
Collapse
Affiliation(s)
- Leonidas Salichos
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
25
|
Merrow M, Boesl C, Ricken J, Messerschmitt M, Goedel M, Roenneberg T. Entrainment of theNeurosporaCircadian Clock. Chronobiol Int 2009; 23:71-80. [PMID: 16687281 DOI: 10.1080/07420520500545888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neurospora crassa has been systematically investigated for circadian entrainment behavior. Many aspects of synchronization can be investigated in this simple, cellular system, ranging from systematic entrainment and drivenness to masking. Clock gene expression during entrainment and entrainment without clock genes suggest that the known transcription/translation feedback loop is not alone responsible for entrainment in Neurospora.
Collapse
Affiliation(s)
- Martha Merrow
- Biologisch Centrum, University of Groningen, Haren, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ. Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 2009; 28:1029-42. [PMID: 19262566 PMCID: PMC2683703 DOI: 10.1038/emboj.2009.54] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 02/09/2009] [Indexed: 12/11/2022] Open
Abstract
White collar-1 (WC-1) and white collar-2 (WC-2) are essential for light-mediated responses in Neurospora crassa, but the molecular mechanisms underlying gene induction and the roles of other real and putative photoreceptors remain poorly characterized. Unsupervised hierarchical clustering of genome-wide microarrays reveals 5.6% of detectable transcripts, including several novel mediators, that are either early or late light responsive. Evidence is shown for photoreception in the absence of the dominant, and here confirmed, white collar complex (WCC) that regulates both types of light responses. VVD primarily modulates late responses, whereas light-responsive submerged protoperithecia-1 (SUB-1), a GATA family transcription factor, is essential for most late light gene expression. After a 15-min light stimulus, the WCC directly binds the sub-1 promoter. Bioinformatics analysis detects many early light response elements (ELREs), as well as identifying a late light response element (LLRE) required for wild-type activity of late light response promoters. The data provide a global picture of transcriptional response to light, as well as illuminating the cis- and trans-acting elements comprising the regulatory signalling cascade that governs the photobiological response.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Department of Genetics, Dartmouth Medical School, Hanover, NH, USA
| | | | - Robert H Gross
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|
27
|
Abstract
In Neurospora crassa, a circadian rhythm of conidiation (asexual spore formation) can be seen on the surface of agar media. This rhythm has a period of 22 hr in constant darkness (D/D). Under constant illumination (L/L), no rhythm is visible and cultures show constant conidiation. However, here we report that strains with a mutation in the vivid (vvd) gene, previously shown to code for the photoreceptor involved in photo-adaptation, exhibit conidiation rhythms in L/L as well as in D/D. The period of the rhythm of vvd strains ranges between 6 and 21 hr in L/L, depending upon the intensity of the light, the carbon source, and the presence of other mutations. Temperature compensation of the period also depends on light intensity. Dark pulses given in L/L shift the phase of the rhythm. Shifts from L/L to D/D show unexpected after effects; i.e., the short period of a vvd strain in L/L gradually lengthens over 2-3 days in D/D. The rhythm in L/L requires the white collar (wc-1) gene, but not the frequency (frq) gene. FRQ protein shows no rhythm in L/L in a vvd strain. The conidiation rhythm in L/L in vvd is therefore driven by a FRQ-less oscillator (FLO).
Collapse
|
28
|
A genetic selection for Neurospora crassa mutants altered in their light regulation of transcription. Genetics 2008; 178:171-83. [PMID: 18202366 DOI: 10.1534/genetics.107.079582] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transcription of the Neurospora crassa gene con-10 is induced during conidiation and following exposure of vegetative mycelia to light, but light activation is transient due to photoadaptation. We describe mutational analyses of photoadaptation using a N. crassa strain bearing a translational fusion of con-10, including its regulatory region, to a selectable bacterial gene conferring hygromycin resistance (hph). Growth of this strain was sensitive to hygromycin, upon continuous culture in the light. Five mutants were isolated that were resistant to hygromycin when cultured under constant light. Three mutant strains displayed elevated, sustained accumulation of con-10::hph mRNA during continued light exposure, suggesting that they bear mutations that reduce or eliminate the presumed light-dependent repression mechanism that blocks con-10 transcription upon prolonged illumination. These mutations altered photoadaptation for only a specific group of genes (con-10 and con-6), suggesting that regulation of photoadaptation is relatively gene specific. The mutations increased light-dependent mRNA accumulation for genes al-1, al-2, and al-3, each required for carotenoid biosynthesis, resulting in a threefold increase in carotenoid accumulation following continuous light exposure. Identification of the altered gene or genes in these mutants may reveal novel proteins that participate in light regulation of gene transcription in fungi.
Collapse
|
29
|
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
30
|
Shi M, Larrondo LF, Loros JJ, Dunlap JC. A developmental cycle masks output from the circadian oscillator under conditions of choline deficiency in Neurospora. Proc Natl Acad Sci U S A 2007; 104:20102-7. [PMID: 18056807 PMCID: PMC2148429 DOI: 10.1073/pnas.0706631104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Indexed: 11/18/2022] Open
Abstract
In Neurospora, metabolic oscillators coexist with the circadian transcriptional/translational feedback loop governed by the FRQ (Frequency) and WC (White Collar) proteins. One of these, a choline deficiency oscillator (CDO) observed in chol-1 mutants grown under choline starvation, drives an uncompensated long-period developmental cycle ( approximately 60-120 h). To assess possible contributions of this metabolic oscillator to the circadian system, molecular and physiological rhythms were followed in liquid culture under choline starvation, but these only confirmed that an oscillator with a normal circadian period length can run under choline starvation. This finding suggested that long-period developmental cycles elicited by nutritional stress could be masking output from the circadian system, although a caveat was that the CDO sometimes requires several days to become consolidated. To circumvent this and observe both oscillators simultaneously, we used an assay using a codon-optimized luciferase to follow the circadian oscillator. Under conditions where the long-period, uncompensated, CDO-driven developmental rhythm was expressed for weeks in growth tubes, the luciferase rhythm in the same cultures continued in a typical compensated manner with a circadian period length dependent on the allelic state of frq. Periodograms revealed no influence of the CDO on the circadian oscillator. Instead, the CDO appears as a cryptic metabolic oscillator that can, under appropriate conditions, assume control of growth and development, thereby masking output from the circadian system. frq-driven luciferase as a reporter of the circadian oscillator may in this way provide a means for assessing prospective role(s) of metabolic and/or ancillary oscillators within cellular circadian systems.
Collapse
Affiliation(s)
- Mi Shi
- Departments of *Genetics and
| | | | - Jennifer J. Loros
- Departments of *Genetics and
- Biochemistry, Dartmouth Medical School, Hanover, NH 03755
| | | |
Collapse
|
31
|
Liu Y, Bell-Pedersen D. Circadian rhythms in Neurospora crassa and other filamentous fungi. EUKARYOTIC CELL 2007; 5:1184-93. [PMID: 16896204 PMCID: PMC1539135 DOI: 10.1128/ec.00133-06] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040, USA.
| | | |
Collapse
|
32
|
Lombardi L, Schneider K, Tsukamoto M, Brody S. Circadian rhythms in Neurospora crassa: clock mutant effects in the absence of a frq-based oscillator. Genetics 2007; 175:1175-83. [PMID: 17237512 PMCID: PMC1840085 DOI: 10.1534/genetics.106.068270] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Neurospora, the circadian rhythm is expressed as rhythmic conidiation driven by a feedback loop involving the protein products of frq (frequency), wc-1 (white collar-1), and wc-2, known as the frq/wc (FWC) oscillator. Although strains carrying null mutations such as frq(10) or wc-2Delta lack a functional FWC oscillator and do not show a rhythm under most conditions, a rhythm can be observed in them by the addition of geraniol or farnesol to the media. Employing this altered media as an assay, the effect of other clock mutations in a frq(10)- or wc-2Delta-null background can be measured. It was found that the existing clock mutations fall into three classes: (1) those, such as prd-3 or prd-4 or frq(1), that showed no effect in a clock null background; (2) those, such as prd-1 or prd-2 or prd-6, that did have a measurable effect in the frq(10) background; and (3) those, such as the new mutation ult, that suppressed the frq(10) or wc-2Delta effect, i.e., geraniol/farnesol was not required for a visible rhythm. This classification suggests that some of the known clock mutations are part of a broader multioscillator system.
Collapse
Affiliation(s)
- Laura Lombardi
- Division of Biological Sciences, University of California, San Diego, California 92093-0116, USA
| | | | | | | |
Collapse
|
33
|
Chen WF, Majercak J, Edery I. Clock-gated photic stimulation of timeless expression at cold temperatures and seasonal adaptation in Drosophila. J Biol Rhythms 2007; 21:256-71. [PMID: 16864646 DOI: 10.1177/0748730406289306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Numerous lines of evidence indicate that the initial photoresponse of the circadian clock in Drosophila melanogaster is the light-induced degradation of TIMELESS (TIM). This posttranslational mechanism is in sharp contrast to the well-characterized pacemakers in mammals and Neurospora, where light evokes rapid changes in the transcriptional profiles of 1 or more clock genes. The authors show that light has novel effects on D. melanogaster circadian pacemakers, acutely stimulating the expression of tim at cold but not warm temperatures. This photoinduction occurs in flies defective for the classic visual phototransduction pathway or the circadian-relevant photoreceptor CRYPTOCHROME (CRY). Cold-specific stimulation of tim RNA abundance is regulated at the transcriptional level, and although numerous lines of evidence indicate that period (per) and tim expression are activated by the same mechanism, light has no measurable acute effect on per mRNA abundance. Moreover, light-induced increases in the levels of tim RNA are abolished or greatly reduced in the absence of functional CLOCK (CLK) or CYCLE (CYC) but not PER or TIM. These findings add to a growing number of examples where molecular and behavioral photoresponses in Drosophila are differentially influenced by "positive" (e.g., CLK and CYC) and "negative" (e.g., PER and TIM) core clock elements. The acute effects of light on tim expression are temporally gated, essentially restricted to the daily rising phase in tim mRNA levels. Because the start of the daily upswing in tim expression begins several hours after dawn in long photoperiods (day length), this gating mechanism likely ensures that sunrise does not prematurely stimulate tim expression during unseasonally cold spring/summer days. The results suggest that the photic stimulation of tim expression at low temperatures is part of a seasonal adaptive response that helps advance the phase of the clock on cold days, enabling flies to exhibit preferential daytime activity despite the (usually) earlier onset of dusk. Taken together with prior findings, the ability of temperature and photoperiod to adjust trajectories in the rising phases of 1 or more clock RNAs constitutes a major mechanism contributing to seasonal adaptation of clock function.
Collapse
Affiliation(s)
- Wen-Feng Chen
- Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
34
|
Loros JJ, Dunlap JC, Larrondo LF, Shi M, Belden WJ, Gooch VD, Chen CH, Baker CL, Mehra A, Colot HV, Schwerdtfeger C, Lambreghts R, Collopy PD, Gamsby JJ, Hong CI. Circadian output, input, and intracellular oscillators: insights into the circadian systems of single cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:201-14. [PMID: 18419278 PMCID: PMC3671946 DOI: 10.1101/sqb.2007.72.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Circadian output comprises the business end of circadian systems in terms of adaptive significance. Work on Neurospora pioneered the molecular analysis of circadian output mechanisms, and insights from this model system continue to illuminate the pathways through which clocks control metabolism and overt rhythms. In Neurospora, virtually every strain examined in the context of rhythms bears the band allele that helps to clarify the overt rhythm in asexual development. Recent cloning of band showed it to be an allele of ras-1 and to affect a wide variety of signaling pathways yielding enhanced light responses and asexual development. These can be largely phenocopied by treatments that increase levels of intracellular reactive oxygen species. Although output is often unidirectional, analysis of the prd-4 gene provided an alternative paradigm in which output feeds back to affect input. prd-4 is an allele of checkpoint kinase-2 that bypasses the requirement for DNA damage to activate this kinase; FRQ is normally a substrate of activated Chk2, so in Chk2(PRD-4), FRQ is precociously phosphorylated and the clock cycles more quickly. Finally, recent adaptation of luciferase to fully function in Neurospora now allows the core FRQ/WCC feedback loop to be followed in real time under conditions where it no longer controls the overt rhythm in development. This ability can be used to describe the hierarchical relationships among FRQ-Less Oscillators (FLOs) and to see which are connected to the circadian system. The nitrate reductase oscillator appears to be connected, but the oscillator controlling the long-period rhythm elicited upon choline starvation appears completely disconnected from the circadian system; it can be seen to run with a very long noncompensated 60-120-hour period length under conditions where the circadian FRQ/WCC oscillator continues to cycle with a fully compensated circadian 22-hour period.
Collapse
Affiliation(s)
- J J Loros
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Corrochano LM. Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 2007; 6:725-36. [PMID: 17609765 DOI: 10.1039/b702155k] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light regulates fungal development and behaviour and activates metabolic pathways. In addition, light is one of the many signals that fungi use to perceive and interact with the environment. In the ascomycete Neurospora crassa blue light is perceived by the white collar (WC) complex, a protein complex formed by WC-1 and WC-2. WC-1 is a protein with a flavin-binding domain and a zinc-finger domain, and interacts with WC-2, another zinc-finger domain protein. The WC complex operates as a photoreceptor and a transcription factor for blue-light responses in Neurospora. Proteins similar to WC-1 and WC-2 have been described in other fungi, suggesting a general role for the WC complex as a fungal receptor for blue light. The ascomycete Aspergillus nidulans uses red light perceived by a fungal phytochrome as a signal to regulate sexual and asexual development. In addition, other photoreceptors, rhodopsins and cryptochromes, have been identified in fungi, but their functional relevance has not been elucidated. The investigation of fungal light responses provides an opportunity to understand how fungi perceive the environment and to identify the mechanisms involved in the regulation by light of cellular development and metabolism.
Collapse
Affiliation(s)
- Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, E-41080, Sevilla, Spain.
| |
Collapse
|
36
|
Cha J, Huang G, Guo J, Liu Y. Posttranslational control of the Neurospora circadian clock. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:185-191. [PMID: 18419276 DOI: 10.1101/sqb.2007.72.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The eukaryotic circadian clocks are composed of autoregulatory circadian negative feedback loops that include both positive and negative elements. Investigations of the Neurospora circadian clock system have elucidated many of the basic mechanisms that underlie circadian rhythms, including negative feedback and light and temperature entrainment common to all eukaryotic clocks. The conservation of the posttranslational regulators in divergent circadian systems suggests that the processes mediating the modification and degradation of clock proteins may be the common foundation that allows the evolution of circadian clocks in eukaryotic systems. In this chapter, we summarize recent studies of the Neurospora circadian clock with emphasis on posttranslational regulation in the circadian negative feedback loop.
Collapse
Affiliation(s)
- J Cha
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | | | | | |
Collapse
|
37
|
Dunlap JC, Loros JJ, Colot HV, Mehra A, Belden WJ, Shi M, Hong CI, Larrondo LF, Baker CL, Chen CH, Schwerdtfeger C, Collopy PD, Gamsby JJ, Lambreghts R. A circadian clock in Neurospora: how genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:57-68. [PMID: 18522516 PMCID: PMC3683860 DOI: 10.1101/sqb.2007.72.072] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurospora has proven to be a tractable model system for understanding the molecular bases of circadian rhythms in eukaryotes. At the core of the circadian oscillatory system is a negative feedback loop in which two transcription factors, WC-1 and WC-2, act together to drive expression of the frq gene. WC-2 enters the promoter region of frq coincident with increases in frq expression and then exits when the cycle of transcription is over, whereas WC-1 can always be found there. FRQ promotes the phosphorylation of the WCs, thereby decreasing their activity, and phosphorylation of FRQ then leads to its turnover, allowing the cycle to reinitiate. By understanding the action of light and temperature on frq and FRQ expression, the molecular basis of circadian entrainment to environmental light and temperature cues can be understood, and recently a specific role for casein kinase 2 has been found in the mechanism underlying circadian temperature-compensation. These data promise molecular explanations for all of the canonical circadian properties of this model system, providing biochemical answers and regulatory logic that may be extended to more complex eukaryotes including humans.
Collapse
Affiliation(s)
- J C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The filamentous fungus Neurospora crassa is one of a handful of model organisms that has proven tractable for dissecting the molecular basis of a eukaryotic circadian clock. Work on Neurospora and other eukaryotic and prokaryotic organisms has revealed that a limited set of clock genes and clock proteins are required for generating robust circadian rhythmicity. This molecular clockwork is tuned to the daily rhythms in the environment via light- and temperature-sensitive pathways that adjust its periodicity and phase. The circadian clockwork in turn transduces temporal information to a large number of clock-controlled genes that ultimately control circadian rhythms in physiology and behavior. In summarizing our current understanding of the molecular basis of the Neurospora circadian system, this chapter aims to elucidate the basic building blocks of model eukaryotic clocks as we understand them today.
Collapse
Affiliation(s)
- Christian Heintzen
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
39
|
Rodríguez-Romero J, Corrochano LM. Regulation by blue light and heat shock of gene transcription in the fungus Phycomyces: proteins required for photoinduction and mechanism for adaptation to light. Mol Microbiol 2006; 61:1049-59. [PMID: 16879653 DOI: 10.1111/j.1365-2958.2006.05293.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gene hspA for the heat-shock protein HSP100 is induced by blue light and heat shock in the zygomycete fungus Phycomyces blakesleeanus. We have investigated the molecular details of the regulation of hspA gene transcription. We have cloned 1.9 kb of hspA upstream DNA sequence and identified many DNA segments possibly involved in heat-shock and blue-light regulation. We have identified several gene products required for hspA photoactivation and found that they are also required for mycelial photoresponses, a suggestion for a common signal transduction pathway. In addition, we have found that beta-carotene, or a chemical derivative, is required for hspA gene photoactivation. The activation of hspA after blue light-exposure or a heat shock is transient, suggesting the adaptation to the stimulus. The adaptation of hspA photoactivation seems to be the result of a novel mechanism causing a light-dependent loss of gene transcription. We propose that a reduction in the amount of MADA, a putative flavin-binding zinc-finger protein, in light-exposed mycelia may cause a reduced hspA photoactivation, providing a simple explanation for adaptation to light.
Collapse
Affiliation(s)
- Julio Rodríguez-Romero
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, E-41080 Sevilla, Spain
| | | |
Collapse
|
40
|
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
41
|
Froehlich AC, Noh B, Vierstra RD, Loros J, Dunlap JC. Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. EUKARYOTIC CELL 2006; 4:2140-52. [PMID: 16339731 PMCID: PMC1317490 DOI: 10.1128/ec.4.12.2140-2152.2005] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phytochromes (Phys) comprise a superfamily of red-/far-red-light-sensing proteins. Whereas higher-plant Phys that control numerous growth and developmental processes have been well described, the biochemical characteristics and functions of the microbial forms are largely unknown. Here, we describe analyses of the expression, regulation, and activities of two Phys in the filamentous fungus Neurospora crassa. In addition to containing the signature N-terminal domain predicted to covalently associate with a bilin chromophore, PHY-1 and PHY-2 contain C-terminal histidine kinase and response regulator motifs, implying that they function as hybrid two-component sensor kinases activated by light. A bacterially expressed N-terminal fragment of PHY-2 covalently bound either biliverdin or phycocyanobilin in vitro, with the resulting holoprotein displaying red-/far-red-light photochromic absorption spectra and a photocycle in vitro. cDNA analysis of phy-1 and phy-2 revealed two splice isoforms for each gene. The levels of the phy transcripts are not regulated by light, but the abundance of the phy-1 mRNAs is under the control of the circadian clock. Phosphorylated and unphosphorylated forms of PHY-1 were detected; both species were found exclusively in the cytoplasm, with their relative abundances unaffected by light. Strains containing deletions of phy-1 and phy-2, either singly or in tandem, were not compromised in any known photoresponses in Neurospora, leaving their function(s) unclear.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Motifs
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- Chromosomes, Fungal
- Circadian Rhythm
- Cytoplasm/metabolism
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- DNA, Fungal
- Escherichia coli/genetics
- Exons
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Fungal Proteins/isolation & purification
- Fungal Proteins/metabolism
- Gene Deletion
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genetic Linkage
- Genome, Fungal
- Histidine Kinase
- Introns
- Kinetics
- Light
- Molecular Sequence Data
- Neurospora crassa/chemistry
- Neurospora crassa/genetics
- Neurospora crassa/growth & development
- Neurospora crassa/metabolism
- Neurospora crassa/radiation effects
- Open Reading Frames
- Phosphorylation
- Phytochrome/chemistry
- Phytochrome/genetics
- Phytochrome/isolation & purification
- Phytochrome/metabolism
- Pigments, Biological/chemistry
- Pigments, Biological/genetics
- Pigments, Biological/isolation & purification
- Pigments, Biological/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Kinases/chemistry
- Protein Kinases/genetics
- Protein Kinases/isolation & purification
- Protein Kinases/metabolism
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Allan C Froehlich
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
42
|
He Q, Liu Y. Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev 2005; 19:2888-99. [PMID: 16287715 PMCID: PMC1315395 DOI: 10.1101/gad.1369605] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Blue light regulates many molecular and physiological activities in a large number of organisms. In Neurospora crassa, a eukaryotic model system for studying blue-light responses, the transcription factor and blue-light photoreceptor WHITE COLLAR-1 (WC-1) and its partner WC-2 are central to blue-light sensing. Neurospora's light responses are transient, that is, following an initial acute phase of induction, light-regulated processes are down-regulated under continuous illumination, a phenomenon called photoadaptation. The molecular mechanism(s) of photoadaptation are not well understood. Here we show that a common mechanism controls the light-induced transcription of immediate early genes (such as frq, al-3, and vvd) in Neurospora, in which light induces the binding of identical large WC-1/WC-2 complexes (L-WCC) to the light response elements (LREs) in their promoters. Using recombinant proteins, we show that the WC complexes are functional without the requirement of additional factors. In vivo, WCC has a long period photocycle, indicating that it cannot be efficiently used for repeated light activation. Contrary to previous expectations, we demonstrate that the light-induced hyperphosphorylation of WC proteins inhibits bindings of the L-WCC to the LREs. We show that, in vivo, due to its rapid hyperphosphorylation, L-WCC can only bind transiently to LREs, indicating that WCC hyperphosphorylation is a critical process for photoadaptation. Finally, phosphorylation was also shown to inhibit the LRE-binding activity of D-WCC (dark WC complex), suggesting that it plays an important role in the circadian negative feedback loop.
Collapse
Affiliation(s)
- Qiyang He
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
43
|
Franchi L, Fulci V, Macino G. Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1. Mol Microbiol 2005; 56:334-45. [PMID: 15813728 DOI: 10.1111/j.1365-2958.2005.04545.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Neurospora protein kinase C (NPKC) is a regulator of light responsive genes. We have studied the function of NPKC in light response by investigating its biochemical and functional interaction with the blue light photoreceptor white-collar 1 (WC-1), showing that activation of NPKC leads to a significant decrease in WC-1 protein levels. Furthermore, we show that WC-1 and NPKC interact in a light-regulated manner in vivo, and that protein kinase C (PKC) phosphorylates WC-1 in vitro. We designed dominant negative and constitutively active forms of PKC which are able to induce either a large increase of WC-1 protein level or a strong reduction respectively. Moreover, these changes in PKC activity result in an altered light response. As WC-1 is a key component of Neurospora circadian clock and regulates the clock oscillator component FRQ we investigated the effect of NPKC-mutated forms on FRQ levels. We show that changes in PKC activity affect FRQ levels and the robustness of the circadian clock. Together these data identify NPKC as a novel component of the Neurospora light signal transduction pathway that modulates the circadian clock.
Collapse
Affiliation(s)
- Lisa Franchi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Policlinico Umberto I, Viale Regina Elena 324, 00161 Roma, Italy
| | | | | |
Collapse
|
44
|
He Q, Cheng P, He Q, Liu Y. The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev 2005; 19:1518-31. [PMID: 15961524 PMCID: PMC1172059 DOI: 10.1101/gad.1322205] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The COP9 signalosome (CSN) promotes the function of SCF-type cullin-based ubiquitin ligase complexes in vivo. Paradoxically, removal of the Nedd8 modification of cullins by CSN inhibits the ubiquitin ligase activity of SCF complexes in vitro. Ubiquitination-mediated degradation of the Neurospora circadian clock protein FREQUENCY (FRQ) is critical for clock function. Ubiquitination of FRQ requires FWD-1, the substrate-recruiting subunit of an SCF complex. Here we show that disruption of a subunit of CSN (csn-2) impairs the degradation of FRQ and compromises its normal circadian expression. A FRQ-independent oscillator drives conidiation in the csn-2 mutant, resulting in a 2-d conidiation rhythm that persists in constant darkness (DD), constant light (LL), light-to-dark (LD) transitions, and temperature cycles. Strikingly, the levels of FWD-1 are drastically reduced in csn-2 mutant, explaining the impaired degradation of FRQ. Reduction of FWD-1 levels in the mutant requires its F-box, suggesting that its degradation is due to autoubiquitination. In addition, SKP-1 and CUL-1 of the SCF(FWD-1) complex are also unstable in the mutant. Therefore, our results establish an important role of CSN in the circadian clock of Neurospora. Our findings also reconcile the CSN paradox and suggest that a major function of CSN is to maintain the stability of SCF ubiquitin ligases in vivo.
Collapse
Affiliation(s)
- Qun He
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
45
|
He Q, Shu H, Cheng P, Chen S, Wang L, Liu Y. Light-independent Phosphorylation of WHITE COLLAR-1 Regulates Its Function in the Neurospora Circadian Negative Feedback Loop. J Biol Chem 2005; 280:17526-32. [PMID: 15731099 DOI: 10.1074/jbc.m414010200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation is a major regulatory mechanism controlling circadian clocks. In the Neurospora circadian clock, the PER-ARNT-SIM (PAS) domain-containing transcription factor, WHITE COLLAR (WC)-1, acts both as the blue light photoreceptor of the clock and as a positive element in the circadian negative feedback loop in constant darkness, by activating the transcription of the frequency (frq) gene. To understand the role of WC-1 phosphorylation, five in vivo WC-1 phosphorylation sites, located immediately downstream of the WC-1 zinc finger DNA binding domain, were identified by tandem mass spectrometry using biochemically purified endogenous WC-1 protein. Mutations of these phosphorylation sites suggest that they are major WC-1 phosphorylation sites under constant conditions but are not responsible for the light-induced hyperphosphorylation of WC-1. Although phosphorylation of these sites does not affect the light function of WC-1, strains carrying mutations of these sites show short period, low amplitude, or arrhythmic conidiation rhythms in constant darkness. Furthermore, normal or slightly higher levels of frq mRNA and FRQ proteins were observed in a mutant strain containing mutations of all five sites despite its low WC-1 levels. Together, these data suggest that phosphorylation of these sites negatively regulates the function of WC-1 in the circadian negative feedback loop and is important for the function of the Neurospora circadian clock.
Collapse
Affiliation(s)
- Qiyang He
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
46
|
Christensen MK, Falkeid G, Loros JJ, Dunlap JC, Lillo C, Ruoff P. A nitrate-induced frq-less oscillator in Neurospora crassa. J Biol Rhythms 2005; 19:280-6. [PMID: 15245647 DOI: 10.1177/0748730404265532] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
When nitrate is the only nitrogen source, Neurospora crassa's nitrate reductase (NR) shows endogenous oscillations in its nitrate reductase activity (NRA) on a circadian time scale. These NRA oscillations can be observed in darkness or continuous light conditions and also in a frq(9) mutant in which no functional FRQ protein is formed. Even in a white-collar-1 knockout mutant, NRA oscillations have been observed, although with a highly reduced amplitude. This indicates that the NRA oscillations are not a simple output rhythm of the white-collar-driven frq oscillator but may be generated by another oscillator that contains the nit-3 autoregulatory negative feedback loop as a part. In this negative feedback loop, a product in the reaction chain catalyzed by nitrate reductase, probably glutamine, induces repression of the nitrate reductase gene and thus downregulates its own production. This is the first example of an endogenous, nutritionally induced daily rhythm with known molecular components that is observed in the absence of an intact FRQ protein.
Collapse
|
47
|
Dunlap JC, Loros JJ. Analysis of circadian rhythms in Neurospora: overview of assays and genetic and molecular biological manipulation. Methods Enzymol 2005; 393:3-22. [PMID: 15817284 DOI: 10.1016/s0076-6879(05)93001-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The eukaryotic filamentous fungus Neurospora crassa is a tractable model system that has provided numerous insights into the molecular basis of circadian rhythms. In the core circadian clock feedback loop, WC-1 and WC-2 interact via PAS domains to heterodimerize, and this complex acts both as the circadian photoreceptor and, in the dark, as a transcription factor that promotes the expression of the frq gene. In the negative step of the loop, dimers of FRQ feed back to block the activity of the WC-1/WC-2 complex (WCC) and, in a positive step, to promote the synthesis of WC-1. Several kinases phosphorylate FRQ, leading to its ubiquitination and turnover, releasing the WC-1/WC-2 dimer to reactivate frq expression and restart the circadian cycle. Light and temperature entrainment of the clock arise from rapid light induction of frq expression and from the effect of elevated temperatures in driving higher levels of FRQ. Noncircadian candidate slave oscillators, termed FRQ-less oscillators (FLOs), have been described, each of which appears to regulate aspects of Neurospora growth or development. Overall, the core FRQ/WCC feedback loop coordinates the circadian system by regulating downstream clock-controlled genes either directly or via regulation of driven FLOs. This article provides a brief synopsis of the system and describes current assays for the Neurospora clock. Methods for genetic and molecular manipulation of the core clock are summarized, and accompanying chapters address more specifically aspects of photobiology and output.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
48
|
Abstract
Recent advances in understanding circadian (daily) rhythms in the genera Neurospora, Gonyaulax, and Synechococcus are reviewed and new complexities in their circadian systems are described. The previous model, consisting of a unidirectional flow of information from input to oscillator to output, has now expanded to include multiple input pathways, multiple oscillators, multiple outputs; and feedback from oscillator to input and output to oscillator. New posttranscriptional features of the frq/white-collar oscillator (FWC) of Neurospora are described, including protein phosphorylation and degradation, dimerization, and complex formation. Experimental evidence is presented for frq-less oscillator(s) (FLO) downstream of the FWC. Mathematical models of the Neurospora system are also discussed.
Collapse
|
49
|
Bloch G, Rubinstein CD, Robinson GE. period expression in the honey bee brain is developmentally regulated and not affected by light, flight experience, or colony type. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:879-891. [PMID: 15350608 DOI: 10.1016/j.ibmb.2004.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 05/26/2004] [Indexed: 05/24/2023]
Abstract
Changes in circadian rhythms of behavior are related to age-based division of labor in honey bee colonies. The expression of the clock gene period (per) in the bee brain is associated with age-related changes in circadian rhythms of behavior, but previous efforts to firmly associate per brain expression with division of labor or age have produced variable results. We explored whether this variability was due to differences in light and flight experience, which vary with division of labor, or differences in colony environment, which are known to affect honey bee behavioral development. Our results support the hypothesis that per mRNA expression in the bee brain is developmentally regulated. One-day-old bees had the lowest levels of expression and rarely showed evidence of diurnal fluctuation, while foragers and forager-age bees (> 21 days of age) always had high levels of brain per and strong and consistent diurnal patterns. Results from laboratory and field experiments do not support the hypothesis that light, flight experience, and colony type influence per expression. Our results suggest that the rate of developmental elevation in per expression is influenced by factors other than the ones studied in our experiments, and that young bees are more sensitive to these factors than foragers.
Collapse
Affiliation(s)
- G Bloch
- Department of Evolution, Systematics, and Ecology, Room 114, Berman Building, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| | | | | |
Collapse
|
50
|
Tan Y, Dragovic Z, Roenneberg T, Merrow M. Entrainment dissociates transcription and translation of a circadian clock gene in neurospora. Curr Biol 2004; 14:433-8. [PMID: 15028220 DOI: 10.1016/j.cub.2004.02.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 01/22/2004] [Accepted: 01/22/2004] [Indexed: 11/20/2022]
Abstract
Circadian systems coordinate the daily sequence of events in cells, tissues, and organisms. In constant conditions, the biological clock oscillates with its endogenous period, whereas it is synchronized to the 24 hr light:dark cycle in nature. Here, we investigate light entrainment of Neurospora crassa to photoperiods that mimic seasonal changes. Clock gene (frequency, or frq) RNA levels directly reflect the light environment in all photoperiods, whereas the FRQ protein follows neither RNA levels nor light transitions. Induction of frq RNA and protein can be dissociated by as much as 6 hr, depending on photoperiod. The phase of entrainment at the physiological level (e.g., asexual spore development) correlates with FRQ protein. Thus, a dissociation of transcription, translation, and protein stability is fundamental to circadian entrainment of Neurospora. Our findings suggest that simple feedback models are insufficient to explain the molecular circadian mechanisms under entrained conditions and that clock control of light input pathways involves posttranscriptional regulation. The regulators mediating the dissociation between RNA and protein levels are still unknown and will be the key to understanding both circadian timing at the molecular level and how the clock exerts control over many cellular processes.
Collapse
Affiliation(s)
- Ying Tan
- Institute for Medical Psychology, University of Munich, Munich D-80336, Germany
| | | | | | | |
Collapse
|