1
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
2
|
Stanković D, Csordás G, Uhlirova M. Drosophila pVALIUM10 TRiP RNAi lines cause undesired silencing of Gateway-based transgenes. Life Sci Alliance 2023; 6:e202201801. [PMID: 36446522 PMCID: PMC9711858 DOI: 10.26508/lsa.202201801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Post-transcriptional gene silencing using double-stranded RNA has revolutionized the field of functional genetics, allowing fast and easy disruption of gene function in various organisms. In Drosophila, many transgenic RNAi lines have been generated in large-scale efforts, including the Drosophila Transgenic RNAi Project (TRiP), to facilitate in vivo knockdown of virtually any Drosophila gene with spatial and temporal resolution. The available transgenic RNAi lines represent a fundamental resource for the fly community, providing an unprecedented opportunity to address a vast range of biological questions relevant to basic and biomedical research fields. However, caution should be applied regarding the efficiency and specificity of the RNAi approach. Here, we demonstrate that pVALIUM10-based RNAi lines, representing ∼13% of the total TRiP collection (1,808 of 13,410 pVALIUM TRiP-based RNAi lines), cause unintended off-target silencing of transgenes expressed from Gateway destination vectors. The silencing is mediated by targeting attB1 and attB2 sequences generated via site-specific recombination and included in the transcribed mRNA. Deleting these attB sites from the Gateway expression vector prevents silencing and restores expected transgene expression.
Collapse
Affiliation(s)
- Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Gábor Csordás
- Institute of Genetics, Biological Research Centre of the Eötvös Loránd Research Network, Szeged, Hungary
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Shidlovskii YV, Bylino OV, Shaposhnikov AV, Kachaev ZM, Lebedeva LA, Kolesnik VV, Amendola D, De Simone G, Formicola N, Schedl P, Digilio FA, Giordano E. Subunits of the PBAP Chromatin Remodeler Are Capable of Mediating Enhancer-Driven Transcription in Drosophila. Int J Mol Sci 2021; 22:ijms22062856. [PMID: 33799739 PMCID: PMC7999800 DOI: 10.3390/ijms22062856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The chromatin remodeler SWI/SNF is an important participant in gene activation, functioning predominantly by opening the chromatin structure on promoters and enhancers. Here, we describe its novel mode of action in which SWI/SNF factors mediate the targeted action of an enhancer. We studied the functions of two signature subunits of PBAP subfamily, BAP170 and SAYP, in Drosophila. These subunits were stably tethered to a transgene reporter carrying the hsp70 core promoter. The tethered subunits mediate transcription of the reporter in a pattern that is generated by enhancers close to the insertion site in multiple loci throughout the genome. Both tethered SAYP and BAP170 recruit the whole PBAP complex to the reporter promoter. However, we found that BAP170-dependent transcription is more resistant to the depletion of other PBAP subunits, suggesting that BAP170 may play a more critical role in establishing enhancer-dependent transcription.
Collapse
Affiliation(s)
- Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
- Correspondence: (Y.V.S.); (F.A.D.); (E.G.)
| | - Oleg V. Bylino
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Alexander V. Shaposhnikov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Valeria V. Kolesnik
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Diego Amendola
- Department of Biology, Università di Napoli Federico II, 80138 Naples, Italy; (D.A.); (G.D.S.)
| | - Giovanna De Simone
- Department of Biology, Università di Napoli Federico II, 80138 Naples, Italy; (D.A.); (G.D.S.)
- Department of Sciences, Roma Tre University, 00154 Rome, Italy
| | - Nadia Formicola
- Institute of Research on Terrestrial Ecosystems (IRET) National Research Council (CNR), 05010 Porano, Italy;
- Institut de Biologie Valrose iBV UMR CNRS 7277, Université Côte d’Azur, 06108 Nice, France
| | - Paul Schedl
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Filomena Anna Digilio
- Institute of Research on Terrestrial Ecosystems (IRET) National Research Council (CNR), 05010 Porano, Italy;
- Correspondence: (Y.V.S.); (F.A.D.); (E.G.)
| | - Ennio Giordano
- Department of Biology, Università di Napoli Federico II, 80138 Naples, Italy; (D.A.); (G.D.S.)
- Correspondence: (Y.V.S.); (F.A.D.); (E.G.)
| |
Collapse
|
4
|
Expression of Heat Shock Protein 70 Is Insufficient To Extend Drosophila melanogaster Longevity. G3-GENES GENOMES GENETICS 2019; 9:4197-4207. [PMID: 31624139 PMCID: PMC6893204 DOI: 10.1534/g3.119.400782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been known for over 20 years that Drosophila melanogaster flies with twelve additional copies of the hsp70 gene encoding the 70 kD heat shock protein lives longer after a non-lethal heat treatment. Since the heat treatment also induces the expression of additional heat shock proteins, the biological effect can be due either to HSP70 acting alone or in combination. This study used the UAS/GAL4 system to determine whether hsp70 is sufficient to affect the longevity and the resistance to thermal, oxidative or desiccation stresses of the whole organism. We observed that HSP70 expression in the nervous system or muscles has no effect on longevity or stress resistance but ubiquitous expression reduces the life span of males. We also observed that the down-regulation of hsp70 using RNAi did not affect longevity.
Collapse
|
5
|
Generating Gene Silenced Mutants in Phytophthora sojae. Methods Mol Biol 2018. [PMID: 30182241 DOI: 10.1007/978-1-4939-8724-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Phytophthora species are notorious pathogens of plants and cause enormous damage to agriculture. In order to understand Phytophthora pathogenesis, gene silencing and knockout methods are important for the investigation of gene functions. Although CRISPR/Cas9-based gene knockout procedures have been developed in Phytophthora sojae and Phytophthora capsici, it may not always be the best choice especially when knockout mutation leads to lethality. Therefore, gene silencing is a very useful tool for functional analysis of target genes in Phytophthora. This chapter introduces a gene silencing protocol for the soybean pathogen P. sojae. An expression cassette is incorporated into the P. sojae genome through PEG-mediated protoplast transformation, which leads to constitutive production of antisense RNA transcripts. These transcripts are able to target mRNAs through sequence complementarity and effectively reduce the expression of the target genes.
Collapse
|
6
|
Ding ZY, Wang YH, Huang YC, Lee MC, Tseng MJ, Chi YH, Huang ML. Outer nuclear membrane protein Kuduk modulates the LINC complex and nuclear envelope architecture. J Cell Biol 2017; 216:2827-2841. [PMID: 28716842 PMCID: PMC5584142 DOI: 10.1083/jcb.201606043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 05/25/2017] [Accepted: 06/15/2017] [Indexed: 11/25/2022] Open
Abstract
LINC complexes connect the inner and outer nuclear membrane (ONM) to transduce nucleocytoskeletal force. Ding et al. identify an ONM protein, Kuduk/TMEM258, which modulates the quality of LINC complexes and regulates the nuclear envelope architecture, nuclear positioning, and the development of ovarian follicles. Linker of nucleoskeleton and cytoskeleton (LINC) complexes spanning the nuclear envelope (NE) contribute to nucleocytoskeletal force transduction. A few NE proteins have been found to regulate the LINC complex. In this study, we identify one, Kuduk (Kud), which can reside at the outer nuclear membrane and is required for the development of Drosophila melanogaster ovarian follicles and NE morphology of myonuclei. Kud associates with LINC complex components in an evolutionarily conserved manner. Loss of Kud increases the level but impairs functioning of the LINC complex. Overexpression of Kud suppresses NE targeting of cytoskeleton-free LINC complexes. Thus, Kud acts as a quality control mechanism for LINC-mediated nucleocytoskeletal connections. Genetic data indicate that Kud also functions independently of the LINC complex. Overexpression of the human orthologue TMEM258 in Drosophila proved functional conservation. These findings expand our understanding of the regulation of LINC complexes and NE architecture.
Collapse
Affiliation(s)
- Zhao-Ying Ding
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| | - Ying-Hsuan Wang
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| | - Yu-Cheng Huang
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| | - Myong-Chol Lee
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| | - Min-Jen Tseng
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Min-Lang Huang
- Department of Life Science, National Chung-Cheng University, Chiayi, Taiwan
| |
Collapse
|
7
|
Lei Y, Liu K, Hou L, Ding L, Li Y, Liu L. Small chaperons and autophagy protected neurons from necrotic cell death. Sci Rep 2017; 7:5650. [PMID: 28720827 PMCID: PMC5515951 DOI: 10.1038/s41598-017-05995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/07/2017] [Indexed: 01/22/2023] Open
Abstract
Neuronal necrosis occurs during early phase of ischemic insult. However, our knowledge of neuronal necrosis is still inadequate. To study the mechanism of neuronal necrosis, we previously established a Drosophila genetic model of neuronal necrosis by calcium overloading through expression of a constitutively opened cation channel mutant. Here, we performed further genetic screens and identified a suppressor of neuronal necrosis, CG17259, which encodes a seryl-tRNA synthetase. We found that loss-of-function (LOF) CG17259 activated eIF2α phosphorylation and subsequent up-regulation of chaperons (Hsp26 and Hsp27) and autophagy. Genetically, down-regulation of eIF2α phosphorylation, Hsp26/Hsp27 or autophagy reduced the protective effect of LOF CG17259, indicating they function downstream of CG17259. The protective effect of these protein degradation pathways indicated activation of a toxic protein during neuronal necrosis. Our data indicated that p53 was likely one such protein, because p53 was accumulated in the necrotic neurons and down-regulation of p53 rescued necrosis. In the SH-SY5Y human cells, tunicamycin (TM), a PERK activator, promoted transcription of hsp27; and necrosis induced by glutamate could be rescued by TM, associated with reduced p53 accumulation. In an ischemic stroke model in rats, p53 protein was also increased, and TM treatment could reduce the p53 accumulation and brain damage.
Collapse
Affiliation(s)
- Ye Lei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.,Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Kai Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lin Hou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.,Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lianggong Ding
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.,Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Yuhong Li
- Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lei Liu
- Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China.
| |
Collapse
|
8
|
|
9
|
Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DYR, Seydoux G, Mohr SE, Zuber J, Perrimon N. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet 2016; 18:24-40. [PMID: 27795562 DOI: 10.1038/nrg.2016.118] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.
Collapse
Affiliation(s)
- Benjamin E Housden
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Matthias Muhar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Matthew Gemberling
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 43 Ludwigstrasse, Bad Nauheim 61231, Germany
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21218, USA.,Howard Hughes Medical Institute, 725 North Wolfe Street, Baltimore, Maryland 21218, USA
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
10
|
Falcicchia C, Trempat P, Binaschi A, Perrier-Biollay C, Roncon P, Soukupova M, Berthommé H, Simonato M. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors. PLoS One 2016; 11:e0150995. [PMID: 26954758 PMCID: PMC4783051 DOI: 10.1371/journal.pone.0150995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/21/2016] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.
Collapse
Affiliation(s)
- Chiara Falcicchia
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
- * E-mail:
| | - Pascal Trempat
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Anna Binaschi
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | | | - Paolo Roncon
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | - Marie Soukupova
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | - Hervé Berthommé
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Michele Simonato
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Singh AK, Lakhotia SC. Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster. Cell Stress Chaperones 2016; 21:105-120. [PMID: 26386576 PMCID: PMC4679734 DOI: 10.1007/s12192-015-0644-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 02/02/2023] Open
Abstract
A delayed organismic lethality was reported in Drosophila following heat shock when developmentally active and stress-inducible noncoding hsrω-n transcripts were down-regulated during heat shock through hs-GAL4-driven expression of the hsrω-RNAi transgene, despite the characteristic elevation of all heat shock proteins (Hsp), including Hsp70. Here, we show that hsrω-RNAi transgene expression prior to heat shock singularly prevents accumulation of Hsp70 in all larval tissues without affecting transcriptional induction of hsp70 genes and stability of their transcripts. Absence of the stress-induced Hsp70 accumulation was not due to higher levels of Hsc70 in hsrω-RNAi transgene-expressing tissues. Inhibition of proteasomal activity during heat shock restored high levels of the induced Hsp70, suggesting very rapid degradation of the Hsp70 even during the stress when hsrω-RNAi transgene was expressed ahead of heat shock. Unexpectedly, while complete absence of hsrω transcripts in hsrω (66) homozygotes (hsrω-null) did not prevent high accumulation of heat shock-induced Hsp70, hsrω-RNAi transgene expression in hsrω-null background blocked Hsp70 accumulation. Nonspecific RNAi transgene expression did not affect Hsp70 induction. These observations reveal that, under certain conditions, the stress-induced Hsp70 can be selectively and rapidly targeted for proteasomal degradation even during heat shock. In the present case, the selective degradation of Hsp70 does not appear to be due to down-regulation of the hsrω-n transcripts per se; rather, this may be an indirect effect of the expression of hsrω-RNAi transgene whose RNA products may titrate away some RNA-binding proteins which may also be essential for stability of the induced Hsp70.
Collapse
Affiliation(s)
- Anand K Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Kim DH, Han MR, Lee G, Lee SS, Kim YJ, Adams ME. Rescheduling Behavioral Subunits of a Fixed Action Pattern by Genetic Manipulation of Peptidergic Signaling. PLoS Genet 2015; 11:e1005513. [PMID: 26401953 PMCID: PMC4581697 DOI: 10.1371/journal.pgen.1005513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 08/18/2015] [Indexed: 12/25/2022] Open
Abstract
The ecdysis behavioral sequence in insects is a classic fixed action pattern (FAP) initiated by hormonal signaling. Ecdysis triggering hormones (ETHs) release the FAP through direct actions on the CNS. Here we present evidence implicating two groups of central ETH receptor (ETHR) neurons in scheduling the first two steps of the FAP: kinin (aka drosokinin, leucokinin) neurons regulate pre-ecdysis behavior and CAMB neurons (CCAP, AstCC, MIP, and Bursicon) initiate the switch to ecdysis behavior. Ablation of kinin neurons or altering levels of ETH receptor (ETHR) expression in these neurons modifies timing and intensity of pre-ecdysis behavior. Cell ablation or ETHR knockdown in CAMB neurons delays the switch to ecdysis, whereas overexpression of ETHR or expression of pertussis toxin in these neurons accelerates timing of the switch. Calcium dynamics in kinin neurons are temporally aligned with pre-ecdysis behavior, whereas activity of CAMB neurons coincides with the switch from pre-ecdysis to ecdysis behavior. Activation of CCAP or CAMB neurons through temperature-sensitive TRPM8 gating is sufficient to trigger ecdysis behavior. Our findings demonstrate that kinin and CAMB neurons are direct targets of ETH and play critical roles in scheduling successive behavioral steps in the ecdysis FAP. Moreover, temporal organization of the FAP is likely a function of ETH receptor density in target neurons.
Collapse
Affiliation(s)
- Do-Hyoung Kim
- Department of Entomology, University of California, Riverside, Riverside, California, United States of America
| | - Mi-Ran Han
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Gyunghee Lee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sang Soo Lee
- Department of Cell Biology & Neuroscience, University of California, Riverside, Riverside, California, United States of America
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Young-Joon Kim
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Michael E. Adams
- Department of Entomology, University of California, Riverside, Riverside, California, United States of America
- Department of Cell Biology & Neuroscience, University of California, Riverside, Riverside, California, United States of America
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, California, United States of America
| |
Collapse
|
13
|
Martin CA, Barajas A, Lawless G, Lawal HO, Assani K, Lumintang YP, Nunez V, Krantz DE. Synergistic effects on dopamine cell death in a Drosophila model of chronic toxin exposure. Neurotoxicology 2014; 44:344-51. [PMID: 25160001 PMCID: PMC4264678 DOI: 10.1016/j.neuro.2014.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/06/2023]
Abstract
The neurodegenerative effects of Parkinson's disease (PD) are marked by a selective loss of dopaminergic (DA) neurons. Epidemiological studies suggest that chronic exposure to the pesticide paraquat may increase the risk for PD and DA cell loss. However, combined exposure with additional fungicide(s) including maneb and/or ziram may be required for pathogenesis. To explore potential pathogenic mechanisms, we have developed a Drosophila model of chronic paraquat exposure. We find that while chronic paraquat exposure alone decreased organismal survival and motor function, combined chronic exposure to both paraquat and maneb was required for DA cell death in the fly. To initiate mechanistic studies of this interaction, we used additional genetic reagents to target the ubiquitin proteasome system, which has been implicated in some rare familial forms of PD and the toxic effects of ziram. Genetic inhibition of E1 ubiquitin ligase, but not the proteasome itself, increased DA cell death in combination with maneb but not paraquat. These studies establish a model for long-term exposure to multiple pesticides, and support the idea that pesticide interactions relevant to PD may involve inhibition of protein ubiquitination.
Collapse
Affiliation(s)
- Ciara A Martin
- UCLA Interdepartmental Program in Molecular Toxicology, Los Angeles, CA 90095, United States.
| | - Angel Barajas
- Department of Psychiatry and Biobehavioral Sciences, The Gonda (Goldschmied) Neuroscience and Genetics Research Center, Room 3335, Hatos Center For Neuropharmacology, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, United States.
| | - George Lawless
- Department of Psychiatry and Biobehavioral Sciences, The Gonda (Goldschmied) Neuroscience and Genetics Research Center, Room 3335, Hatos Center For Neuropharmacology, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, United States.
| | - Hakeem O Lawal
- UCLA Interdepartmental Program in Molecular Toxicology, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, The Gonda (Goldschmied) Neuroscience and Genetics Research Center, Room 3335, Hatos Center For Neuropharmacology, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, United States.
| | - Khadij Assani
- Department of Psychiatry and Biobehavioral Sciences, The Gonda (Goldschmied) Neuroscience and Genetics Research Center, Room 3335, Hatos Center For Neuropharmacology, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, United States.
| | - Yosephine P Lumintang
- Department of Psychiatry and Biobehavioral Sciences, The Gonda (Goldschmied) Neuroscience and Genetics Research Center, Room 3335, Hatos Center For Neuropharmacology, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, United States.
| | - Vanessa Nunez
- Department of Psychiatry and Biobehavioral Sciences, The Gonda (Goldschmied) Neuroscience and Genetics Research Center, Room 3335, Hatos Center For Neuropharmacology, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, United States.
| | - David E Krantz
- UCLA Interdepartmental Program in Molecular Toxicology, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, The Gonda (Goldschmied) Neuroscience and Genetics Research Center, Room 3335, Hatos Center For Neuropharmacology, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, United States.
| |
Collapse
|
14
|
In Vivo RNAi-Based Screens: Studies in Model Organisms. Genes (Basel) 2013; 4:646-65. [PMID: 24705267 PMCID: PMC3927573 DOI: 10.3390/genes4040646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 10/29/2013] [Accepted: 11/14/2013] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) is a technique widely used for gene silencing in organisms and cultured cells, and depends on sequence homology between double-stranded RNA (dsRNA) and target mRNA molecules. Numerous cell-based genome-wide screens have successfully identified novel genes involved in various biological processes, including signal transduction, cell viability/death, and cell morphology. However, cell-based screens cannot address cellular processes such as development, behavior, and immunity. Drosophila and Caenorhabditis elegans are two model organisms whose whole bodies and individual body parts have been subjected to RNAi-based genome-wide screening. Moreover, Drosophila RNAi allows the manipulation of gene function in a spatiotemporal manner when it is implemented using the Gal4/UAS system. Using this inducible RNAi technique, various large-scale screens have been performed in Drosophila, demonstrating that the method is straightforward and valuable. However, accumulated results reveal that the results of RNAi-based screens have relatively high levels of error, such as false positives and negatives. Here, we review in vivo RNAi screens in Drosophila and the methods that could be used to remove ambiguity from screening results.
Collapse
|
15
|
Cho KH, Daubnerová I, Park Y, Zitnan D, Adams ME. Secretory competence in a gateway endocrine cell conferred by the nuclear receptor βFTZ-F1 enables stage-specific ecdysone responses throughout development in Drosophila. Dev Biol 2013; 385:253-62. [PMID: 24247008 DOI: 10.1016/j.ydbio.2013.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 12/24/2022]
Abstract
Hormone-induced changes in gene expression initiate periodic molts and metamorphosis during insect development. Successful execution of these developmental steps depends upon successive phases of rising and falling 20-hydroxyecdysone (20E) levels, leading to a cascade of nuclear receptor-driven transcriptional activity that enables stage- and tissue-specific responses to the steroid. Among the cellular processes associated with declining steroids is acquisition of secretory competence in endocrine Inka cells, the source of ecdysis triggering hormones (ETHs). We show here that Inka cell secretory competence is conferred by the orphan nuclear receptor βFTZ-F1. Selective RNA silencing of βftz-f1 in Inka cells prevents ETH release, causing developmental arrest at all stages. Affected larvae display buttoned-up, the ETH-null phenotype characterized by double mouthparts, absence of ecdysis behaviors, and failure to shed the old cuticle. During the mid-prepupal period, individuals fail to translocate the air bubble, execute head eversion and elongate incipient wings and legs. Those that escape to the adult stage are defective in wing expansion and cuticle sclerotization. Failure to release ETH in βftz-f1 silenced animals is indicated by persistent ETH immunoreactivity in Inka cells. Arrested larvae are rescued by precisely-timed ETH injection or Inka cell-targeted βFTZ-F1 expression. Moreover, premature βftz-f1 expression in these cells also results in developmental arrest. The Inka cell therefore functions as a "gateway cell", whose secretion of ETH serves as a key downstream physiological output enabling stage-specific responses to 20E that are required to advance through critical developmental steps. This secretory function depends on transient and precisely timed βFTZ-F1 expression late in the molt as steroids decline.
Collapse
Affiliation(s)
- Kook-Ho Cho
- Departments of Entomology and Cell Biology & Neuroscience, 2103 Biological Sciences Building, University of California, Riverside, CA 92521, USA
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, 84506 Bratislava, Slovakia
| | - Yoonseong Park
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Dusan Zitnan
- Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, 84506 Bratislava, Slovakia
| | - Michael E Adams
- Departments of Entomology and Cell Biology & Neuroscience, 2103 Biological Sciences Building, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
16
|
A targeted genetic modifier screen links the SWI2/SNF2 protein domino to growth and autophagy genes in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2013; 3:815-25. [PMID: 23550128 PMCID: PMC3656729 DOI: 10.1534/g3.112.005496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeted genetic studies can facilitate phenotypic analyses and provide important insights into development and other complex processes. The SWI2/SNF2 DNA-dependent ATPase Domino (Dom) of Drosophila melanogaster, a component of the Tip60 acetyltransferase complex, has been associated with a wide spectrum of cellular processes at multiple developmental stages. These include hematopoiesis, cell proliferation, homeotic gene regulation, histone exchange during DNA repair, and Notch signaling. To explore the wider gene network associated with Dom action, we used RNAi directed against domino (dom) to mediate loss-of-function at the wing margin, a tissue that is readily scored for phenotypic changes. Dom RNAi driven through GAL4-UAS elicited dominant wing nicking that responded phenotypically to the dose of dom and other loci known to function with dom. We screened for phenotypic modifiers of this wing phenotype among 2500 transpositions of the EP P element and found both enhancers and suppressors. Several classes of modifier were obtained, including those encoding transcription factors, RNA regulatory proteins, and factors that regulate cell growth, proliferation and autophagy, a lysosomal degradation pathway that affects cell growth under conditions of starvation and stress. Our analysis is consistent with prior studies, suggesting that Dom acts pleiotropically as a positive effector of Notch signaling and a repressor of proliferation. This genetic system should facilitate screens for additional loci associated with Dom function, and complement biochemical approaches to their regulatory activity.
Collapse
|
17
|
Paim RMM, Araujo RN, Lehane MJ, Gontijo NF, Pereira MH. Application of RNA interference in triatomine (Hemiptera: Reduviidae) studies. INSECT SCIENCE 2013; 20:40-52. [PMID: 23955824 DOI: 10.1111/j.1744-7917.2012.01540.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Triatomines (Hemiptera: Reduviidae) are obligate hematophagous insects. They are of medical importance because they are vectors of Trypanosoma cruzi, the causative agent of Chagas disease in the Americas. In recent years, the RNA interference (RNAi) technology has emerged as a practical and useful alternative means of studying gene function in insects, including triatomine bugs. RNAi research in triatomines is still in its early stages, several issues still need to be elucidated, including the description of the molecules involved in the RNAi machinery and aspects related to phenotype evaluation and persistence of the knockdown in different tissues and organs. This review considers recent applications of RNAi to triatomine research, describing the major methods that have been applied during the knockdown process such as the double-stranded RNA delivery mechanism (injection, microinjection, or ingestion) and the phenotype characterization (mRNA and target protein levels) in studies conducted with the intent to provide greater insights into the biology of these insects. In addition to the characterization of insect biomolecules, some with biopharmacological potential, RNAi may provide a new view of the interaction between triatomine and trypanosomatids, enabling the development of new measures for vector control and transmission of the parasite.
Collapse
Affiliation(s)
- Rafaela M M Paim
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Bloco I4, Sala 177, Av. Antonio Carlos 6627, Pampulha, CEP 30270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
18
|
Lee G, Sehgal R, Wang Z, Nair S, Kikuno K, Chen CH, Hay B, Park JH. Essential role of grim-led programmed cell death for the establishment of corazonin-producing peptidergic nervous system during embryogenesis and metamorphosis in Drosophila melanogaster. Biol Open 2013; 2:283-94. [PMID: 23519152 PMCID: PMC3603410 DOI: 10.1242/bio.20133384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/10/2012] [Indexed: 11/04/2022] Open
Abstract
In Drosophila melanogaster, combinatorial activities of four death genes, head involution defective (hid), reaper (rpr), grim, and sickle (skl), have been known to play crucial roles in the developmentally regulated programmed cell death (PCD) of various tissues. However, different expression patterns of the death genes also suggest distinct functions played by each. During early metamorphosis, a great number of larval neurons unfit for adult life style are removed by PCD. Among them are eight pairs of corazonin-expressing larval peptidergic neurons in the ventral nerve cord (vCrz). To reveal death genes responsible for the PCD of vCrz neurons, we examined extant and recently available mutations as well as RNA interference that disrupt functions of single or multiple death genes. We found grim as a chief proapoptotic gene and skl and rpr as minor ones. The function of grim is also required for PCD of the mitotic sibling cells of the vCrz neuronal precursors (EW3-sib) during embryonic neurogenesis. An intergenic region between grim and rpr, which, it has been suggested, may enhance expression of three death genes in embryonic neuroblasts, appears to play a role for the vCrz PCD, but not for the EW3-sib cell death. The death of vCrz neurons and EW3-sib is triggered by ecdysone and the Notch signaling pathway, respectively, suggesting distinct regulatory mechanisms of grim expression in a cell- and developmental stage-specific manner.
Collapse
Affiliation(s)
- Gyunghee Lee
- Neurogenetics Laboratory, Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, TN 37996 , USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Necrotic cell death (necrosis) occurs in many acute-onset diseases. However, our poor understanding of its mechanism has greatly limited medical interventions. Here we describe two methods to establish necrosis models in Drosophila. Our strategy is to overload calcium by expression of leaky cation channels.
Collapse
Affiliation(s)
- Kai Liu
- State Key Lab of Biomembrane and Membrane Biotechnology, School of Life Sciences, Peking University, Beijing, China
| | | | | |
Collapse
|
20
|
Gullerova M, Proudfoot NJ. Convergent transcription induces transcriptional gene silencing in fission yeast and mammalian cells. Nat Struct Mol Biol 2012; 19:1193-201. [PMID: 23022730 PMCID: PMC3504457 DOI: 10.1038/nsmb.2392] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/27/2012] [Indexed: 01/03/2023]
Abstract
We show that convergent transcription induces transcriptional gene silencing (TGS) in trans for both fission yeast and mammalian cells. This method has advantages over existing strategies to induce gene silencing. Previous studies in fission yeast have characterized TGS as a cis-specific process involving RNA interference that maintains heterochromatic regions such as centromeres. In contrast, in mammalian cells, gene silencing is known to occur through a post-transcriptional mechanism that uses exogenous short interfering RNAs or endogenous microRNAs to inactivate mRNA. We now show that the introduction of convergent transcription plasmids into either Schizosaccharomyces pombe or mammalian cells allows the production of double-stranded RNA from inserted gene fragments, resulting in TGS of endogenous genes. We predict that using convergent transcription to induce gene silencing will be a generally useful strategy and allow for a fuller molecular understanding of the biology of TGS.
Collapse
Affiliation(s)
- Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | | |
Collapse
|
21
|
Gaur K, Li J, Wang D, Dutta P, Yan SJ, Tsurumi A, Land H, Wu G, Li WX. The Birt-Hogg-Dubé tumor suppressor Folliculin negatively regulates ribosomal RNA synthesis. Hum Mol Genet 2012; 22:284-99. [PMID: 23077212 DOI: 10.1093/hmg/dds428] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Birt-Hogg-Dubé syndrome (BHD) is a human cancer disorder caused by mutations in the tumor suppressor gene Folliculin (FLCN) with unknown biological functions. Here, we show that the Drosophila homolog of FLCN, dFLCN (a.k.a. dBHD) localizes to the nucleolus and physically interacts with the 19S proteasomal ATPase, Rpt4, a nucleolar resident and known regulator of rRNA transcription. Downregulation of dFLCN resulted in an increase in nucleolar volume and upregulation of rRNA synthesis, whereas dFLCN overexpression reduced rRNA transcription and counteracted the effects of Rpt4 on rRNA production by preventing the association of Rpt4 with the rDNA locus. We further show that human FLCN exhibited evolutionarily conserved function and that Rpt4 knockdown inhibits the growth of FLCN-deficient human renal cancer cells in mouse xenografts. Our study suggests that FLCN functions as a tumor suppressor by negatively regulating rRNA synthesis.
Collapse
Affiliation(s)
- Kriti Gaur
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sassu ED, McDermott JE, Keys BJ, Esmaeili M, Keene AC, Birnbaum MJ, DiAngelo JR. Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila. Biochem Biophys Res Commun 2012; 426:43-8. [PMID: 22910416 DOI: 10.1016/j.bbrc.2012.08.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 01/23/2023]
Abstract
During nutrient excess, triglycerides are synthesized and stored to provide energy during times of famine. The presence of high glucose leads to the activation of carbohydrate response element binding protein (ChREBP), a transcription factor that induces the expression of a number of glycolytic and lipogenic enzymes. ChREBP is expressed in major metabolic tissues and while we have a basic understanding of ChREBP function in liver, in vivo genetic systems to study the function of ChREBP in other tissues are lacking. In this study, we characterized the role of the Drosophila homolog of ChREBP, Mlx interactor (Mio), in controlling fat accumulation in larvae and adult flies. In Mio mutants, high sugar-induced lipogenic enzyme mRNA expression is blunted and lowering Mio levels specifically in the fat body using RNA interference leads to a lean phenotype. A lean phenotype is also observed when the gene bigmax, the fly homolog of ChREBP's binding partner Mlx, is decreased in the larval fat body. Interestingly, depleting Mio in the fat body results in decreased feeding providing a potential cause of the lowered triglycerides observed in these animals. However, Mio does not seem to function as a general regulator of hunger-induced behaviors as decreasing fat body Mio levels has no effect on sleep under fed or starved conditions. Together, these data implicate a role for Mio in controlling fat accumulation in Drosophila and suggests that it may act as a nutrient sensor in the fat body to coordinate feeding behavior with nutrient availability.
Collapse
Affiliation(s)
- Eric D Sassu
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Muñoz-Soriano V, Nieto-Arellano R, Paricio N. Septin 4, the drosophila ortholog of human CDCrel-1, accumulates in parkin mutant brains and is functionally related to the Nedd4 E3 ubiquitin ligase. J Mol Neurosci 2012; 48:136-43. [PMID: 22562816 DOI: 10.1007/s12031-012-9788-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Although most PD cases are sporadic, several loci have been involved in the disease. parkin (PARK) is causative of autosomal recessive juvenile Parkinsonism (ARJP) and encodes an E3 ubiquitin ligase associated with proteasomal degradation. It was proposed that loss of PARK function may lead to the toxic accumulation of its substrates in the brain, thus causing dopaminergic (DA) neuron death. Indeed, the first identified PARK substrate was CDCrel-1, a protein of the Septin family that accumulates in ARPJ brains. Drosophila has been used as a successful model organism to study PD broadly contributing to the understanding of the disease. Consistently, park mutant flies recapitulate some key features of ARJP patients. In this scenario, we previously reported that overexpression of Septin 4 (Sep4), the Drosophila ortholog of CDCrel-1, is toxic for DA neurons and interacts physically with Park, thus suggesting that Sep4 could be a Park substrate in Drosophila. Confirming this hypothesis, we show that Sep4 accumulates in park mutant brains as its human counterpart. Furthermore, we demonstrate that Nedd4, another E3 ubiquitin ligase that may have a role in PD, is functionally related to Sep4 and could be involved in regulating Sep4 subcellular localization/trafficking.
Collapse
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética, Facultad de CC Biológicas, Universidad de Valencia, Dr. Moliner 50, Burjassot, 46100, Valencia, Spain
| | | | | |
Collapse
|
24
|
Neckameyer WS, Bhatt P. Neurotrophic actions of dopamine on the development of a serotonergic feeding circuit in Drosophila melanogaster. BMC Neurosci 2012; 13:26. [PMID: 22413901 PMCID: PMC3364880 DOI: 10.1186/1471-2202-13-26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/13/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the fruit fly, Drosophila melanogaster, serotonin functions both as a neurotransmitter to regulate larval feeding, and in the development of the stomatogastric feeding circuit. There is an inverse relationship between neuronal serotonin levels during late embryogenesis and the complexity of the serotonergic fibers projecting from the larval brain to the foregut, which correlate with perturbations in feeding, the functional output of the circuit. Dopamine does not modulate larval feeding, and dopaminergic fibers do not innervate the larval foregut. Since dopamine can function in central nervous system development, separate from its role as a neurotransmitter, the role of neuronal dopamine was assessed on the development, and mature function, of the 5-HT larval feeding circuit. RESULTS Both decreased and increased neuronal dopamine levels in late embryogenesis during development of this circuit result in depressed levels of larval feeding. Perturbations in neuronal dopamine during this developmental period also result in greater branch complexity of the serotonergic fibers innervating the gut, as well as increased size and number of the serotonin-containing vesicles along the neurite length. This neurotrophic action for dopamine is modulated by the D2 dopamine receptor expressed during late embryogenesis in central 5-HT neurons. Animals carrying transgenic RNAi constructs to knock down both dopamine and serotonin synthesis in the central nervous system display normal feeding and fiber architecture. However, disparate levels of neuronal dopamine and serotonin during development of the circuit result in abnormal gut fiber architecture and feeding behavior. CONCLUSIONS These results suggest that dopamine can exert a direct trophic influence on the development of a specific neural circuit, and that dopamine and serotonin may interact with each other to generate the neural architecture necessary for normal function of the circuit.
Collapse
Affiliation(s)
- Wendi S Neckameyer
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, USA
| | - Parag Bhatt
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, USA
| |
Collapse
|
25
|
Wang CT, Chen YC, Wang YY, Huang MH, Yen TL, Li H, Liang CJ, Sang TK, Ciou SC, Yuh CH, Wang CY, Brummel TJ, Wang HD. Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell 2012; 11:93-103. [PMID: 22040003 DOI: 10.1111/j.1474-9726.2011.00762.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aging and age-related diseases can be viewed as the result of the lifelong accumulation of stress insults. The identification of mutant strains and genes that are responsive to stress and can alter longevity profiles provides new therapeutic targets for age-related diseases. Here we reported that a Drosophila strain with reduced expression of ribose-5-phosphate isomerase (rpi), EP2456, exhibits increased resistance to oxidative stress and enhanced lifespan. In addition, the strain also displays higher levels of NADPH. The knockdown of rpi in neurons by double-stranded RNA interference recapitulated the lifespan extension and oxidative stress resistance in Drosophila. This manipulation was also found to ameliorate the effects of genetic manipulations aimed at creating a model for studying Huntington's disease by overexpression of polyglutamine in the eye, suggesting that modulating rpi levels could serve as a treatment for normal aging as well as for polyglutamine neurotoxicity.
Collapse
Affiliation(s)
- Ching-Tzu Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sasaki N, Nishihara S. Gene silencing in mouse embryonic stem cells. Methods Mol Biol 2012; 836:53-61. [PMID: 22252627 DOI: 10.1007/978-1-61779-498-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Embryonic stem cells (ESCs) are promising tools for regenerative medicine as well as for biotechnological research. However, to exploit ESCs for clinical purposes, a better understanding of the molecular mechanisms that control the pluripotency and differentiation of ESCs is required. Several extrinsic signaling pathways contribute to the maintenance of pluripotency, as well as induction of differentiation, in ESCs. However, the mechanisms that regulate extrinsic signaling in ESCs are largely unknown. Heparan sulfate (HS) is present ubiquitously as a component of cell surface proteoglycans and is known to play crucial roles in the regulation of several signaling pathways. We have validated that RNA interference (RNAi) is a useful method for the functional analysis of some target genes in mouse ESCs (mESCs). Indeed, we have investigated the functions of HS in mESCs by using RNAi and have demonstrated that HS on mESCs is involved in regulating signaling pathways that are important for the maintenance of mESCs. In this chapter, we describe detailed methods for the gene silencing of proteoglycan-related genes in mESCs by RNAi.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Department of Bioinformatics, Laboratory of Cell Biology, Soka University, Tokyo, Japan
| | | |
Collapse
|
27
|
Lv WW, Wei HM, Wang DL, Ni JQ, Sun FL. Depletion of histone deacetylase 3 antagonizes PI3K-mediated overgrowth through the acetylation of histone H4 at lysine 16. J Cell Sci 2012; 125:5369-78. [DOI: 10.1242/jcs.106336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Histone acetylation is one of the best-studied gene modifications and has been shown to be involved in numerous important biological processes. Herein, we demonstrated that the depletion of histone deacetylase 3 (Hdac3) in Drosophila melanogaster resulted in a reduction in body size. Further genetic studies showed that Hdac3 counteracted the overgrowth induced by InR, PI3K or S6K over-expression, and the growth regulation by Hdac3 was mediated through the deacetylation of histone H4 at lysine 16 (H4K16). Consistently, the alterations of H4K16 acetylation (H4K16ac) induced by the over-expression or depletion of males-absent-on-the-first (MOF), a histone acetyltransferase that specifically targets H4K16, resulted in changes in body size. Furthermore, we found that H4K16ac was modulated by PI3K signaling cascades. The activation of the PI3K pathway caused a reduction in H4K16ac, whereas the inactivation of the PI3K pathway resulted in an increase in H4K16ac. The Increase in H4K16ac by the depletion of Hdac3 counteracted the PI3K-induced tissue overgrowth and PI3K-mediated alterations in the transcription profile. Overall, our studies indicated that Hdac3 served as an important regulator of the PI3K pathway and revealed a novel link between histone acetylation and growth control.
Collapse
|
28
|
Lin JI, Mitchell NC, Kalcina M, Tchoubrieva E, Stewart MJ, Marygold SJ, Walker CD, Thomas G, Leevers SJ, Pearson RB, Quinn LM, Hannan RD. Drosophila ribosomal protein mutants control tissue growth non-autonomously via effects on the prothoracic gland and ecdysone. PLoS Genet 2011; 7:e1002408. [PMID: 22194697 PMCID: PMC3240600 DOI: 10.1371/journal.pgen.1002408] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/20/2011] [Indexed: 11/30/2022] Open
Abstract
The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycEJP). We demonstrated that the suppression of cycEJP by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycEJP is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously. Ribosomes are required for protein synthesis, which is essential for cell growth and division, thus mutations that reduce Rp expression would be expected to limit cell growth. Paradoxically, heterozygous deletion or mutation of certain Rps can actually promote growth and proliferation and in some cases bestow predisposition to cancer. The underlying mechanism(s) behind these unexpected overgrowth phenotypes despite impairment of ribosome biogenesis has remained obscure. We have addressed this question using the power of Drosophila genetics, taking advantage of our observation that four different Rp mutants, or Minutes, are able to suppress a small rough eye phenotype associated with a mutation of the essential controller of cell proliferation cyclin E (cycEJP). Our findings demonstrate that suppression of cycEJP by the RpS6 mutant is exerted via a tissue non-autonomous mechanism whereby reduced Rp in the prothoracic gland decreases activity of the steroid hormone ecdysone, delaying development and hence allowing time for compensatory growth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain Drosophila Minutes. Our findings also have implications for the effect of Rp mutants on endocrine related control of tissue growth in higher organisms.
Collapse
Affiliation(s)
- Jane I. Lin
- Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
| | - Naomi C. Mitchell
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | - Marina Kalcina
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | | | - Mary J. Stewart
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Steven J. Marygold
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Cherryl D. Walker
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - George Thomas
- University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Sally J. Leevers
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Richard B. Pearson
- Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
- Department of Biochemistry and Cell Biology, Monash University, Clayton, Australia
| | - Leonie M. Quinn
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
- * E-mail: (LMQ); (RDH)
| | - Ross D. Hannan
- Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
- Department of Biochemistry and Cell Biology, Monash University, Clayton, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- * E-mail: (LMQ); (RDH)
| |
Collapse
|
29
|
Abstract
RNA silencing (also known as RNA interference) suppresses the expression of genes posttranscriptionally. We propose a time delay model of RNA silencing through a system consisting of double-stranded RNA (dsRNA), RNA-induced silencing complex (RISC), messenger RNA (mRNA), and RISC–mRNA complex. The time delay model is based on the consideration that the regeneration (or degradation) of the RISC–mRNA complex needs a finite time τ. The model equations are analyzed using nonlinear dynamics methods, in particular the Hopf bifurcation theorem, and they are solved numerically. From the accomplished analytical and numerical calculations, it becomes clear that time delay τ is a key factor in the behavior of the model. In this case, it has a destabilizing effect on the silencing process.
Collapse
Affiliation(s)
- SVETOSLAV NIKOLOV
- Institute of Mechanics and Biomechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 4, 1113 Sofia, Bulgaria
| | - VALKO PETROV
- Institute of Mechanics and Biomechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 4, 1113 Sofia, Bulgaria
| |
Collapse
|
30
|
Garabedian M, Jarnik M, Kotova E, Tulin AV. Generating a knockdown transgene against Drosophila heterochromatic Tim17b gene encoding mitochondrial translocase subunit. PLoS One 2011; 6:e25945. [PMID: 21998726 PMCID: PMC3188573 DOI: 10.1371/journal.pone.0025945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/14/2011] [Indexed: 12/15/2022] Open
Abstract
Heterochromatic regions of eukaryotic genomes contain multiple functional elements involved in chromosomal dynamics, as well as multiple housekeeping genes. Cytological and molecular peculiarities of heterochromatic loci complicate genetic studies based on standard approaches developed using euchromatic genes. Here, we report the development of an RNAi-based knockdown transgenic construct and red fluorescent reporter transgene for a small gene, Tim17b, which localizes in constitutive heterochromatin of Drosophila melanogaster third chromosome and encodes a mitochondrial translocase subunit. We demonstrate that Tim17b protein is required strictly for protein delivery to mitochondrial matrix. Knockdown of Tim17b completely disrupts functions of the mitochondrial translocase complex. Using fluorescent recovery after photobleaching assay, we show that Tim17b protein has a very stable localization in the membranes of the mitochondrial network and that its exchange rate is close to zero when compared with soluble proteins of mitochondrial matrix. These results confirm that we have developed comprehensive tools to study functions of heterochromatic Tim17b gene.
Collapse
Affiliation(s)
- Mikael Garabedian
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Michael Jarnik
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Elena Kotova
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Alexei V. Tulin
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
31
|
The large noncoding hsrω-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma 2011; 121:49-70. [PMID: 21913129 DOI: 10.1007/s00412-011-0341-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/12/2011] [Accepted: 08/24/2011] [Indexed: 01/04/2023]
Abstract
The hs-GAL4(t)-driven expression of the hsrω-RNAi transgene or EP93D allele of the noncoding hsrω resulted in global down- or upregulation, respectively, of the large hsrω-n transcripts following heat shock. Subsequent to temperature shock, hsrω-null or those expressing hsrω-RNAi or the EP93D allele displayed delayed lethality of most embryos, first or third instar larvae. Three-day-old hsrω-null flies mostly died immediately or within a day after heat shock. Heat-shock-induced RNAi or EP expression in flies caused only a marginal lethality but severely affected oogenesis. EP allele or hsrω-RNAi expression after heat shock did not affect heat shock puffs and Hsp70 synthesis. Both down- and upregulation of hsrω-n transcripts suppressed reappearance of the hsrω-n transcript-dependent nucleoplasmic omega speckles during recovery from heat shock. Hrp36, heterochromatin protein 1, and active RNA pol II in unstressed or heat-shocked wild-type or hsrω-null larvae or those expressing the hs-GAL4(t)-driven hsrω-RNAi or the EP93D allele were comparably distributed on polytene chromosomes. Redistribution of these proteins to pre-stress locations after a 1- or 2-h recovery was severely compromised in glands with down- or upregulated levels of hsrω-n transcripts after heat shock. The hsrω-null unstressed cells always lacked omega speckles and little Hrp36 moved to any chromosome region following heat shock, and its relocation to chromosome regions during recovery was also incomplete. This present study reveals for the first time that the spatial restoration of key regulatory factors like hnRNPs, HP1, or RNA pol II to their pre-stress nuclear targets in cells recovering from thermal stress is dependent upon critical level of the large hsrω-n noncoding RNA. In the absence of their relocation to pre-stress chromosome sites, normal developmental gene activity fails to be restored, which finally results in delayed organismal death.
Collapse
|
32
|
Becnel J, Johnson O, Luo J, Nässel DR, Nichols CD. The serotonin 5-HT7Dro receptor is expressed in the brain of Drosophila, and is essential for normal courtship and mating. PLoS One 2011; 6:e20800. [PMID: 21674056 PMCID: PMC3107233 DOI: 10.1371/journal.pone.0020800] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/12/2011] [Indexed: 12/23/2022] Open
Abstract
The 5-HT(7) receptor remains one of the less well characterized serotonin receptors. Although it has been demonstrated to be involved in the regulation of mood, sleep, and circadian rhythms, as well as relaxation of vascular smooth muscles in mammals, the precise mechanisms underlying these functions remain largely unknown. The fruit fly, Drosophila melanogaster, is an attractive model organism to study neuropharmacological, molecular, and behavioral processes that are largely conserved with mammals. Drosophila express a homolog of the mammalian 5-HT(7) receptor, as well as homologs for the mammalian 5-HT(1A), and 5-HT(2), receptors. Each fly receptor couples to the same effector pathway as their mammalian counterpart and have been demonstrated to mediate similar behavioral responses. Here, we report on the expression and function of the 5-HT(7)Dro receptor in Drosophila. In the larval central nervous system, expression is detected postsynaptically in discreet cells and neuronal circuits. In the adult brain there is strong expression in all large-field R neurons that innervate the ellipsoid body, as well as in a small group of cells that cluster with the PDF-positive LNvs neurons that mediate circadian activity. Following both pharmacological and genetic approaches, we have found that 5-HT(7)Dro activity is essential for normal courtship and mating behaviors in the fly, where it appears to mediate levels of interest in both males and females. This is the first reported evidence of direct involvement of a particular serotonin receptor subtype in courtship and mating in the fly.
Collapse
Affiliation(s)
- Jaime Becnel
- Department of Pharmacology and Experimental
Therapeutics, Louisiana State University Health Sciences Center, New Orleans,
Louisiana, United States of America
| | - Oralee Johnson
- Department of Pharmacology and Experimental
Therapeutics, Louisiana State University Health Sciences Center, New Orleans,
Louisiana, United States of America
| | - Jiangnan Luo
- Department of Zoology, Stockholm University,
Stockholm, Sweden
| | - Dick R. Nässel
- Department of Zoology, Stockholm University,
Stockholm, Sweden
| | - Charles D. Nichols
- Department of Pharmacology and Experimental
Therapeutics, Louisiana State University Health Sciences Center, New Orleans,
Louisiana, United States of America
| |
Collapse
|
33
|
Inhibition of RNA interference and modulation of transposable element expression by cell death in Drosophila. Genetics 2011; 188:823-34. [PMID: 21596898 DOI: 10.1534/genetics.111.128470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA interference (RNAi) regulates gene expression by sequence-specific destruction of RNA. It acts as a defense mechanism against viruses and represses the expression of transposable elements (TEs) and some endogenous genes. We report that mutations and transgene constructs that condition cell death suppress RNA interference in adjacent cells in Drosophila melanogaster. The reversal of RNAi is effective for both the white (w) eye color gene and green fluorescent protein (GFP), indicating the generality of the inhibition. Antiapoptotic transgenes that reverse cell death will also reverse the inhibition of RNAi. Using GFP and a low level of cell death produced by a heat shock-head involution defective (hs-hid) transgene, the inhibition appears to occur by blocking the conversion of double-stranded RNA (dsRNA) to short interfering RNA (siRNA). We also demonstrate that the mus308 gene and endogenous transposable elements, which are both regularly silenced by RNAi, are increased in expression and accompanied by a reduced level of siRNA, when cell death occurs. The finding that chronic ectopic cell death affects RNAi is critical for an understanding of the application of the technique in basic and applied studies. These results also suggest that developmental perturbations, disease states, or environmental insults that cause ectopic cell death would alter transposon and gene expression patterns in the organism by the inhibition of small RNA silencing processes.
Collapse
|
34
|
Bülow MH, Aebersold R, Pankratz MJ, Jünger MA. The Drosophila FoxA ortholog Fork head regulates growth and gene expression downstream of Target of rapamycin. PLoS One 2010; 5:e15171. [PMID: 21217822 PMCID: PMC3013099 DOI: 10.1371/journal.pone.0015171] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/27/2010] [Indexed: 01/05/2023] Open
Abstract
Forkhead transcription factors of the FoxO subfamily regulate gene expression programs downstream of the insulin signaling network. It is less clear which proteins mediate transcriptional control exerted by Target of rapamycin (TOR) signaling, but recent studies in nematodes suggest a role for FoxA transcription factors downstream of TOR. In this study we present evidence that outlines a similar connection in Drosophila, in which the FoxA protein Fork head (FKH) regulates cellular and organismal size downstream of TOR. We find that ectopic expression and targeted knockdown of FKH in larval tissues elicits different size phenotypes depending on nutrient state and TOR signaling levels. FKH overexpression has a negative effect on growth under fed conditions, and this phenotype is not further exacerbated by inhibition of TOR via rapamycin feeding. Under conditions of starvation or low TOR signaling levels, knockdown of FKH attenuates the size reduction associated with these conditions. Subcellular localization of endogenous FKH protein is shifted from predominantly cytoplasmic on a high-protein diet to a pronounced nuclear accumulation in animals with reduced levels of TOR or fed with rapamycin. Two putative FKH target genes, CG6770 and cabut, are transcriptionally induced by rapamycin or FKH expression, and silenced by FKH knockdown. Induction of both target genes in heterozygous TOR mutant animals is suppressed by mutations in fkh. Furthermore, TOR signaling levels and FKH impact on transcription of the dFOXO target gene d4E-BP, implying a point of crosstalk with the insulin pathway. In summary, our observations show that an alteration of FKH levels has an effect on cellular and organismal size, and that FKH function is required for the growth inhibition and target gene induction caused by low TOR signaling levels.
Collapse
Affiliation(s)
- Margret H. Bülow
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Molecular Brain Physiology and Behavior, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Competence Center for Systems Physiology and Metabolic Diseases (CC-SPMD), Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases (CC-SPMD), Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Michael J. Pankratz
- Department of Molecular Brain Physiology and Behavior, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- * E-mail: (MAJ); (MJP)
| | - Martin A. Jünger
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- * E-mail: (MAJ); (MJP)
| |
Collapse
|
35
|
Di Cara F, Cavaliere D, Galliero V, Polito LC, Digilio FA. Expressional and functional analysis of the male-specific cluster mst36F during Drosophila spermatogenesis. INSECT MOLECULAR BIOLOGY 2010; 19:807-813. [PMID: 20726908 DOI: 10.1111/j.1365-2583.2010.01033.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
mst36Fa and mst36Fb are two male-specific genes that are part of a novel gene family recently characterized in Drosophila melanogaster. The genes are strictly clustered and show an identical tissue and temporal expression pattern limited to the male germline. Here we demonstrate that the transcription of these two genes, which is triggered by different cis regulatory elements, responds to the same testisspecific factors encoded by the aly and can class meiotic arrest genes. RNA interference was used to decrease expression of these two genes. We obtained a reduction of fertility in the transgenic adult males compared to the wild type. These data suggest that the Mst36Fa and Mst36Fb proteins may have an important role in the production of functional sperm.
Collapse
Affiliation(s)
- F Di Cara
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | | | | | | | | |
Collapse
|
36
|
Ding ZY, Wang YH, Luo ZK, Lee HF, Hwang J, Chien CT, Huang ML. Glial cell adhesive molecule unzipped mediates axon guidance in Drosophila. Dev Dyn 2010; 240:122-34. [PMID: 21117153 DOI: 10.1002/dvdy.22508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axon guidance needs help from the glial cell system during embryogenesis. In the Drosophila embryonic central nervous system (CNS), longitudinal glia (LG) have been implicated in axon guidance but the mechanism remains unclear. We identified the protein encoded by the Drosophila gene unzipped (uzip) as a novel cell adhesion molecule (CAM). Uzip expressed in Drosophila S2 cells triggered cell aggregation through homophilic binding. In the embryonic CNS, Uzip was mainly produced by the LG but was also located at axons, which is consistent with the secretion of Uzip expressed in cultured cells. Although uzip mutants displayed no axonal defect, loss of uzip enhanced the axonal defects in the mutant of N-cadherin (CadN) and the Wnt gene family member wnt5. Overexpression of uzip could rescue the phenotype in the CadNuzip(D43) mutant. Thus, Uzip is a novel CAM from the LG regulating axon guidance.
Collapse
Affiliation(s)
- Zhao-Ying Ding
- Department of Life Science, National Chung-Cheng University, Chia-Yi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Drosophila melanogaster heterochromatin protein HP1b plays important roles in transcriptional activation and development. Chromosoma 2010; 120:97-108. [PMID: 20857302 DOI: 10.1007/s00412-010-0294-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/05/2010] [Accepted: 09/06/2010] [Indexed: 12/30/2022]
Abstract
The condensed heterochromatic domains are known to be associated with transcriptional repression and cell differentiation. Here, we investigate the function of heterochromatin protein HP1b, a member of the HP1 family in Drosophila melanogaster, in transcription and development. Both knockdown and overexpression of HP1b resulted in partial lethality, indicating that HP1b is essential for the normal development. In contrast to the positive role of HP1a in heterochromatin formation, overexpression of HP1b decondensed the pericentromeric heterochromatin and reduced the association of HP1a and H3K9me2 with it, both known markers of pericentric heterochromatin. Interestingly, the structure of the heterochromatic fourth chromosome appeared not to be affected. Further experiments showed that the presence of HP1a partially rescued the lethality caused by HP1b overexpression in males, and it fully rescued the lethality in females. Consistent with this observation, the defective transcription of heterochromatic genes was also partially restored in the presence of HP1a. Overall, this study argues that HP1b counteracts HP1a function both in heterochromatin formation and in the transcriptional regulation of euchromatic genes.
Collapse
|
38
|
Abstract
Plants have evolved a variety of gene silencing pathways mediated by small RNAs. Mostly 21 or 24 nt in size, these small RNAs repress the expression of sequence homologous genes at the transcriptional, post-transcriptional and translational levels. These pathways, also referred as RNA silencing pathways, play important roles in regulating growth and development as well as in response to both biotic and abiotic stress. Although the molecular basis of these complicated and interconnected pathways has become clear only in recent years, RNA silencing effects were observed and utilized in transgenic plants early in the plant biotechnology era, more than two decades ago. Today, with a better understanding of the pathways, various genetic engineering approaches have been developed to apply RNA silencing more effectively and broadly. In addition to summarizing the current models of RNA silencing, this review discusses examples of its potential uses and related issues concerning its application in plant biotechnology.
Collapse
Affiliation(s)
- Alessandra Frizzi
- Calgene Campus, Monsanto Company, 1920 Fifth Street, Davis, CA 95616, USA
| | | |
Collapse
|
39
|
Tortoriello G, de Celis JF, Furia M. Linking pseudouridine synthases to growth, development and cell competition. FEBS J 2010; 277:3249-63. [DOI: 10.1111/j.1742-4658.2010.07731.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Abstract
RNA interference (RNAi) provides a powerful reverse genetics approach to analyze gene functions both in tissue culture and in vivo. Because of its widespread applicability and effectiveness it has become an essential part of the tool box kits of model organisms such as Caenorhabditis elegans, Drosophila, and the mouse. In addition, the use of RNAi in animals in which genetic tools are either poorly developed or nonexistent enables a myriad of fundamental questions to be asked. Here, we review the methods and applications of in vivo RNAi to characterize gene functions in model organisms and discuss their impact to the study of developmental as well as evolutionary questions. Further, we discuss the applications of RNAi technologies to crop improvement, pest control and RNAi therapeutics, thus providing an appreciation of the potential for phenomenal applications of RNAi to agriculture and medicine.
Collapse
Affiliation(s)
- Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
41
|
Gurudatta BV, Shashidhara LS, Parnaik VK. Lamin C and chromatin organization in Drosophila. J Genet 2010; 89:37-49. [DOI: 10.1007/s12041-010-0009-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Bahadorani S, Bahadorani P, Marcon E, Walker DW, Hilliker AJ. A Drosophila model of Menkes disease reveals a role for DmATP7 in copper absorption and neurodevelopment. Dis Model Mech 2010; 3:84-91. [PMID: 20038716 DOI: 10.1242/dmm.002642] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human Menkes disease is a lethal neurodegenerative disorder of copper metabolism that is caused by mutations in the ATP7A copper-transporting gene. In the present study, we attempted to construct a Drosophila model of Menkes disease by RNA interference (RNAi)-induced silencing of DmATP7, the Drosophila orthologue of mammalian ATP7A, in the digestive tract. Here, we show that a lowered level of DmATP7 mRNA in the digestive tract results in a reduced copper content in the head and the rest of the body of surviving adults, presumably owing to copper entrapment in the gut. Similar to Menkes patients, a majority of flies exhibit an impaired neurological development during metamorphosis and die before eclosion. In addition, we show that survival to the adult stage is highly dependent on the copper content of the food and that overexpression of the copper homeostasis gene, metal-responsive transcription factor-1 (MTF-1), enhances survival to the adulthood stage. Taken together, these results highlight the role of DmATP7-mediated copper uptake in the neurodevelopment of Drosophila melanogaster and provide a framework for the analysis of potential gene interactions influencing Menkes disease.
Collapse
Affiliation(s)
- Sepehr Bahadorani
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | |
Collapse
|
43
|
Nishihara S. Glycosyltransferases and Transporters that Contribute to Proteoglycan Synthesis in Drosophila. Methods Enzymol 2010; 480:323-51. [DOI: 10.1016/s0076-6879(10)80015-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc Natl Acad Sci U S A 2009; 106:13427-32. [PMID: 19666537 DOI: 10.1073/pnas.0904638106] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
O-linked N-acetylglucosamine transferase (OGT) reversibly modifies serine and threonine residues of many intracellular proteins with a single beta-O-linked N-acetylglucosamine residue (O-GlcNAc), and has been implicated in insulin signaling, neurodegenerative disease, cellular stress response, and other important processes in mammals. OGT also glycosylates RNA polymerase II and various transcription factors, which suggests that it might be directly involved in transcriptional regulation. We report here that the Drosophila OGT is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Furthermore, major sites of O-GlcNAc modification on polytene chromosomes correspond to PcG protein binding sites. Our results thus suggest a direct role for O-linked glycosylation by OGT in PcG-mediated epigenetic gene silencing, which is important in developmental regulation, stem cell maintenance, genomic imprinting, and cancer. In addition, we observe rescue of sxc lethality by a human Ogt cDNA transgene; thus Drosophila may provide an ideal model to study important functional roles of OGT in mammals.
Collapse
|
45
|
Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 2009; 460:978-83. [PMID: 19633650 DOI: 10.1038/nature08280] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/13/2009] [Indexed: 01/10/2023]
Abstract
Establishment and maintenance of proper architecture is essential for endoplasmic reticulum (ER) function. Homotypic membrane fusion is required for ER biogenesis and maintenance, and has been shown to depend on GTP hydrolysis. Here we demonstrate that Drosophila Atlastin--the fly homologue of the mammalian GTPase atlastin 1 involved in hereditary spastic paraplegia--localizes on ER membranes and that its loss causes ER fragmentation. Drosophila Atlastin embedded in distinct membranes has the ability to form trans-oligomeric complexes and its overexpression induces enlargement of ER profiles, consistent with excessive fusion of ER membranes. In vitro experiments confirm that Atlastin autonomously drives membrane fusion in a GTP-dependent fashion. In contrast, GTPase-deficient Atlastin is inactive, unable to form trans-oligomeric complexes owing to failure to self-associate, and incapable of promoting fusion in vitro. These results demonstrate that Atlastin mediates membrane tethering and fusion and strongly suggest that it is the GTPase activity that is required for ER homotypic fusion.
Collapse
|
46
|
Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila. Proc Natl Acad Sci U S A 2009; 106:13070-5. [PMID: 19625621 DOI: 10.1073/pnas.0813004106] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of classical neurotransmitters in the transfer and processing of olfactory information is well established in many organisms. Neuropeptide action, however, is largely unexplored in any peripheral olfactory system. A subpopulation of local interneurons (LNs) in the Drosophila antannal lobe is peptidergic, expressing Drosophila tachykinins (DTKs). We show here that olfactory receptor neurons (ORNs) express the DTK receptor (DTKR). Using two-photon microscopy, we found that DTK applied to the antennal lobe suppresses presynaptic calcium and synaptic transmission in the ORNs. Furthermore, reduction of DTKR expression in ORNs by targeted RNA interference eliminates presynaptic suppression and alters olfactory behaviors. We detect opposite behavioral phenotypes after reduction and over expression of DTKR in ORNs. Our findings suggest a presynaptic inhibitory feedback to ORNs from peptidergic LNs in the antennal lobe.
Collapse
|
47
|
Abstract
Conditional expression of hairpin constructs in Drosophila is a powerful method to disrupt the activity of single genes with a spatial and temporal resolution that is impossible, or exceedingly difficult, using classical genetic methods. We previously described a method (Ni et al. 2008) whereby RNAi constructs are targeted into the genome by the phiC31-mediated integration approach using Vermilion-AttB-Loxp-Intron-UAS-MCS (VALIUM), a vector that contains vermilion as a selectable marker, an attB sequence to allow for phiC31-targeted integration at genomic attP landing sites, two pentamers of UAS, the hsp70 core promoter, a multiple cloning site, and two introns. As the level of gene activity knockdown associated with transgenic RNAi depends on the level of expression of the hairpin constructs, we generated a number of derivatives of our initial vector, called the "VALIUM" series, to improve the efficiency of the method. Here, we report the results from the systematic analysis of these derivatives and characterize VALIUM10 as the most optimal vector of this series. A critical feature of VALIUM10 is the presence of gypsy insulator sequences that boost dramatically the level of knockdown. We document the efficacy of VALIUM as a vector to analyze the phenotype of genes expressed in the nervous system and have generated a library of 2282 constructs targeting 2043 genes that will be particularly useful for studies of the nervous system as they target, in particular, transcription factors, ion channels, and transporters.
Collapse
|
48
|
Abstract
Participation of RAS, RAF, and mitogen-activated protein kinase (MAPK) in learning and memory has been demonstrated in a number of studies, but the molecular events requisite for cascade activation and regulation have not been explored. We demonstrate that the adapter protein DRK (downstream of receptor kinase) which is essential for signaling to RAS in developmental contexts, is preferentially distributed in the adult mushroom bodies, centers for olfactory learning and memory. We demonstrate that drk mutant heterozygotes exhibit deficits in olfactory learning and memory, apparent under limited training conditions, but are not impaired in sensory responses requisite for the association of the stimuli, or brain neuroanatomy. Furthermore, we demonstrate that the protein is required acutely within mushroom body neurons to mediate efficient learning, a process that requires RAF activation. Importantly, 90 min memory remained impaired, even after differential training yielding equivalent learning in animals with compromised DRK levels and controls and did not require RAF. Sustained MAPK activation is compromised in drk mutants and surprisingly is negatively regulated by constitutive RAF activity. The data establish a role for DRK in Drosophila behavioral neuroplasticity and suggest a dual role for the protein, first in RAF activation-dependent learning and additionally in RAF-inhibition dependent sustained MAPK activation essential for memory formation or stability.
Collapse
|
49
|
Mortimer NT, Moberg KH. Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia. Dev Biol 2009; 329:294-305. [PMID: 19285057 DOI: 10.1016/j.ydbio.2009.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 01/27/2009] [Accepted: 03/03/2009] [Indexed: 01/01/2023]
Abstract
The tracheal system of Drosophila melanogaster is an interconnected network of gas-filled epithelial tubes that develops during embryogenesis and functions as the main gas-exchange organ in the larva. Larval tracheal cells respond to hypoxia by activating a program of branching and growth driven by HIF-1alpha/sima-dependent expression of the breathless (btl) FGF receptor. By contrast, the ability of the developing embryonic tracheal system to respond to hypoxia and integrate hard-wired branching programs with sima-driven tracheal remodeling is not well understood. Here we show that embryonic tracheal cells utilize the conserved ubiquitin ligase dVHL to control the HIF-1 alpha/sima hypoxia response pathway, and identify two distinct phases of tracheal development with differing hypoxia sensitivities and outcomes: a relatively hypoxia-resistant 'early' phase during which sima activity conflicts with normal branching and stunts migration, and a relatively hypoxia-sensitive 'late' phase during which the tracheal system uses the dVHL/sima/btl pathway to drive increased branching and growth. Mutations in the archipelago (ago) gene, which antagonizes btl transcription, re-sensitize early embryos to hypoxia, indicating that their relative resistance can be reversed by elevating activity of the btl promoter. These findings reveal a second type of tracheal hypoxic response in which Sima activation conflicts with developmental tracheogenesis, and identify the dVHL and ago ubiquitin ligases as key determinants of hypoxia sensitivity in tracheal cells. The identification of an early stage of tracheal development that is vulnerable to hypoxia is an important addition to models of the invertebrate hypoxic response.
Collapse
Affiliation(s)
- Nathan T Mortimer
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
50
|
Lai A, Cairns MJ, Tran N, Zhang HP, Cullen L, Arndt GM. RNA modulators of complex phenotypes in mammalian cells. PLoS One 2009; 4:e4758. [PMID: 19270743 PMCID: PMC2650256 DOI: 10.1371/journal.pone.0004758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 02/12/2009] [Indexed: 12/03/2022] Open
Abstract
RNA-mediated gene silencing, in the form of RNA interference (RNAi) or microRNAs (miRNAs) has provided novel tools for gene discovery and validation in mammalian cells. Here, we report on the construction and application of a random small RNA expression library for use in identifying small interfering RNA (siRNA) effectors that can modify complex cellular phenotypes in mammalian cells. The library is based in a retroviral vector and uses convergent promoters to produce unique small complementary RNAs. Using this library, we identify a range of small RNA-encoding gene inserts that overcome resistance to 5-fluorouracil (5-FU)- or tumour necrosis factor alpha (TNF-α)- induced cell death in colorectal cancer cells. We demonstrate the utility of this technology platform by identifying a key RNA effector, in the form of a siRNA, which overcomes cell death induced by the chemotherapeutic 5-FU. The technology described has the potential to identify both functional RNA modulators capable of altering physiological systems and the cellular target genes altered by these modulators.
Collapse
Affiliation(s)
- Angela Lai
- Johnson and Johnson Research Pty Ltd, Australian Technology Park, Eveleigh, New South Wales, Australia
| | - Murray J. Cairns
- Johnson and Johnson Research Pty Ltd, Australian Technology Park, Eveleigh, New South Wales, Australia
| | - Nham Tran
- Johnson and Johnson Research Pty Ltd, Australian Technology Park, Eveleigh, New South Wales, Australia
- The Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Hong-Ping Zhang
- Johnson and Johnson Research Pty Ltd, Australian Technology Park, Eveleigh, New South Wales, Australia
| | - Lara Cullen
- Johnson and Johnson Research Pty Ltd, Australian Technology Park, Eveleigh, New South Wales, Australia
| | - Greg M. Arndt
- Johnson and Johnson Research Pty Ltd, Australian Technology Park, Eveleigh, New South Wales, Australia
- * E-mail:
| |
Collapse
|