1
|
The Next Frontier: Translational Development of Ubiquitination, SUMOylation, and NEDDylation in Cancer. Int J Mol Sci 2022; 23:ijms23073480. [PMID: 35408841 PMCID: PMC8999128 DOI: 10.3390/ijms23073480] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023] Open
Abstract
Post-translational modifications of proteins ensure optimized cellular processes, including proteostasis, regulated signaling, cell survival, and stress adaptation to maintain a balanced homeostatic state. Abnormal post-translational modifications are associated with cellular dysfunction and the occurrence of life-threatening diseases, such as cancer and neurodegenerative diseases. Therefore, some of the frequently seen protein modifications have been used as disease markers, while others are targeted for developing specific therapies. The ubiquitin and ubiquitin-like post-translational modifiers, namely, small ubiquitin-like modifier (SUMO) and neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8), share several features, such as protein structures, enzymatic cascades mediating the conjugation process, and targeted amino acid residues. Alterations in the regulatory mechanisms lead to aberrations in biological processes during tumorigenesis, including the regulation of tumor metabolism, immunological modulation of the tumor microenvironment, and cancer stem cell stemness, besides many more. Novel insights into ubiquitin and ubiquitin-like pathways involved in cancer biology reveal a potential interplay between ubiquitination, SUMOylation, and NEDDylation. This review outlines the current understandings of the regulatory mechanisms and assay capabilities of ubiquitination, SUMOylation, and NEDDylation. It will further highlight the role of ubiquitination, SUMOylation, and NEDDylation in tumorigenesis.
Collapse
|
2
|
Garcia CH, Depoix D, Queiroz RM, Souza JM, Fontes W, de Sousa MV, Santos MD, Carvalho PC, Grellier P, Charneau S. Dynamic molecular events associated to Plasmodium berghei gametogenesis through proteomic approach. J Proteomics 2018; 180:88-98. [DOI: 10.1016/j.jprot.2017.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
3
|
Zhu J, Cheng KCL, Yuen KWY. Histone H3K9 and H4 Acetylations and Transcription Facilitate the Initial CENP-A HCP-3 Deposition and De Novo Centromere Establishment in Caenorhabditis elegans Artificial Chromosomes. Epigenetics Chromatin 2018; 11:16. [PMID: 29653589 PMCID: PMC5898018 DOI: 10.1186/s13072-018-0185-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 01/02/2023] Open
Abstract
Background The centromere is the specialized chromatin region that directs chromosome segregation. The kinetochore assembles on the centromere, attaching chromosomes to microtubules in mitosis. The centromere position is usually maintained through cell cycles and generations. However, new centromeres, known as neocentromeres, can occasionally form on ectopic regions when the original centromere is inactivated or lost due to chromosomal rearrangements. Centromere repositioning can occur during evolution. Moreover, de novo centromeres can form on exogenously transformed DNA in human cells at a low frequency, which then segregates faithfully as human artificial chromosomes (HACs). How centromeres are maintained, inactivated and activated is unclear. A conserved histone H3 variant, CENP-A, epigenetically marks functional centromeres, interspersing with H3. Several histone modifications enriched at centromeres are required for centromere function, but their role in new centromere formation is less clear. Studying the mechanism of new centromere formation has been challenging because these events are difficult to detect immediately, requiring weeks for HAC selection. Results DNA injected into the Caenorhabditis elegans gonad can concatemerize to form artificial chromosomes (ACs) in embryos, which first undergo passive inheritance, but soon autonomously segregate within a few cell cycles, more rapidly and frequently than HACs. Using this in vivo model, we injected LacO repeats DNA, visualized ACs by expressing GFP::LacI, and monitored equal AC segregation in real time, which represents functional centromere formation. Histone H3K9 and H4 acetylations are enriched on new ACs when compared to endogenous chromosomes. By fusing histone deacetylase HDA-1 to GFP::LacI, we tethered HDA-1 to ACs specifically, reducing AC histone acetylations, reducing AC equal segregation frequency, and reducing initial kinetochroe protein CENP-AHCP−3 and NDC-80 deposition, indicating that histone acetylations facilitate efficient centromere establishment. Similarly, inhibition of RNA polymerase II-mediated transcription also delays initial CENP-AHCP-3 loading. Conclusions Acetylated histones on chromatin and transcription can create an open chromatin environment, enhancing nucleosome disassembly and assembly, and potentially contribute to centromere establishment. Alternatively, acetylation of soluble H4 may stimulate the initial deposition of CENP-AHCP−3-H4 nucleosomes. Our findings shed light on the mechanism of de novo centromere activation. Electronic supplementary material The online version of this article (10.1186/s13072-018-0185-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Zhu
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong
| | - Kevin Chi Lok Cheng
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
4
|
Action mechanism of naphthofuranquinones against fluconazole-resistant Candida tropicalis strains evidenced by proteomic analysis: The role of increased endogenous ROS. Microb Pathog 2018; 117:32-42. [DOI: 10.1016/j.micpath.2017.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 01/12/2023]
|
5
|
Singh S, Dubey VK. Quantitative Proteome Analysis of Leishmania donovani under Spermidine Starvation. PLoS One 2016; 11:e0154262. [PMID: 27123864 PMCID: PMC4849798 DOI: 10.1371/journal.pone.0154262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
We have earlier reported antileishmanial activity of hypericin by spermidine starvation. In the current report, we have used label free proteome quantitation approach to identify differentially modulated proteins after hypericin treatment. A total of 141 proteins were found to be differentially regulated with ANOVA P value less than 0.05 in hypericin treated Leishmania promastigotes. Differentially modulated proteins have been broadly classified under nine major categories. Increase in ribosomal protein S7 protein suggests the repression of translation. Inhibition of proteins related to ubiquitin proteasome system, RNA binding protein and translation initiation factor also suggests altered translation. We have also observed increased expression of Hsp 90, Hsp 83-1 and stress inducible protein 1. Significant decreased level of cyclophilin was observed. These stress related protein could be cellular response of the parasite towards hypericin induced cellular stress. Also, defective metabolism, biosynthesis and replication of nucleic acids, flagellar movement and signalling of the parasite were observed as indicated by altered expression of proteins involved in these pathways. The data was analyzed rigorously to get further insight into hypericin induced parasitic death.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India- 781039
| | - Vikash Kumar Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India- 781039
| |
Collapse
|
6
|
Costelloe T, Louge R, Tomimatsu N, Mukherjee B, Martini E, Khadaroo B, Dubois K, Wiegant WW, Thierry A, Burma S, van Attikum H, Llorente B. The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 2012; 489:581-4. [PMID: 22960744 PMCID: PMC3493121 DOI: 10.1038/nature11353] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 06/28/2012] [Indexed: 12/25/2022]
Abstract
Several homology-dependent pathways can repair potentially lethal DNA double-strand breaks (DSBs). The first step common to all homologous recombination reactions is the 5′-3′ degradation of DSB ends that yields 3′ single-stranded DNA (ssDNA) required for loading of checkpoint and recombination proteins. The Mre11-Rad50-Xrs2/NBS1 complex and Sae2/CtIP initiate end resection while long-range resection depends on the exonuclease Exo1 or the helicase-topoisomerase complex Sgs1-Top3-Rmi1 with the endonuclease Dna21-6. DSBs occur in the context of chromatin, but how the resection machinery navigates through nucleosomal DNA is a process that is not well understood7. Here, we show that the yeast S. cerevisiae Fun30 protein and its human counterpart SMARCAD18, two poorly characterized ATP-dependent chromatin remodelers of the Snf2 ATPase family, are novel factors that are directly involved in the DSB response. Fun30 physically associates with DSB ends and directly promotes both Exo1- and Sgs1-dependent end resection through a mechanism involving its ATPase activity. The function of Fun30 in resection facilitates repair of camptothecin (CPT)-induced DNA lesions, and it becomes dispensable when Exo1 is ectopically overexpressed. Interestingly, SMARCAD1 is also recruited to DSBs and the kinetics of recruitment is similar to that of Exo1. Loss of SMARCAD1 impairs end resection, recombinational DNA repair and renders cells hypersensitive to DNA damage resulting from CPT or PARP inhibitor treatments. These findings unveil an evolutionarily conserved role for the Fun30 and SMARCAD1 chromatin remodelers in controlling end resection, homologous recombination and genome stability in the context of chromatin.
Collapse
Affiliation(s)
- Thomas Costelloe
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liang D, Burkhart SL, Singh RK, Kabbaj MHM, Gunjan A. Histone dosage regulates DNA damage sensitivity in a checkpoint-independent manner by the homologous recombination pathway. Nucleic Acids Res 2012; 40:9604-20. [PMID: 22850743 PMCID: PMC3479188 DOI: 10.1093/nar/gks722] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In eukaryotes, multiple genes encode histone proteins that package genomic deoxyribonucleic acid (DNA) and regulate its accessibility. Because of their positive charge, ‘free’ (non-chromatin associated) histones can bind non-specifically to the negatively charged DNA and affect its metabolism, including DNA repair. We have investigated the effect of altering histone dosage on DNA repair in budding yeast. An increase in histone gene dosage resulted in enhanced DNA damage sensitivity, whereas deletion of a H3–H4 gene pair resulted in reduced levels of free H3 and H4 concomitant with resistance to DNA damaging agents, even in mutants defective in the DNA damage checkpoint. Studies involving the repair of a HO endonuclease-mediated DNA double-strand break (DSB) at the MAT locus show enhanced repair efficiency by the homologous recombination (HR) pathway on a reduction in histone dosage. Cells with reduced histone dosage experience greater histone loss around a DSB, whereas the recruitment of HR factors is concomitantly enhanced. Further, free histones compete with the HR machinery for binding to DNA and associate with certain HR factors, potentially interfering with HR-mediated repair. Our findings may have important implications for DNA repair, genomic stability, carcinogenesis and aging in human cells that have dozens of histone genes.
Collapse
Affiliation(s)
- Dun Liang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | | | | | | | | |
Collapse
|
8
|
Rajagopalan S, Nepa J, Venkatachalam S. Chromodomain helicase DNA-binding protein 2 affects the repair of X-ray and UV-induced DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:44-50. [PMID: 22223433 DOI: 10.1002/em.20674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 05/31/2023]
Abstract
Eukaryotic cells have evolved a variety of parallel and redundant DNA damage response pathways that function in a coordinated fashion to prevent the fixation of DNA damage as mutations. Despite the wealth of knowledge on DNA damage signaling on downstream cellular events, the mechanisms of DNA damage recognition, DNA repair as well as DNA damage signaling in the context of chromatin is poorly understood. Chromodomain helicase DNA-binding proteins (CHD) belong to a group of highly conserved chromatin remodeling proteins that are implicated in regulation of transcription. In an effort to understand the physiological role of one of the CHD members in a mammalian model system, we developed a mutant mouse model for the Chd2 gene. The Chd2 mutant mice are highly susceptible to spontaneous lymphoid tumor formation. In this study, we present evidence that the Chd2 mutant cells are defective in their ability to repair DNA damage induced by ionizing and ultraviolet radiation. Consistent with the role of Chd2 in regulating DNA damage responses, the Chd2 mutant cells are also sensitive to DNA damaging agents in clonogenic assays. In summary, our data suggest that the Chd2 protein is involved in regulating the DNA damage responses at the chromatin level.
Collapse
Affiliation(s)
- Sangeetha Rajagopalan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | | | | |
Collapse
|
9
|
Luah YH, Chaal BK, Ong EZ, Bozdech Z. A moonlighting function of Plasmodium falciparum histone 3, mono-methylated at lysine 9? PLoS One 2010; 5:e10252. [PMID: 20419108 PMCID: PMC2856687 DOI: 10.1371/journal.pone.0010252] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/23/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In the human malaria parasites Plasmodium falciparum, histone modifications have been implicated in the transcriptional regulation. The acetylation and methylation status of the histones have been linked with transcriptional regulation of the parasite surface virulence factors as well as other genes with stage specific expression. In P. falciparum as well as other eukaryotes, different histone modifications were found to be compartmentalized to distinct regions in the nuclei. This compartmentalization is believed to be one of the main prerequisites for their function in epigenetic regulation of gene expression. METHODOLOGY/PRINCIPAL FINDINGS Here we investigate intracellular distributions of five previously uncharacterized histone modifications including histone 4 acetylation on lysine residue 5 (H4K5Ac), H4K8Ac, H3K9Ac, H4Ac4 and H3K9Me1 during the asexual developmental stages. With the exception of H3K9Me1, the modified histones were localized to the nuclear periphery. This provides a strong indication that the P. falciparum nuclear periphery is one of the most active regions in epigenetic regulation of gene expression. Interestingly, H3K9Me1 is not associated with the nuclei but instead resides in the parasitophorous vacuole (PV), the double membrane compartments surrounding the parasite cell within the host erythrocyte. In this compartment, H3K9Me1 partially co-localizes with Etramp proteins. The localization of H3K9Me1 in the PV is conserved in the other species including P. yoelii and P. vivax. CONCLUSIONS Similar to other eukaryotes, the periphery of the P. falciparum nuclei is likely one of the most active areas in epigenetic regulation of gene expression involving multiple histone modifications. On the other hand, H3K9Me1 evolved a new function that is linked with the PV. This functional role appears to be evolutionarily conserved in Plasmodium species.
Collapse
Affiliation(s)
- Yen-Hoon Luah
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Balbir Kaur Chaal
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eugenia Ziying Ong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Hadnagy A, Beaulieu R, Balicki D. Histone tail modifications and noncanonical functions of histones: perspectives in cancer epigenetics. Mol Cancer Ther 2008; 7:740-8. [PMID: 18413789 DOI: 10.1158/1535-7163.mct-07-2284] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the past few years, the histone deacetylase (HDAC) inhibitors have occupied an important place in the effort to develop novel, but less toxic, anticancer therapy. HDAC inhibitors block HDACs, which are the enzymes responsible for histone deacetylation, and therefore they modulate gene expression. The cellular effects of HDAC inhibitors include growth arrest and the induction of differentiation. Early successes in cancer therapeutics obtained using these drugs alone or in combination with other anticancer drugs emphasize the important place of posttranslational modifications of histones in cancer therapy. Histone tail modifications along with DNA methylation are the most studied epigenetic events related to cancer progression. Moreover, extranuclear functions of histones have also been described. Because HDAC inhibitors block HDACs and thereby increase histone acetylation, we propose a model wherein exogenous acetylated histones or other related acetylated proteins that are introduced into the nucleus become HDAC substrates and thereby compete with endogenous histones for HDACs. This competition may lead to the increased acetylation of the endogenous histones, as in the case of HDAC inhibitor therapy. Moreover, other mechanisms of action, such as binding to chromatin and modulating gene expression, are also possible for exogenously introduced histones.
Collapse
Affiliation(s)
- Annamaria Hadnagy
- Research Centre and Department of Medicine, Hôtel-Dieu du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
11
|
Morton CO, Dos Santos SC, Coote P. An amphibian-derived, cationic, alpha-helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol Microbiol 2007; 65:494-507. [PMID: 17587229 DOI: 10.1111/j.1365-2958.2007.05801.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dermaseptins are a family of antimicrobial peptides from the tree-frog Phyllomedusa sauvagii. Yeast exposed to dermaseptin S3(1-16), a truncated derivative of dermaseptin S3 with full activity, showed diagnostic markers of yeast apoptosis: the appearance of reactive oxygen species and fragmentation of nuclear DNA. This process was independent of the yeast caspase, Yca1p. Screening of a non-essential gene deletion collection in yeast identified genes that conferred resistance to dermaseptin S3(1-16): izh2Delta, izh3Delta, stm1Delta and aif1Delta, all known to be involved in regulating yeast apoptosis. The appearance of apoptotic markers was reduced in these strains when exposed to the peptide. Dermaseptin S3(1-16) was shown to interact with DNA, and cause DNA damage in vivo, a process known to trigger apoptosis. Supporting this, a dermaseptin S3(1-16) affinity column specifically purified Stm1p, Mre11p and Htb2p; DNA-binding proteins implicated in yeast apoptosis and DNA repair. Thus, amphibians may have evolved a mechanism to induce cell suicide in invading fungal pathogens.
Collapse
Affiliation(s)
- C Oliver Morton
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, The North Haugh, St. Andrews, KY16 9ST, UK
| | | | | |
Collapse
|
12
|
Sobkowiak R, Deckert J. Proteins induced by cadmium in soybean cells. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:1203-6. [PMID: 17032622 DOI: 10.1016/j.jplph.2005.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 08/12/2005] [Indexed: 05/12/2023]
Abstract
The cadmium (Cd)-induced changes in protein pattern and identification of metal-stimulated polypeptides were analyzed in soybean cell suspension culture. The cell cultures were treated with various concentrations of Cd(2+) (3-10microM) for 24, 48 and 72h. The synthesis of [(35)S]-labeled proteins and their accumulation were analyzed by SDS-PAGE, whereas the identification of selected protein bands was performed by mass spectrometry. It is shown that Cd induced the appearance of the following proteins in soybean cells: superoxide dismutase, histone H2B, chalcone synthase and glutathione transferase.
Collapse
Affiliation(s)
- Robert Sobkowiak
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, ul. Fredry 10, 61-701 Poznań, Poland.
| | | |
Collapse
|
13
|
Motegi A, Kuntz K, Majeed A, Smith S, Myung K. Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:1424-33. [PMID: 16449653 PMCID: PMC1367189 DOI: 10.1128/mcb.26.4.1424-1433.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. Previously, we showed that inactivation of Rad5 or Rad18, ubiquitin ligases (E3) targeting for proliferating cell nuclear antigen (PCNA), increases the de novo telomere addition type of GCR (S. Smith, J. Y. Hwang, S. Banerjee, A. Majeed, A. Gupta, and K. Myung, Proc. Natl. Acad. Sci. USA 101:9039-9044, 2004). GCR suppression by Rad5 and Rad18 appears to be exerted by the RAD5-dependent error-free mode of bypass DNA repair. In contrast, Siz1 SUMO ligase and another ubiquitin ligase, Bre1, which target for PCNA and histone H2B, respectively, have GCR-supporting activities. Inactivation of homologous recombination (HR) proteins or the helicase Srs2 reduces GCR rates elevated by the rad5 or rad18 mutation. GCRs are therefore likely to be produced through the restrained recruitment of an HR pathway to stalled DNA replication forks. Since this HR pathway is compatible with Srs2, it is not a conventional form of recombinational pathway. Lastly, we demonstrate that selection of proper DNA repair pathways to stalled DNA replication forks is controlled by the Mec1-dependent checkpoint and is executed by cooperative functions of Siz1 and Srs2. We propose a mechanism for how defects in these proteins could lead to diverse outcomes (proper repair or GCR formation) through different regulation of DNA repair machinery.
Collapse
Affiliation(s)
- Akira Motegi
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Building 49, Room 4A22, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
14
|
Minesinger BK, Jinks-Robertson S. Roles of RAD6 epistasis group members in spontaneous polzeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 2005; 169:1939-55. [PMID: 15687278 PMCID: PMC1449579 DOI: 10.1534/genetics.104.033894] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 01/14/2005] [Indexed: 11/18/2022] Open
Abstract
DNA lesions that arise during normal cellular metabolism can block the progress of replicative DNA polymerases, leading to cell cycle arrest and, in higher eukaryotes, apoptosis. Alternatively, such blocking lesions can be temporarily tolerated using either a recombination- or a translesion synthesis-based bypass mechanism. In Saccharomyces cerevisiae, members of the RAD6 epistasis group are key players in the regulation of lesion bypass by the translesion DNA polymerase Polzeta. In this study, changes in the reversion rate and spectrum of the lys2DeltaA746 -1 frameshift allele have been used to evaluate how the loss of members of the RAD6 epistasis group affects Polzeta-dependent mutagenesis in response to spontaneous damage. Our data are consistent with a model in which Polzeta-dependent mutagenesis relies on the presence of either Rad5 or Rad18, which promote two distinct error-prone pathways that partially overlap with respect to lesion specificity. The smallest subunit of Poldelta, Pol32, is also required for Polzeta-dependent spontaneous mutagenesis, suggesting a cooperative role between Poldelta and Polzeta for the bypass of spontaneous lesions. A third error-free pathway relies on the presence of Mms2, but may not require PCNA.
Collapse
Affiliation(s)
- Brenda K Minesinger
- Biochemistry, Cell and Developmental Biology Program of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
15
|
Harvey AC, Jackson SP, Downs JA. Saccharomyces cerevisiae histone H2A Ser122 facilitates DNA repair. Genetics 2005; 170:543-53. [PMID: 15781691 PMCID: PMC1450416 DOI: 10.1534/genetics.104.038570] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA repair takes place in the context of chromatin. Recently, it has become apparent that proteins that make up and modulate chromatin structure are involved in the detection and repair of DNA lesions. We previously demonstrated that Ser129 in the carboxyl-terminal tail of yeast histone H2A is important for double-strand-break responses. By undertaking a systematic site-directed mutagenesis approach, we identified another histone H2A serine residue (Ser122) that is important for survival in the presence of DNA-damaging agents. We show that mutation of this residue does not affect DNA damage-dependent Rad53 phosphorylation or G(2)/M checkpoint responses. Interestingly, we find that yeast lacking H2A S122 are defective in their ability to sporulate. Finally, we demonstrate that H2A S122 provides a function distinct from that of H2A S129. These data demonstrate a role for H2A S122 in facilitating survival in the presence of DNA damage and suggest a potential role in mediating homologous recombination. The distinct roles of H2A S122 and S129 in mediating these responses suggest that chromatin components can provide specialized functions for distinct DNA repair and survival mechanisms and point toward the possibility of a complex DNA damage responsive histone code.
Collapse
Affiliation(s)
- Anne C Harvey
- Department of Biochemistry, University of Cambridge, UK
| | | | | |
Collapse
|
16
|
Xiang Y, Ma B, Yu HM, Li XJ. The protein profile of acetazolamide-treated sera in mice bearing Lewis neoplasm. Life Sci 2004; 75:1277-85. [PMID: 15234186 DOI: 10.1016/j.lfs.2003.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 12/12/2003] [Indexed: 11/26/2022]
Abstract
The aim of the present research is to analyze the proteome of neoplasm serum before and after treated with acetazolamide (20, 40, 80 mg kg(-1) d(-1) for 3 days p.o.). The Lewis lung carcinoma mice were used and carried out a comprehensive proteomic analysis by using the technologies of high-resolution two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and mass spectrometry (MS). The results showed that the acetazolamide could dramatically reduce the lung metastasis and primary tumor growth. Its most potent inhibition rate on lung metastases was reach to 77.7% at the dose of 80 mg kg(-1) d(-1). The two dimension electrophoresis and software analysis reveal 393 protein spots in control gel, 385 protein spots were detected in treated gel and matched 209 protein spots with control gel, indicating that intensive changes had occurred during the process of treatment. Two obviously different spots were cut off from gel and for the peptide mass fingerprinting. Data base searching showed the two proteins' peptide much more mach with Histone H2B fragment and Ubc-like protein CROC1 fragment. The results suggest that acetazolamide has a strong anti-tumor and anti-metastasis effect on Lewis-lung-carcinoma. The mechanism may be related to its regulation on plenty of proteins, in particular, on upregulation of H2B and CROC-1 expression of postreplicational DNA repair related protein in serum.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | | | | | | |
Collapse
|
17
|
Pastushok L, Xiao W. DNA Postreplication Repair Modulated by Ubiquitination and Sumoylation. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:279-306. [PMID: 15588847 DOI: 10.1016/s0065-3233(04)69010-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Landon Pastushok
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
18
|
Dazard JE, Gal H, Amariglio N, Rechavi G, Domany E, Givol D. Genome-wide comparison of human keratinocyte and squamous cell carcinoma responses to UVB irradiation: implications for skin and epithelial cancer. Oncogene 2003; 22:2993-3006. [PMID: 12771951 DOI: 10.1038/sj.onc.1206537] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To gain insight into the transformation of epidermal cells into squamous carcinoma cells (SCC), we compared the response to ultraviolet B radiation (UVB) of normal human epidermal keratinocytes (NHEK) versus their transformed counterpart, SCC, using biological and molecular profiling. DNA microarray analyses (Affymetrix), approximately 12000 genes) indicated that the major group of upregulated genes in keratinocytes fall into three categories: (i). antiapoptotic and cell survival factors, including chemokines of the CXC/CC subfamilies (e.g. IL-8, GRO-1, -2, -3, SCYA20), growth factors (e.g. HB-EGF, CTGF, INSL-4), and proinflammatory mediators (e.g. COX-2, S100A9), (ii). DNA repair-related genes (e.g. GADD45, ERCC, BTG-1, Histones), and (iii). ECM proteases (MMP-1, -10). The major downregulated genes are DeltaNp63 and PUMILIO, two potential markers for the maintenance of keratinocyte stem cells. NHEK were found to be more resistant than SCC to UVB-induced apoptosis and this resistance was mainly because of the protection from cell death by secreted survival factors, since it can be transferred from NHEK to SCC cultures by the conditioned medium. Whereas the response of keratinocytes to UVB involved regulation of key checkpoint genes (p53, MDM2, p21(Cip1), DeltaNp63), as well as antiapoptotic and DNA repair-related genes - no or little regulation of these genes was observed in SCC. The effect of UVB on NHEK and SCC resulted in upregulation of 251 and 127 genes, respectively, and downregulation of 322 genes in NHEK and 117 genes in SCC. To further analyse these changes, we used a novel unsupervised coupled two-way clustering method that allowed the identification of groups of genes that clearly partitioned keratinocytes from SCC, including a group of genes whose constitutive expression levels were similar before UVB. This allowed the identification of discriminating genes not otherwise revealed by simple static comparison in the absence of UVB irradiation. The implication of the changes in gene profile in keratinocytes for epithelial cancer is discussed.
Collapse
Affiliation(s)
- Jean-Eudes Dazard
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The nucleus of the eukaryotic cell must carry out many functions simultaneously. These tasks include ensuring that the cell is continuously supplied with an appropriate, changing set of proteins on its way through cell divisions and differentiation. During these processes, the integrity of the genetic material must be maintained against a constant onslaught of damaging physiological and environmental factors. Fulfilling these complex tasks requires the dynamic integration and synchronization of different nuclear functions. Protein modification by ubiquitin is proving to be a crucial tool for nuclear functioning, and is emerging as a decisive mechanism that enables the concerted regulation of nuclear pathways.
Collapse
Affiliation(s)
- Ingolf Bach
- Zentrum für Molekulare Neurobiologie (ZMNH), Universität Hamburg, Germany.
| | | |
Collapse
|
20
|
Ulrich HD. Protein-protein interactions within an E2-RING finger complex. Implications for ubiquitin-dependent DNA damage repair. J Biol Chem 2003; 278:7051-8. [PMID: 12496280 DOI: 10.1074/jbc.m212195200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The RING finger protein RAD5 interacts and cooperates with the UBC13-MMS2 ubiquitin-conjugating enzyme in postreplication DNA damage repair in yeast. Previous observations implied that the function of UBC13 and MMS2 is dependent on the presence of RAD5, suggesting that the RING finger protein might act as a ubiquitin-protein ligase specific for the UBC13-MMS2 complex. In support of this notion it is shown here that the contact surfaces between the RAD5 RING domain and UBC13 correspond to those found in other pairs of ubiquitin-conjugating enzymes and ubiquitin-protein ligases. Mutations that compromise the protein-protein interactions either between the RING domain and UBC13 or within the UBC13-MMS2 dimer were found to have variable effects on repair activity in vivo that strongly depended on the expression levels of the corresponding mutants. Quantitative analysis of the affinity and kinetics of the UBC13-MMS2 interaction suggests a highly dynamic association model in which compromised mutual interactions result in phenotypic effects only under conditions where protein levels become limiting. Finally, this study demonstrates that beyond its cooperation with the UBC13-MMS2 dimer, RAD5 must have an additional role in DNA damage repair independent of its RING finger domain.
Collapse
Affiliation(s)
- Helle D Ulrich
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
21
|
Current awareness on yeast. Yeast 2002; 19:1183-90. [PMID: 12371408 DOI: 10.1002/yea.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|