1
|
Beernink BM, Vogel JP, Lei L. Enhancers in Plant Development, Adaptation and Evolution. PLANT & CELL PHYSIOLOGY 2025; 66:461-476. [PMID: 39412125 PMCID: PMC12085095 DOI: 10.1093/pcp/pcae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 05/18/2025]
Abstract
Understanding plant responses to developmental and environmental cues is crucial for studying morphological divergence and local adaptation. Gene expression changes, governed by cis-regulatory modules (CRMs) including enhancers, are a major source of plant phenotypic variation. However, while genome-wide approaches have revealed thousands of putative enhancers in mammals, far fewer have been identified and functionally characterized in plants. This review provides an overview of how enhancers function to control gene regulation, methods to predict DNA sequences that may have enhancer activity, methods utilized to functionally validate enhancers and the current knowledge of enhancers in plants, including how they impact plant development, response to environment and evolutionary adaptation.
Collapse
Affiliation(s)
- Bliss M Beernink
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John P Vogel
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Li Lei
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Korolenko A, Skinner MK. Generational stability of epigenetic transgenerational inheritance facilitates adaptation and evolution. Epigenetics 2024; 19:2380929. [PMID: 39104183 PMCID: PMC11305060 DOI: 10.1080/15592294.2024.2380929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The epigenome and epigenetic inheritance were not included in the original modern synthesis theory or more recent extended evolutionary synthesis of evolution. In a broad range of species, the environment has been shown to play a significant role in natural selection, which more recently has been shown to occur through epigenetic alterations and epigenetic inheritance. However, even with this evidence, the field of epigenetics and epigenetic inheritance has been left out of modern evolutionary synthesis, as well as other current evolutionary models. Epigenetic mechanisms can direct the regulation of genetic processes (e.g. gene expression) and also can be directly changed by the environment. In contrast, DNA sequence cannot be directly altered by the environment. The goal of this review is to present the evidence of how epigenetics and epigenetic inheritance can alter phenotypic variation in numerous species. This can occur at a significantly higher frequency than genetic change, so correlates with the frequency of evolutionary change. In addition, the concept and importance of generational stability of transgenerational inheritance is incorporated into evolutionary theory. For there to be a better understanding of evolutionary biology, we must incorporate all aspects of molecular (e.g. genetics and epigenetics) and biological sciences (e.g. environment and adaptation).
Collapse
Affiliation(s)
- Alexandra Korolenko
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
3
|
Kulikova DA, Bespalova AV, Zelentsova ES, Evgen'ev MB, Funikov SY. Epigenetic Phenomenon of Paramutation in Plants and Animals. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1429-1450. [PMID: 39245454 DOI: 10.1134/s0006297924080054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.
Collapse
Affiliation(s)
- Dina A Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alina V Bespalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena S Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Hövel I, Bader R, Louwers M, Haring M, Peek K, Gent JI, Stam M. RNA-directed DNA methylation mutants reduce histone methylation at the paramutated maize booster1 enhancer. PLANT PHYSIOLOGY 2024; 195:1161-1179. [PMID: 38366582 PMCID: PMC11142347 DOI: 10.1093/plphys/kiae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 02/18/2024]
Abstract
Paramutation is the transfer of mitotically and meiotically heritable silencing information between two alleles. With paramutation at the maize (Zea mays) booster1 (b1) locus, the low-expressed B' epiallele heritably changes the high-expressed B-I epiallele into B' with 100% frequency. This requires specific tandem repeats and multiple components of the RNA-directed DNA methylation pathway, including the RNA-dependent RNA polymerase (encoded by mediator of paramutation1, mop1), the second-largest subunit of RNA polymerase IV and V (NRP(D/E)2a, encoded by mop2), and the largest subunit of RNA Polymerase IV (NRPD1, encoded by mop3). Mutations in mop genes prevent paramutation and release silencing at the B' epiallele. In this study, we investigated the effect of mutations in mop1, mop2, and mop3 on chromatin structure and DNA methylation at the B' epiallele, and especially the regulatory hepta-repeat 100 kb upstream of the b1 gene. Mutations in mop1 and mop3 resulted in decreased repressive histone modifications H3K9me2 and H3K27me2 at the hepta-repeat. Associated with this decrease were partial activation of the hepta-repeat enhancer function, formation of a multi-loop structure, and elevated b1 expression. In mop2 mutants, which do not show elevated b1 expression, H3K9me2, H3K27me2 and a single-loop structure like in wild-type B' were retained. Surprisingly, high CG and CHG methylation levels at the B' hepta-repeat remained in all three mutants, and CHH methylation was low in both wild type and mutants. Our results raise the possibility of MOP factors mediating RNA-directed histone methylation rather than RNA-directed DNA methylation at the b1 locus.
Collapse
Affiliation(s)
- Iris Hövel
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, P.O. Box 1210, 1090 GE Amsterdam, The Netherlands
| | - Rechien Bader
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, P.O. Box 1210, 1090 GE Amsterdam, The Netherlands
| | - Marieke Louwers
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, P.O. Box 1210, 1090 GE Amsterdam, The Netherlands
- argenx BV, Industriepark Zwijnaarde 7, 9052 Zwijnaarde (Ghent), Belgium
| | - Max Haring
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, P.O. Box 1210, 1090 GE Amsterdam, The Netherlands
- University Library, Universiteit van Amsterdam, P.O. Box 19185, 1000 GD Amsterdam, The Netherlands
| | - Kevin Peek
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, P.O. Box 1210, 1090 GE Amsterdam, The Netherlands
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, P.O. Box 1210, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
5
|
Sidorenko LV, Chandler VL, Wang X, Peterson T. Transcribed enhancer sequences are required for maize p1 paramutation. Genetics 2024; 226:iyad178. [PMID: 38169343 PMCID: PMC10763531 DOI: 10.1093/genetics/iyad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/27/2023] [Indexed: 01/05/2024] Open
Abstract
Paramutation is a transfer of heritable silencing states between interacting endogenous alleles or between endogenous alleles and homologous transgenes. Prior results demonstrated that paramutation occurs at the P1-rr (red pericarp and red cob) allele of the maize p1 (pericarp color 1) gene when exposed to a transgene containing a 1.2-kb enhancer fragment (P1.2) of P1-rr. The paramutable P1-rr allele undergoes transcriptional silencing resulting in a paramutant light-pigmented P1-rr' state. To define more precisely the sequences required to elicit paramutation, the P1.2 fragment was further subdivided, and the fragments transformed into maize plants and crossed with P1-rr. Analysis of the progeny plants showed that the sequences required for paramutation are located within a ∼600-bp segment of P1.2 and that this segment overlaps with a previously identified enhancer that is present in 4 direct repeats in P1-rr. The paramutagenic segment is transcribed in both the expressed P1-rr and the silenced P1-rr'. Transcription is sensitive to α-amanitin, indicating that RNA polymerase II mediates most of the transcription of this sequence. Although transcription within the paramutagenic sequence was similar in all tested genotypes, small RNAs were more abundant in the silenced P1-rr' epiallele relative to the expressed P1-rr allele. In agreement with prior results indicating the association of RNA-mediated DNA methylation in p1 paramutation, DNA blot analyses detected increased cytosine methylation of the paramutant P1-rr' sequences homologous to the transgenic P1.2 subfragments. Together these results demonstrate that the P1-rr enhancer repeats mediate p1 paramutation.
Collapse
Affiliation(s)
- Lyudmila V Sidorenko
- Department of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA 50131, USA
| | - Vicki L Chandler
- Department of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Minerva University, 14 Mint Plaza, Suite 300, San Francisco, CA 94103, USA
| | - Xiujuan Wang
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA 50131, USA
- Department of Genetics, Development, and Cellular Biology, Department of Agronomy, Iowa State University, Ames, IA 50010, USA
| | - Thomas Peterson
- Department of Genetics, Development, and Cellular Biology, Department of Agronomy, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
6
|
Marand AP, Eveland AL, Kaufmann K, Springer NM. cis-Regulatory Elements in Plant Development, Adaptation, and Evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:111-137. [PMID: 36608347 PMCID: PMC9881396 DOI: 10.1146/annurev-arplant-070122-030236] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
cis-Regulatory elements encode the genomic blueprints that ensure the proper spatiotemporal patterning of gene expression necessary for appropriate development and responses to the environment. Accumulating evidence implicates changes to gene expression as a major source of phenotypic novelty in eukaryotes, including acute phenotypes such as disease and cancer in mammals. Moreover, genetic and epigenetic variation affecting cis-regulatory sequences over longer evolutionary timescales has become a recurring theme in studies of morphological divergence and local adaptation. Here, we discuss the functions of and methods used to identify various classes of cis-regulatory elements, as well as their role in plant development and response to the environment. We highlight opportunities to exploit cis-regulatory variants underlying plant development and environmental responses for crop improvement efforts. Although a comprehensive understanding of cis-regulatory mechanisms in plants has lagged behind that in animals, we showcase several breakthrough findings that have profoundly influenced plant biology and shaped the overall understanding of transcriptional regulation in eukaryotes.
Collapse
Affiliation(s)
| | | | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany;
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA;
| |
Collapse
|
7
|
Vaucheret H. Epigenetic management of self and non-self: lessons from 40 years of transgenic plants. C R Biol 2023; 345:149-174. [PMID: 36847123 DOI: 10.5802/crbiol.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Plant varieties exhibiting unstable or variegated phenotypes, or showing virus recovery have long remained a mystery. It is only with the development of transgenic plants 40 years ago that the epigenetic features underlying these phenomena were elucidated. Indeed, the study of transgenic plants that did not express the introduced sequences revealed that transgene loci sometimes undergo transcriptional gene silencing (TGS) or post-transcriptional gene silencing (PTGS) by activating epigenetic defenses that naturally control transposable elements, duplicated genes or viruses. Even when they do not trigger TGS or PTGS spontaneously, stably expressed transgenes driven by viral promoters set apart from endogenous genes in their epigenetic regulation. As a result, transgenes driven by viral promoters are capable of undergoing systemic PTGS throughout the plant, whereas endogenous genes can only undergo local PTGS in cells where RNA quality control is impaired. Together, these results indicate that the host genome distinguishes self from non-self at the epigenetic level, allowing PTGS to eliminate non-self, and preventing PTGS to become systemic and kill the plant when it is locally activated against deregulated self.
Collapse
|
8
|
Tonosaki K, Fujimoto R, Dennis ES, Raboy V, Osabe K. Will epigenetics be a key player in crop breeding? FRONTIERS IN PLANT SCIENCE 2022; 13:958350. [PMID: 36247549 PMCID: PMC9562705 DOI: 10.3389/fpls.2022.958350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
If food and feed production are to keep up with world demand in the face of climate change, continued progress in understanding and utilizing both genetic and epigenetic sources of crop variation is necessary. Progress in plant breeding has traditionally been thought to be due to selection for spontaneous DNA sequence mutations that impart desirable phenotypes. These spontaneous mutations can expand phenotypic diversity, from which breeders can select agronomically useful traits. However, it has become clear that phenotypic diversity can be generated even when the genome sequence is unaltered. Epigenetic gene regulation is a mechanism by which genome expression is regulated without altering the DNA sequence. With the development of high throughput DNA sequencers, it has become possible to analyze the epigenetic state of the whole genome, which is termed the epigenome. These techniques enable us to identify spontaneous epigenetic mutations (epimutations) with high throughput and identify the epimutations that lead to increased phenotypic diversity. These epimutations can create new phenotypes and the causative epimutations can be inherited over generations. There is evidence of selected agronomic traits being conditioned by heritable epimutations, and breeders may have historically selected for epiallele-conditioned agronomic traits. These results imply that not only DNA sequence diversity, but the diversity of epigenetic states can contribute to increased phenotypic diversity. However, since the modes of induction and transmission of epialleles and their stability differ from that of genetic alleles, the importance of inheritance as classically defined also differs. For example, there may be a difference between the types of epigenetic inheritance important to crop breeding and crop production. The former may depend more on longer-term inheritance whereas the latter may simply take advantage of shorter-term phenomena. With the advances in our understanding of epigenetics, epigenetics may bring new perspectives for crop improvement, such as the use of epigenetic variation or epigenome editing in breeding. In this review, we will introduce the role of epigenetic variation in plant breeding, largely focusing on DNA methylation, and conclude by asking to what extent new knowledge of epigenetics in crop breeding has led to documented cases of its successful use.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Victor Raboy
- Independent Researcher Portland, Portland, OR, United States
| | - Kenji Osabe
- Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Aubert J, Bellegarde F, Oltehua-Lopez O, Leblanc O, Arteaga-Vazquez MA, Martienssen RA, Grimanelli D. AGO104 is a RdDM effector of paramutation at the maize b1 locus. PLoS One 2022; 17:e0273695. [PMID: 36040902 PMCID: PMC9426929 DOI: 10.1371/journal.pone.0273695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Although paramutation has been well-studied at a few hallmark loci involved in anthocyanin biosynthesis in maize, the cellular and molecular mechanisms underlying the phenomenon remain largely unknown. Previously described actors of paramutation encode components of the RNA-directed DNA-methylation (RdDM) pathway that participate in the biogenesis of 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs. In this study, we uncover an ARGONAUTE (AGO) protein as an effector of the RdDM pathway that is in charge of guiding 24-nt siRNAs to their DNA target to create de novo DNA methylation. We combined immunoprecipitation, small RNA sequencing and reverse genetics to, first, validate AGO104 as a member of the RdDM effector complex and, then, investigate its role in paramutation. We found that AGO104 binds 24-nt siRNAs involved in RdDM, including those required for paramutation at the b1 locus. We also show that the ago104-5 mutation causes a partial reversion of the paramutation phenotype at the b1 locus, revealed by intermediate pigmentation levels in stem tissues. Therefore, our results place AGO104 as a new member of the RdDM effector complex that plays a role in paramutation at the b1 locus in maize.
Collapse
Affiliation(s)
- Juliette Aubert
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Fanny Bellegarde
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Olivier Leblanc
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York, United States of America
| | - Daniel Grimanelli
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
- * E-mail:
| |
Collapse
|
10
|
Burton NO, Greer EL. Multigenerational epigenetic inheritance: Transmitting information across generations. Semin Cell Dev Biol 2021; 127:121-132. [PMID: 34426067 DOI: 10.1016/j.semcdb.2021.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023]
Abstract
Inherited epigenetic information has been observed to regulate a variety of complex organismal phenotypes across diverse taxa of life. This continually expanding body of literature suggests that epigenetic inheritance plays a significant, and potentially fundamental, role in inheritance. Despite the important role these types of effects play in biology, the molecular mediators of this non-genetic transmission of information are just now beginning to be deciphered. Here we provide an intellectual framework for interpreting these findings and how they can interact with each other. We also define the different types of mechanisms that have been found to mediate epigenetic inheritance and to regulate whether epigenetic information persists for one or many generations. The field of epigenetic inheritance is entering an exciting phase, in which we are beginning to understand the mechanisms by which non-genetic information is transmitted to, and deciphered by, subsequent generations to maintain essential environmental information without permanently altering the genetic code. A more complete understanding of how and when epigenetic inheritance occurs will advance our understanding of numerous different aspects of biology ranging from how organisms cope with changing environments to human pathologies influenced by a parent's environment.
Collapse
Affiliation(s)
- Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Eric L Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Cis-regulatory units of grass genomes identified by their DNA methylation. Proc Natl Acad Sci U S A 2020; 117:25198-25199. [PMID: 33008886 DOI: 10.1073/pnas.2017729117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Genome-Wide Identification and Characterization of Long Non-Coding RNAs in Peanut. Genes (Basel) 2019; 10:genes10070536. [PMID: 31311183 PMCID: PMC6679159 DOI: 10.3390/genes10070536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in various regulatory processes although they do not encode protein. Presently, there is little information regarding the identification of lncRNAs in peanut (Arachis hypogaea Linn.). In this study, 50,873 lncRNAs of peanut were identified from large-scale published RNA sequencing data that belonged to 124 samples involving 15 different tissues. The average lengths of lncRNA and mRNA were 4335 bp and 954 bp, respectively. Compared to the mRNAs, the lncRNAs were shorter, with fewer exons and lower expression levels. The 4713 co-expression lncRNAs (expressed in all samples) were used to construct co-expression networks by using the weighted correlation network analysis (WGCNA). LncRNAs correlating with the growth and development of different peanut tissues were obtained, and target genes for 386 hub lncRNAs of all lncRNAs co-expressions were predicted. Taken together, these findings can provide a comprehensive identification of lncRNAs in peanut.
Collapse
|
13
|
Long-range interactions between proximal and distal regulatory regions in maize. Nat Commun 2019; 10:2633. [PMID: 31201330 PMCID: PMC6572780 DOI: 10.1038/s41467-019-10603-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 05/20/2019] [Indexed: 12/30/2022] Open
Abstract
Long-range chromatin interactions are important for transcriptional regulation of genes, many of which are related to complex agronomics traits. However, the pattern of three-dimensional chromatin interactions remains unclear in plants. Here we report the generation of chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) data and the construction of extensive H3K4me3- and H3K27ac-centered chromatin interaction maps in maize. Results show that the interacting patterns between proximal and distal regulatory regions of genes are highly complex and dynamic. Genes with chromatin interactions have higher expression levels than those without interactions. Genes with proximal-proximal interactions prefer to be transcriptionally coordinated. Tissue-specific proximal–distal interactions are associated with tissue-specific expression of genes. Interactions between proximal and distal regulatory regions further interweave into organized network communities that are enriched in specific biological functions. The high-resolution chromatin interaction maps will help to understand the transcription regulation of genes associated with complex agronomic traits of maize. Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) can discover specific protein-centered chromatin interactions in high resolution. Here, the authors use ChIA-PET to reveal the complex and dynamic interactions between proximal and distal regulatory regions of genes in maize.
Collapse
|
14
|
Kawakatsu T, Ecker JR. Diversity and dynamics of DNA methylation: epigenomic resources and tools for crop breeding. BREEDING SCIENCE 2019; 69:191-204. [PMID: 31481828 PMCID: PMC6711733 DOI: 10.1270/jsbbs.19005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/18/2019] [Indexed: 05/17/2023]
Abstract
DNA methylation is an epigenetic modification that can affect gene expression and transposable element (TE) activities. Because cytosine DNA methylation patterns are inherited through both mitotic and meiotic cell divisions, differences in these patterns can contribute to phenotypic variability. Advances in high-throughput sequencing technologies have enabled the generation of abundant DNA sequence data. Integrated analyses of genome-wide gene expression patterns and DNA methylation patterns have revealed the underlying mechanisms and functions of DNA methylation. Moreover, associations between DNA methylation and agronomic traits have also been uncovered. The resulting information may be useful for future applications of natural epigenomic variation, for crop breeding. Additionally, artificial epigenome editing may be an attractive new plant breeding technique for generating novel varieties with improved agronomic traits.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization,
1-2 Owashi Tsukuba, Ibaraki 305-8634,
Japan
- Corresponding author (e-mail: )
| | - Joseph R. Ecker
- Howard Hughes Medical Institute,
10010 North Torrey Pines Road, La Jolla, CA 92037,
USA
- The Salk Institute for Biological Studies,
10010 North Torrey Pines Road, La Jolla, CA 92037,
USA
| |
Collapse
|
15
|
Bennetzen JL, Wang X. Relationships between Gene Structure and Genome Instability in Flowering Plants. MOLECULAR PLANT 2018; 11:407-413. [PMID: 29462722 DOI: 10.1016/j.molp.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Flowering plant (angiosperm) genomes are exceptional in their variability with respect to genome size, ploidy, chromosome number, gene content, and gene arrangement. Gene movement, although observed in some of the earliest plant genome comparisons, has been relatively underinvestigated. We present herein a description of several interesting properties of plant gene and genome structure that are pertinent to the successful movement of a gene to a new location. These considerations lead us to propose a model that can explain the frequent success of plant gene mobility, namely that Small Insulated Genes Move Around (SIGMAR). The SIGMAR model is then compared with known processes for gene mobilization, and predictions of the SIGMAR model are formulated to encourage future experimentation. The overall results indicate that the frequent gene movement in angiosperm genomes is partly an outcome of the unusual properties of angiosperm genes, especially their small size and insulation from epigenetic silencing.
Collapse
Affiliation(s)
- Jeffrey L Bennetzen
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | - Xuewen Wang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China; Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
16
|
Dalla Costa L, Malnoy M, Gribaudo I. Breeding next generation tree fruits: technical and legal challenges. HORTICULTURE RESEARCH 2017; 4:17067. [PMID: 29238598 PMCID: PMC5717367 DOI: 10.1038/hortres.2017.67] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 10/18/2017] [Indexed: 05/04/2023]
Abstract
The new plant breeding technologies (NPBTs) have recently emerged as powerful tools in the context of 'green' biotechnologies. They have wide potential compared to classical genetic engineering and they are attracting the interest of politicians, stakeholders and citizens due to the revolutionary impact they may have on agriculture. Cisgenesis and genome editing potentially allow to obtain pathogen-resistant plants or plants with enhanced qualitative traits by introducing or disrupting specific genes in shorter times compared to traditional breeding programs and by means of minimal modifications in the plant genome. Grapevine, the most important fruit crop in the world from an economical point of view, is a peculiar case for NPBTs because of the load of cultural aspects, varietal traditions and consumer demands, which hinder the use of classical breeding techniques and, furthermore, the application of genetic engineering to wine grape cultivars. Here we explore the technical challenges which may hamper the application of cisgenesis and genome editing to this perennial plant, in particular focusing on the bottlenecks of the Agrobacterium-mediated gene transfer. In addition, strategies to eliminate undesired sequences from the genome and to choose proper target sites are discussed in light of peculiar features of this species. Furthermore is reported an update of the international legislative frameworks regulating NPBT products which shows conflicting positions and, in the case of the European Union, a prolonged lack of regulation.
Collapse
Affiliation(s)
- Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, via E Mach 1, San Michele a/Adige 38010, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, via E Mach 1, San Michele a/Adige 38010, Italy
| | - Ivana Gribaudo
- IPSP-CNR, Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Torino I-10135, Italy
| |
Collapse
|
17
|
Stroud LK, McGinnis KM. Altered nucleosome positions in maize haplotypes and mutants of a subset of SWI/SNF-like proteins. PLANT DIRECT 2017; 1:e00019. [PMID: 31245667 PMCID: PMC6508530 DOI: 10.1002/pld3.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/07/2017] [Accepted: 09/25/2017] [Indexed: 06/09/2023]
Abstract
Chromatin remodelers alter DNA-histone interactions in eukaryotic organisms and have been well characterized in yeast and Arabidopsis. While there are maize proteins with similar domains as known remodelers, the ability of the maize proteins to alter nucleosome position has not been reported. Mutant alleles of several maize proteins (RMR1, CHR101, CHR106, CHR127, and CHR156) with similar functional domains to known chromatin remodelers were identified. Altered gene expression of Chr101, Chr106, Chr127, and Chr156 was demonstrated in plants homozygous for the mutant alleles. These mutant genotypes were subjected to nucleosome position analysis to determine whether misregulation of putative maize chromatin proteins would lead to altered DNA-histone interactions. Nucleosome position changes were observed in plants homozygous for chr101, chr106, chr127, and chr156 mutant alleles, suggesting that CHR101, CHR106, CHR127, and CHR156 may affect chromatin structure. The role of RNA polymerases in altering DNA-histone interactions was also tested. Changes in nucleosome position were demonstrated in homozygous mop2-1 individuals. These changes were demonstrated at the b1 tandem repeats and at newly identified loci. Additionally, differential DNA-histone interactions and altered gene expression of putative chromatin remodelers were demonstrated between different maize haplotypes.
Collapse
Affiliation(s)
- Linda K. Stroud
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Karen M. McGinnis
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| |
Collapse
|
18
|
Wang L, Cao C, Zheng S, Zhang H, Liu P, Ge Q, Li J, Ren Z. Transcriptomic analysis of short-fruit 1 (sf1) reveals new insights into the variation of fruit-related traits in Cucumis sativus. Sci Rep 2017; 7:2950. [PMID: 28592854 PMCID: PMC5462832 DOI: 10.1038/s41598-017-02932-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/20/2017] [Indexed: 01/23/2023] Open
Abstract
Fruit size is an important quality trait in different market classes of Cucumis sativus L., an economically important vegetable cultivated worldwide, but the genetic and molecular mechanisms that control fruit size are largely unknown. In this study, we isolated a natural cucumber mutant, short fruit 1 (sf1), caused by a single recessive Mendelian factor, from the North China-type inbred line CNS2. In addition to significantly decreased fruit length, other fruit-related phenotypic variations were also observed in sf1 compared to the wild-type (WT) phenotype, indicating that sf1 might have pleiotropic effects. Microscopic imaging showed that fruit cell size in sf1 was much larger than that in WT, suggesting that the short fruit phenotype in sf1 is caused by decreased cell number. Fine mapping revealed that sf1 was localized to a 174.3 kb region on chromosome 6. Similarly, SNP association analysis of bulked segregant RNA-Seq data showed increased SNP frequency in the same region of chromosome 6. In addition, transcriptomic analysis revealed that sf1 might control fruit length through the fine-tuning of cytokinin and auxin signalling, gibberellin biosynthesis and signal transduction in cucumber fruits. Overall, our results provide important information for further study of fruit length and other fruit-related features in cucumber.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Chenxing Cao
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Shuangshuang Zheng
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Haiyang Zhang
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Panjing Liu
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Qian Ge
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Jinrui Li
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China.
| |
Collapse
|
19
|
Epigenetic Control of Gene Expression in Maize. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 328:25-48. [DOI: 10.1016/bs.ircmb.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
|
21
|
Characterization of factors underlying the metabolic shifts in developing kernels of colored maize. Sci Rep 2016; 6:35479. [PMID: 27739524 PMCID: PMC5064397 DOI: 10.1038/srep35479] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/30/2016] [Indexed: 12/25/2022] Open
Abstract
Elucidation of the metabolic pathways determining pigmentation and their underlying regulatory mechanisms in maize kernels is of high importance in attempts to improve the nutritional composition of our food. In this study, we compared dynamics in the transcriptome and metabolome between colored SW93 and white SW48 by integrating RNA-Seq and non-targeted metabolomics. Our data revealed that expression of enzyme coding genes and levels of primary metabolites decreased gradually from 11 to 21 DAP, corresponding well with the physiological change of developing maize kernels from differentiation through reserve accumulation to maturation, which was cultivar independent. A remarkable up-regulation of anthocyanin and phlobaphene pathway distinguished SW93 from SW48, in which anthocyanin regulating transcriptional factors (R1 and C1), enzyme encoding genes involved in both pathways and corresponding metabolic intermediates were up-regulated concurrently in SW93 but not in SW48. The shift from the shikimate pathway of primary metabolism to the flavonoid pathway of secondary metabolism, however, appears to be under posttranscriptional regulation. This study revealed the link between primary metabolism and kernel coloration, which facilitate further study to explore fundamental questions regarding the evolution of seed metabolic capabilities as well as their potential applications in maize improvement regarding both staple and functional foods.
Collapse
|
22
|
Gouil Q, Novák O, Baulcombe DC. SLTAB2 is the paramutated SULFUREA locus in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2655-64. [PMID: 26957563 PMCID: PMC4861014 DOI: 10.1093/jxb/erw096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The sulfurea (sulf) allele is a silent epigenetic variant of a tomato (Solanum lycopersicum) gene affecting pigment production. It is homozygous lethal but, in a heterozygote sulf/+, the wild-type (wt) allele undergoes silencing so that the plants exhibit chlorotic sectors. This transfer of the silenced state between alleles is termed paramutation and is best characterized in maize. To understand the mechanism of paramutation we mapped SULF to the orthologue SLTAB2 of an Arabidopsis gene that, consistent with the pigment deficiency, is involved in the translation of photosystem I. Paramutation of SLTAB2 is linked to an increase in DNA methylation and the production of small interfering RNAs at its promoter. Virus-induced gene silencing of SLTAB2 phenocopies sulf, consistent with the possibility that siRNAs mediate the paramutation of SULFUREA Unlike the maize systems, the paramutagenicity of sulf is not, however, associated with repeated sequences at the region of siRNA production or DNA methylation.
Collapse
Affiliation(s)
- Quentin Gouil
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
|
24
|
Pavlek M, Gelfand Y, Plohl M, Meštrović N. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. DNA Res 2015; 22:387-401. [PMID: 26428853 PMCID: PMC4675708 DOI: 10.1093/dnares/dsv021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/26/2015] [Indexed: 12/31/2022] Open
Abstract
Although satellite DNAs are well-explored components of heterochromatin and centromeres, little is known about emergence, dispersal and possible impact of comparably structured tandem repeats (TRs) on the genome-wide scale. Our bioinformatics analysis of assembled Tribolium castaneum genome disclosed significant contribution of TRs in euchromatic chromosomal arms and clear predominance of satellite DNA-typical 170 bp monomers in arrays of ≥5 repeats. By applying different experimental approaches, we revealed that the nine most prominent TR families Cast1-Cast9 extracted from the assembly comprise ∼4.3% of the entire genome and reside almost exclusively in euchromatic regions. Among them, seven families that build ∼3.9% of the genome are based on ∼170 and ∼340 bp long monomers. Results of phylogenetic analyses of 2500 monomers originating from these families show high-sequence dynamics, evident by extensive exchanges between arrays on non-homologous chromosomes. In addition, our analysis shows that concerted evolution acts more efficiently on longer than on shorter arrays. Efficient genome-wide distribution of nine TR families implies the role of transposition only in expansion of the most dispersed family, and involvement of other mechanisms is anticipated. Despite similarities in sequence features, FISH experiments indicate high-level compartmentalization of centromeric and euchromatic tandem repeats.
Collapse
Affiliation(s)
- Martina Pavlek
- Ruđer Bošković Institute, Bijenička 54, Zagreb HR-10002, Croatia
| | - Yevgeniy Gelfand
- Laboratory for Biocomputing and Informatics, Boston University, Boston, MA 02215, USA
| | - Miroslav Plohl
- Ruđer Bošković Institute, Bijenička 54, Zagreb HR-10002, Croatia
| | | |
Collapse
|
25
|
Springer NM, McGinnis KM. Paramutation in evolution, population genetics and breeding. Semin Cell Dev Biol 2015; 44:33-8. [PMID: 26325077 DOI: 10.1016/j.semcdb.2015.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022]
Abstract
Paramutation is a fascinating phenomenon in which directed allelic interactions result in heritable changes in the state of an allele. Paramutation has been carefully characterized at a handful of loci but the prevalence of paramutable/paramutagenic alleles is not well characterized within genomes or populations. In order to consider the role of paramutation in evolutionary processes and plant breeding, we focused on several questions. First, what causes certain alleles to become subject to paramutation? While paramutation clearly involves epigenetic regulation it is also true that only certain alleles defined by genetic sequences are able to participate in paramutation. Second, what is the prevalence of paramutation? There are only a handful of well-documented examples of paramutation. However, there is growing evidence that many loci may undergo changes in chromatin state or expression that are similar to changes observed as a result of paramutation. Third, how will paramutation events be inherited in natural or artificial populations? Many factors, including stability of epigenetic state, mating style and ploidy, may influence the prevalence of paramutation states within populations. Developing a clear understanding of the mechanisms and frequency of paramutation in crop plant genomes will facilitate new opportunities in genetic manipulation, and will also enhance plant breeding programs and our understanding of genome evolution.
Collapse
Affiliation(s)
- Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Karen M McGinnis
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
26
|
Gabriel JM, Hollick JB. Paramutation in maize and related behaviors in metazoans. Semin Cell Dev Biol 2015; 44:11-21. [PMID: 26318741 DOI: 10.1016/j.semcdb.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022]
Abstract
Paramutation refers to both the process and results of trans-homolog interactions causing heritable changes in both gene regulation and silencing abilities. Originally described in plants, paramutation-like behaviors have now been reported in model metazoans. Here we detail our current understanding of the paramutation mechanism as defined in Zea mays and compare this paradigm to these metazoan examples. Experimental results implicate functional roles of small RNAs in all these model organisms that highlight a diversity of mechanisms by which these molecules specify meiotically heritable regulatory information in the eukarya.
Collapse
Affiliation(s)
- Janelle M Gabriel
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Jay B Hollick
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
27
|
Cis-acting determinants of paramutation. Semin Cell Dev Biol 2015; 44:22-32. [DOI: 10.1016/j.semcdb.2015.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 11/23/2022]
|
28
|
Diverse gene-silencing mechanisms with distinct requirements for RNA polymerase subunits in Zea mays. Genetics 2014; 198:1031-42. [PMID: 25164883 DOI: 10.1534/genetics.114.168518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Zea mays, transcriptional regulation of the b1 (booster1) gene requires a distal enhancer and MEDIATOR OF PARAMUTATION1 (MOP1), MOP2, and MOP3 proteins orthologous to Arabidopsis components of the RNA-dependent DNA methylation pathway. We compared the genetic requirements for MOP1, MOP2, and MOP3 for endogenous gene silencing by two hairpin transgenes with inverted repeats of the a1 (anthocyaninless1) gene promoter (a1pIR) and the b1 gene enhancer (b1IR), respectively. The a1pIR transgene induced silencing of endogenous A1 in mop1-1 and mop3-1, but not in Mop2-1 homozygous plants. This finding suggests that transgene-derived small interfering RNAs (siRNAs) circumvented the requirement for MOP1, a predicted RNA-dependent RNA polymerase, and MOP3, the predicted largest subunit of RNA polymerase IV (Pol IV). Because the Arabidopsis protein orthologous to MOP2 is the second largest subunit of Pol IV and V, our results may indicate that hairpin-induced siRNAs cannot bypass the requirement for the predicted scaffolding activity of Pol V. In contrast to a1pIR, the b1IR transgene silenced endogenous B1 in all three homozygous mutant genotypes--mop1-1, Mop2-1, and mop3-1--suggesting that transgene mediated b1 silencing did not involve MOP2-containing Pol V complexes. Based on the combined results for a1, b1, and three previously described loci, we propose a speculative hypothesis of locus-specific deployment of Pol II, MOP2-containing Pol V, or alternative versions of Pol V with second largest subunits other than MOP2 to explain the mechanistic differences in silencing at specific loci, including one example associated with paramutation.
Collapse
|
29
|
Abstract
ENCODE projects exist for many eukaryotes, including humans, but as of yet no defined project exists for plants. A plant ENCODE would be invaluable to the research community and could be more readily produced than its metazoan equivalents by capitalizing on the preexisting infrastructure provided from similar projects. Collecting and normalizing plant epigenomic data for a range of species will facilitate hypothesis generation, cross-species comparisons, annotation of genomes, and an understanding of epigenomic functions throughout plant evolution. Here, we discuss the need for such a project, outline the challenges it faces, and suggest ways forward to build a plant ENCODE.
Collapse
Affiliation(s)
- Amanda K Lane
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| | | | | | | |
Collapse
|
30
|
Eichten SR, Schmitz RJ, Springer NM. Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation. PLANT PHYSIOLOGY 2014; 165:933-947. [PMID: 24872382 PMCID: PMC4081347 DOI: 10.1104/pp.113.234211] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chromatin modifications and epigenetics may play important roles in many plant processes, including developmental regulation, responses to environmental stimuli, and local adaptation. Chromatin modifications describe biochemical changes to chromatin state, such as alterations in the specific type or placement of histones, modifications of DNA or histones, or changes in the specific proteins or RNAs that associate with a genomic region. The term epigenetic is often used to describe a variety of unexpected patterns of gene regulation or inheritance. Here, we specifically define epigenetics to include the key aspects of heritability (stable transmission of gene expression states through mitotic or meiotic cell divisions) and independence from DNA sequence changes. We argue against generically equating chromatin and epigenetics; although many examples of epigenetics involve chromatin changes, those chromatin changes are not always heritable or may be influenced by genetic changes. Careful use of the terms chromatin modifications and epigenetics can help separate the biochemical mechanisms of regulation from the inheritance patterns of altered chromatin states. Here, we also highlight examples in which chromatin modifications and epigenetics affect important plant processes.
Collapse
Affiliation(s)
- Steven R Eichten
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| | - Robert J Schmitz
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| | - Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| |
Collapse
|
31
|
Jarillo JA, Gaudin V, Hennig L, Köhler C, Piñeiro M. Plant chromatin warms up in Madrid: meeting summary of the 3rd European Workshop on Plant Chromatin 2013, Madrid, Spain. Epigenetics 2014; 9:644-52. [PMID: 24504145 DOI: 10.4161/epi.28094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The 3rd European Workshop on Plant Chromatin (EWPC) was held on August 2013 in Madrid, Spain. A number of different topics on plant chromatin were presented during the meeting, including new factors mediating Polycomb Group protein function in plants, chromatin-mediated reprogramming in plant developmental transitions, the role of histone variants, and newly identified chromatin remodeling factors. The function of interactions between chromatin and transcription factors in the modulation of gene expression, the role of chromatin dynamics in the control of nuclear processes and the influence of environmental factors on chromatin organization were also reported. In this report, we highlight some of the new insights emerging in this growing area of research, presented at the 3rd EWPC.
Collapse
Affiliation(s)
- José A Jarillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), INIA-UPM; INIA, Campus de Montegancedo; Madrid, Spain
| | - Valérie Gaudin
- NRA; AgroParis Tech; UMR1318; Insitut Jean Pierre Bourgin; Versailles, France
| | - Lars Hennig
- Swedish University of Agricultural Sciences; Uppsala BioCenter; Uppsala, Sweden
| | - Claudia Köhler
- Swedish University of Agricultural Sciences; Uppsala BioCenter; Uppsala, Sweden
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas (CBGP), INIA-UPM; INIA, Campus de Montegancedo; Madrid, Spain
| |
Collapse
|
32
|
Pecinka A, Abdelsamad A, Vu GTH. Hidden genetic nature of epigenetic natural variation in plants. TRENDS IN PLANT SCIENCE 2013; 18:625-32. [PMID: 23953885 DOI: 10.1016/j.tplants.2013.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 05/22/2023]
Abstract
Transcriptional gene silencing (TGS) is an epigenetic mechanism that suppresses the activity of repetitive DNA elements via accumulation of repressive chromatin marks. We discuss natural variation in TGS, with a particular focus on cases that affect the function of protein-coding genes and lead to developmental or physiological changes. Comparison of the examples described has revealed that most natural variation is associated with genetic determinants, such as gene rearrangements, inverted repeats, and transposon insertions that triggered TGS. Recent technical advances have enabled the study of epigenetic natural variation at a whole-genome scale and revealed patterns of inter- and intraspecific epigenetic variation. Future studies exploring non-model species may reveal species-specific evolutionary adaptations at the level of chromatin configuration.
Collapse
Affiliation(s)
- Ales Pecinka
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.
| | | | | |
Collapse
|
33
|
Belele CL, Sidorenko L, Stam M, Bader R, Arteaga-Vazquez MA, Chandler VL. Specific tandem repeats are sufficient for paramutation-induced trans-generational silencing. PLoS Genet 2013; 9:e1003773. [PMID: 24146624 PMCID: PMC3798267 DOI: 10.1371/journal.pgen.1003773] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 07/24/2013] [Indexed: 11/19/2022] Open
Abstract
Paramutation is a well-studied epigenetic phenomenon in which trans communication between two different alleles leads to meiotically heritable transcriptional silencing of one of the alleles. Paramutation at the b1 locus involves RNA-mediated transcriptional silencing and requires specific tandem repeats that generate siRNAs. This study addressed three important questions: 1) are the tandem repeats sufficient for paramutation, 2) do they need to be in an allelic position to mediate paramutation, and 3) is there an association between the ability to mediate paramutation and repeat DNA methylation levels? Paramutation was achieved using multiple transgenes containing the b1 tandem repeats, including events with tandem repeats of only one half of the repeat unit (413 bp), demonstrating that these sequences are sufficient for paramutation and an allelic position is not required for the repeats to communicate. Furthermore, the transgenic tandem repeats increased the expression of a reporter gene in maize, demonstrating the repeats contain transcriptional regulatory sequences. Transgene-mediated paramutation required the mediator of paramutation1 gene, which is necessary for endogenous paramutation, suggesting endogenous and transgene-mediated paramutation both require an RNA-mediated transcriptional silencing pathway. While all tested repeat transgenes produced small interfering RNAs (siRNAs), not all transgenes induced paramutation suggesting that, as with endogenous alleles, siRNA production is not sufficient for paramutation. The repeat transgene-induced silencing was less efficiently transmitted than silencing induced by the repeats of endogenous b1 alleles, which is always 100% efficient. The variability in the strength of the repeat transgene-induced silencing enabled testing whether the extent of DNA methylation within the repeats correlated with differences in efficiency of paramutation. Transgene-induced paramutation does not require extensive DNA methylation within the transgene. However, increased DNA methylation within the endogenous b1 repeats after transgene-induced paramutation was associated with stronger silencing of the endogenous allele. Paramutation is a fascinating process in which genes communicate to efficiently establish changes in their expression that are stably transmitted to future generations without any changes in DNA sequences. While paramutation was first described in the 1950s and extensively studied through the 1960s, its underlying mechanism remained mysterious for many years. Over the past ten years paramutation at the b1 locus in maize was shown to require transcribed, non-coding tandem repeats located 100 kb upstream of b1. These repeats generate small RNAs, and mutations in multiple genes mediating small RNA silencing at the transcriptional level prevent paramutation. While underlying mechanisms are shared, current models for RNA-mediated transcriptional silencing that are based on experiments with S. pombe and Arabidopsis do not explain many aspects of paramutation. In this manuscript we used a transgenic approach to demonstrate that the b1 non-coding tandem repeats are sufficient to send and respond to the paramutation signals and that this occurs even when the repeats are not at their normal chromosomal location.
Collapse
Affiliation(s)
- Christiane L. Belele
- Department of Plant Sciences, BIO5, University of Arizona, Tucson, Arizona, United States of America
| | - Lyudmila Sidorenko
- Department of Plant Sciences, BIO5, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Maike Stam
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Rechien Bader
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario A. Arteaga-Vazquez
- Department of Plant Sciences, BIO5, University of Arizona, Tucson, Arizona, United States of America
| | - Vicki L. Chandler
- Department of Plant Sciences, BIO5, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
34
|
Shatskikh AS, Gvozdev VA. Heterochromatin formation and transcription in relation to trans-inactivation of genes and their spatial organization in the nucleus. BIOCHEMISTRY (MOSCOW) 2013; 78:603-12. [DOI: 10.1134/s0006297913060060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Irimia M, Maeso I, Roy SW, Fraser HB. Ancient cis-regulatory constraints and the evolution of genome architecture. Trends Genet 2013; 29:521-8. [PMID: 23791467 DOI: 10.1016/j.tig.2013.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 01/18/2023]
Abstract
The order of genes along metazoan chromosomes has generally been thought to be largely random, with few implications for organismal function. However, two recent studies, reporting hundreds of pairs of genes that have remained linked in diverse metazoan species over hundreds of millions of years of evolution, suggest widespread functional implications for gene order. These associations appear to largely reflect cis-regulatory constraints, with either (i) multiple genes sharing transcriptional regulatory elements, or (ii) regulatory elements for a developmental gene being found within a neighboring 'bystander' gene (known as a genomic regulatory block). We discuss implications, questions raised, and new research directions arising from these studies, as well as evidence for similar phenomena in other eukaryotic groups.
Collapse
Affiliation(s)
- Manuel Irimia
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
36
|
Erhard KF, Parkinson SE, Gross SM, Barbour JER, Lim JP, Hollick JB. Maize RNA polymerase IV defines trans-generational epigenetic variation. THE PLANT CELL 2013; 25:808-19. [PMID: 23512852 PMCID: PMC3634690 DOI: 10.1105/tpc.112.107680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 05/19/2023]
Abstract
The maize (Zea mays) RNA Polymerase IV (Pol IV) largest subunit, RNA Polymerase D1 (RPD1 or NRPD1), is required for facilitating paramutations, restricting expression patterns of genes required for normal development, and generating small interfering RNA (siRNAs). Despite this expanded role for maize Pol IV relative to Arabidopsis thaliana, neither the general characteristics of Pol IV-regulated haplotypes, nor their prevalence, are known. Here, we show that specific haplotypes of the purple plant1 locus, encoding an anthocyanin pigment regulator, acquire and retain an expanded expression domain following transmission from siRNA biogenesis mutants. This conditioned expression pattern is progressively enhanced over generations in Pol IV mutants and then remains heritable after restoration of Pol IV function. This unusual genetic behavior is associated with promoter-proximal transposon fragments but is independent of sequences required for paramutation. These results indicate that trans-generational Pol IV action defines the expression patterns of haplotypes using co-opted transposon-derived sequences as regulatory elements. Our results provide a molecular framework for the concept that induced changes to the heterochromatic component of the genome are coincident with heritable changes in gene regulation. Alterations of this Pol IV-based regulatory system can generate potentially desirable and adaptive traits for selection to act upon.
Collapse
Affiliation(s)
- Karl F. Erhard
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Susan E. Parkinson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Stephen M. Gross
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Joy-El R. Barbour
- Department of Molecular Cell Biology, University of California, Berkeley, California 94720-3200
| | - Jana P. Lim
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Jay B. Hollick
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
- Address correspondence to
| |
Collapse
|
37
|
Hollick JB. Paramutation: a trans-homolog interaction affecting heritable gene regulation. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:536-543. [PMID: 23017240 DOI: 10.1016/j.pbi.2012.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 07/17/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
Paramutation describes both the process and results of trans-sensing between chromosomes that causes specific heritable changes in gene regulation. RNA molecules are implicated in mediating similar events in maize, mouse, and Drosophila. Changes in both small RNA profiles and cytosine methylation patterns in Arabidopsis hybrids represent a potential molecular equivalent to the interactions responsible for paramutations. Despite a seemingly unifying feature of RNA-directed changes, both recent and historical works show that paramutations in maize require plant-specific proteins and lack expected hallmarks of a trans-effect mediated solely by RNAs. Recent examples of nearby transposons affecting RNA polymerase II functions lead to an opinion that paramutations represent an emergent property of the transcriptional dynamics ongoing in plant genomes between repetitious features and nearby genes.
Collapse
Affiliation(s)
- Jay B Hollick
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
38
|
Sekhon RS, Wang PH, Sidorenko L, Chandler VL, Chopra S. Maize Unstable factor for orange1 is required for maintaining silencing associated with paramutation at the pericarp color1 and booster1 loci. PLoS Genet 2012; 8:e1002980. [PMID: 23055943 PMCID: PMC3464198 DOI: 10.1371/journal.pgen.1002980] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/08/2012] [Indexed: 11/25/2022] Open
Abstract
To understand the molecular mechanisms underlying paramutation, we examined the role of Unstable factor for orange1 (Ufo1) in maintaining paramutation at the maize pericarp color1 (p1) and booster1 (b1) loci. Genetic tests revealed that the Ufo1-1 mutation disrupted silencing associated with paramutation at both p1 and b1. The level of up regulation achieved at b1 was lower than that at p1, suggesting differences in the role Ufo1-1 plays at these loci. We characterized the interaction of Ufo1-1 with two silenced p1 epialleles, P1-rr′ and P1-prTP, that were derived from a common P1-rr ancestor. Both alleles are phenotypically indistinguishable, but differ in their paramutagenic activity; P1-rr′ is paramutagenic to P1-rr, while P1-prTP is non-paramutagenic. Analysis of cytosine methylation revealed striking differences within an enhancer fragment that is required for paramutation; P1-rr′ exhibited increased methylation at symmetric (CG and CHG) and asymmetric (CHH) sites, while P1-prTP was methylated only at symmetric sites. Both silenced alleles had higher levels of dimethylation of lysine 9 on histone 3 (H3K9me2), an epigenetic mark of silent chromatin, in the enhancer region. Both epialleles were reactivated in the Ufo1-1 background; however, reactivation of P1-rr′ was associated with dramatic loss of symmetric and asymmetric cytosine methylation in the enhancer, while methylation of up-regulated P1-prTP was not affected. Interestingly, Ufo1-1–mediated reactivation of both alleles was accompanied with loss of H3K9me2 mark from the enhancer region. Therefore, while earlier studies have shown correlation between H3K9me2 and DNA methylation, our study shows that these two epigenetic marks are uncoupled in the Ufo1-1–reactivated p1 alleles. Furthermore, while CHH methylation at the enhancer region appears to be the major distinguishing mark between paramutagenic and non-paramutagenic p1 alleles, H3K9me2 mark appears to be important for maintaining epigenetic silencing. Natural allelic variability is crucial for genetic improvement. While the genetic mechanisms leading to such variation have been studied in depth, relatively less is known about the role of epigenetic mechanisms in generation of allelic diversity. Paramutation is a phenomenon in which one allele can silence another allele in trans and, once established, such epigenetic silencing is heritable. To further understand the molecular components of paramutation, we characterized two epialleles of the pericarp color1 (p1) gene of maize, which originated from a common progenitor; however, only one of these alleles is paramutagenic. Results show that, while both alleles have high levels of symmetric (CG and CHG) methylation in a distal enhancer element, only the paramutagenic allele has higher levels of asymmetric (CHH) methylation. Since CHH methylation is imposed and maintained through RNA–mediated mechanisms, these results indicate that paramutation at the p1 locus involves RNA–mediated silencing pathway. Further, both silent epialleles are reactivated in the presence of an unlinked dominant mutation Ufo1-1, and reactivation is accompanied by the loss of suppressive histone mark H3K9me2. Finally, we show that ufo1 is also required for epigenetic silencing at the booster1 locus and thus affects additional loci in maize that participate in paramutation.
Collapse
Affiliation(s)
- Rajandeep S. Sekhon
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Po-Hao Wang
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lyudmila Sidorenko
- BIO5 Institute and Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Vicki L. Chandler
- BIO5 Institute and Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Surinder Chopra
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Li X, Zhu C, Yeh CT, Wu W, Takacs EM, Petsch KA, Tian F, Bai G, Buckler ES, Muehlbauer GJ, Timmermans MCP, Scanlon MJ, Schnable PS, Yu J. Genic and nongenic contributions to natural variation of quantitative traits in maize. Genome Res 2012; 22:2436-44. [PMID: 22701078 PMCID: PMC3514673 DOI: 10.1101/gr.140277.112] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The complex genomes of many economically important crops present tremendous challenges to understand the genetic control of many quantitative traits with great importance in crop production, adaptation, and evolution. Advances in genomic technology need to be integrated with strategic genetic design and novel perspectives to break new ground. Complementary to individual-gene–targeted research, which remains challenging, a global assessment of the genomic distribution of trait-associated SNPs (TASs) discovered from genome scans of quantitative traits can provide insights into the genetic architecture and contribute to the design of future studies. Here we report the first systematic tabulation of the relative contribution of different genomic regions to quantitative trait variation in maize. We found that TASs were enriched in the nongenic regions, particularly within a 5-kb window upstream of genes, which highlights the importance of polymorphisms regulating gene expression in shaping the natural variation. Consistent with these findings, TASs collectively explained 44%–59% of the total phenotypic variation across maize quantitative traits, and on average, 79% of the explained variation could be attributed to TASs located in genes or within 5 kb upstream of genes, which together comprise only 13% of the genome. Our findings suggest that efficient, cost-effective genome-wide association studies (GWAS) in species with complex genomes can focus on genic and promoter regions.
Collapse
Affiliation(s)
- Xianran Li
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Barbour JER, Liao IT, Stonaker JL, Lim JP, Lee CC, Parkinson SE, Kermicle J, Simon SA, Meyers BC, Williams-Carrier R, Barkan A, Hollick JB. required to maintain repression2 is a novel protein that facilitates locus-specific paramutation in maize. THE PLANT CELL 2012; 24:1761-1775. [PMID: 22562610 PMCID: PMC3442568 DOI: 10.1105/tpc.112.097618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/29/2012] [Accepted: 04/11/2012] [Indexed: 05/27/2023]
Abstract
Meiotically heritable epigenetic changes in gene regulation known as paramutations are facilitated by poorly understood trans-homolog interactions. Mutations affecting paramutations in maize (Zea mays) identify components required for the accumulation of 24-nucleotide RNAs. Some of these components have Arabidopsis thaliana orthologs that are part of an RNA-directed DNA methylation (RdDM) pathway. It remains unclear if small RNAs actually mediate paramutations and whether the maize-specific molecules identified to date define a mechanism distinct from RdDM. Here, we identify a novel protein required for paramutation at the maize purple plant1 locus. This required to maintain repression2 (RMR2) protein represents the founding member of a plant-specific clade of predicted proteins. We show that RMR2 is required for transcriptional repression at the Pl1-Rhoades haplotype, for accumulation of 24-nucleotide RNA species, and for maintenance of a 5-methylcytosine pattern distinct from that maintained by RNA polymerase IV. Genetic tests indicate that RMR2 is not required for paramutation occurring at the red1 locus. These results distinguish the paramutation-type mechanisms operating at specific haplotypes. The RMR2 clade of proteins provides a new entry point for understanding the diversity of epigenomic control operating in higher plants.
Collapse
Affiliation(s)
- Joy-El R. Barbour
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200
| | - Irene T. Liao
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Jennifer L. Stonaker
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Jana P. Lim
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Clarissa C. Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Susan E. Parkinson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Jerry Kermicle
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Stacey A. Simon
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Blake C. Meyers
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Jay B. Hollick
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| |
Collapse
|
41
|
Raatz B, Eicker A, Schmitz G, Fuss E, Müller D, Rossmann S, Theres K. Specific expression of LATERAL SUPPRESSOR is controlled by an evolutionarily conserved 3' enhancer. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:400-12. [PMID: 21722220 DOI: 10.1111/j.1365-313x.2011.04694.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Aerial plant architecture is largely based on the activity of axillary meristems (AMs), initiated in the axils of leaves. The Arabidopsis gene LATERAL SUPPRESSOR (LAS), which is expressed in well-defined domains at the adaxial boundary of leaf primordia, is a key regulator of AM formation. The precise definition of organ boundaries is an essential step for the formation of new organs in general and for meristem initiation; however, mechanisms leading to these specific patterns are not well understood. To increase understanding of how the highly specific transcript accumulation in organ boundary regions is established, we investigated the LAS promoter. Analysis of deletion constructs revealed that an essential enhancer necessary for complementation is situated about 3.2 kb downstream of the LAS open reading frame. This enhancer is sufficient to confer promoter specificity as upstream sequences in LAS could be replaced by non-specific promoters, such as the 35S minimal promoter. Further promoter swapping experiments using the PISTILLATA or the full 35S promoter demonstrated that the LAS 3' enhancer also has suppressor functions, largely overwriting the activity of different 5' promoters. Phylogenetic analyses suggest that LAS function and regulation are evolutionarily highly conserved. Homologous elements in downstream regulatory sequences were found in all LAS orthologs, including grasses. Transcomplementation experiments demonstrated the functional conservation of non-coding sequences between Solanum lycopersicum (tomato) and Arabidopsis. In summary, our results show that a highly conserved enhancer/suppressor element is the main regulatory module conferring the boundary-specific expression of LAS.
Collapse
Affiliation(s)
- Bodo Raatz
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Brzeski J, Brzeska K. The maze of paramutation: a rough guide to the puzzling epigenetics of paramutation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:863-74. [PMID: 21976288 DOI: 10.1002/wrna.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epigenetic mechanisms maintain gene expression states through mitotic and sometimes meiotic cell divisions. Paramutation is an extreme example of epigenetic processes. Not only an established expression state is transmitted through meiosis to the following generations but also an information transfer occurs between alleles and leads to heritable changes in expression state. As a consequence the expression states can rapidly propagate in population, violating Mendelian genetics. Recent findings unraveled an essential role for siRNA-dependent processes in paramutation. Despite significant progress, the overall picture is still puzzling and many important questions remain to be answered.
Collapse
Affiliation(s)
- Jan Brzeski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | | |
Collapse
|
43
|
Identification of epigenetic regulators of a transcriptionally silenced transgene in maize. G3-GENES GENOMES GENETICS 2011; 1:75-83. [PMID: 22384320 PMCID: PMC3276119 DOI: 10.1534/g3.111.000232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/17/2011] [Indexed: 01/12/2023]
Abstract
Transcriptional gene silencing is a gene regulatory mechanism essential to all organisms. Many transcriptional regulatory mechanisms are associated with epigenetic modifications such as changes in chromatin structure, acetylation and methylation of core histone proteins, and DNA methylation within regulatory regions of endogenous genes and transgenes. Although several maize mutants have been identified from prior forward genetic screens for epigenetic transcriptional silencing, these screens have been far from saturated. Herein, the transcriptionally silent b1 genomic transgene (BTG-silent), a stable, epigenetically silenced transgene in Zea mays (maize), is demonstrated to be an effective phenotype for a forward genetic screen. When the transgene is reactivated, a dark purple plant phenotype is evident because the B1 transcription factor activates anthocyanin biosynthesis, making loss of silencing mutants easy to identify. Using BTG-silent, ten new putative mutants were identified and named transgene reactivated1 through 11 (tgr1-6 and tgr8-11). Three of these mutants have been examined in more detail, and molecular and genetic assays demonstrated that these mutants have both distinct and overlapping phenotypes with previously identified maize mutants that relieve epigenetic transcriptional silencing. Linkage analysis suggests that tgr2 and tgr3 do not correspond to a mutation at previously identified maize loci resulting from other forward genetic screens, while tgr1 shows linkage to a characterized gene. These results suggest that the mutants are a valuable resource for future studies because some of the mutants are likely to reveal genes that encode products required for epigenetic gene regulation in maize but are not currently represented by sequenced mutations.
Collapse
|
44
|
Abstract
Paramutation describes a heritable change of gene expression that is brought about through interactions between homologous chromosomes. Genetic analyses in plants and, more recently, in mouse indicate that genomic sequences related to transcriptional control and molecules related to small RNA biology are necessary for specific examples of paramutation. Some of the molecules identified in maize are also required for normal plant development. These observations indicate a functional relationship between the nuclear mechanisms responsible for paramutation and modes of developmental gene control.
Collapse
Affiliation(s)
- Jay B Hollick
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA.
| |
Collapse
|
45
|
van Wolfswinkel JC, Ketting RF. The role of small non-coding RNAs in genome stability and chromatin organization. J Cell Sci 2010; 123:1825-39. [PMID: 20484663 DOI: 10.1242/jcs.061713] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small non-coding RNAs make up much of the RNA content of a cell and have the potential to regulate gene expression on many different levels. Initial discoveries in the 1990s and early 21st century focused on determining mechanisms of post-transcriptional regulation mediated by small-interfering RNAs (siRNAs) and microRNAs (miRNAs). More recent research, however, has identified new classes of RNAs and new regulatory mechanisms, expanding the known regulatory potential of small non-coding RNAs to encompass chromatin regulation. In this Commentary, we provide an overview of these chromatin-related mechanisms and speculate on the extent to which they are conserved among eukaryotes.
Collapse
Affiliation(s)
- Josien C van Wolfswinkel
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
46
|
Haring M, Bader R, Louwers M, Schwabe A, van Driel R, Stam M. The role of DNA methylation, nucleosome occupancy and histone modifications in paramutation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:366-78. [PMID: 20444233 DOI: 10.1111/j.1365-313x.2010.04245.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Paramutation is the transfer of epigenetic information between alleles that leads to a heritable change in expression of one of these alleles. Paramutation at the tissue-specifically expressed maize (Zea mays) b1 locus involves the low-expressing B' and high-expressing B-I allele. Combined in the same nucleus, B' heritably changes B-I into B'. A hepta-repeat located 100-kb upstream of the b1 coding region is required for paramutation and for high b1 expression. The role of epigenetic modifications in paramutation is currently not well understood. In this study, we show that the B' hepta-repeat is DNA-hypermethylated in all tissues analyzed. Importantly, combining B' and B-I in one nucleus results in de novo methylation of the B-I repeats early in plant development. These findings indicate a role for hepta-repeat DNA methylation in the establishment and maintenance of the silenced B' state. In contrast, nucleosome occupancy, H3 acetylation, and H3K9 and H3K27 methylation are mainly involved in tissue-specific regulation of the hepta-repeat. Nucleosome depletion and H3 acetylation are tissue-specifically regulated at the B-I hepta-repeat and associated with enhancement of b1 expression. H3K9 and H3K27 methylation are tissue-specifically localized at the B' hepta-repeat and reinforce the silenced B' chromatin state. The B' coding region is H3K27 dimethylated in all tissues analyzed, indicating a role in the maintenance of the silenced B' state. Taken together, these findings provide insight into the mechanisms underlying paramutation and tissue-specific regulation of b1 at the level of chromatin structure.
Collapse
Affiliation(s)
- Max Haring
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, the NetherlandsNetherlands Institute for Systems Biology (NISB), Centre for Mathematics and Computer Science (CWI), Science Park 123, 1098 XG Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
RNA-mediated trans-communication can establish paramutation at the b1 locus in maize. Proc Natl Acad Sci U S A 2010; 107:12986-91. [PMID: 20616013 DOI: 10.1073/pnas.1007972107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paramutation is the epigenetic transfer of information between alleles that leads to the heritable change of expression of one allele. Paramutation at the b1 locus in maize requires seven noncoding tandem repeat (b1TR) sequences located approximately 100 kb upstream of the transcription start site of b1, and mutations in several genes required for paramutation implicate an RNA-mediated mechanism. The mediator of paramutation (mop1) gene, which encodes a protein closely related to RNA-dependent RNA polymerases, is absolutely required for paramutation. Herein, we investigate the potential function of mop1 and the siRNAs that are produced from the b1TR sequences. Production of siRNAs from the b1TR sequences depends on a functional mop1 gene, but transcription of the repeats is not dependent on mop1. Further nuclear transcription assays suggest that the b1TR sequences are likely transcribed predominantly by RNA polymerase II. To address whether production of b1TR-siRNAs correlated with paramutation, we examined siRNA production in alleles that cannot undergo paramutation. Alleles that cannot participate in paramutation also produce b1TR-siRNAs, suggesting that b1TR-siRNAs are not sufficient for paramutation in the tissues analyzed. However, when b1TR-siRNAs are produced from a transgene expressing a hairpin RNA, b1 paramutation can be recapitulated. We hypothesize that either the b1TR-siRNAs or the dsRNA template mediates the trans-communication between the alleles that establishes paramutation. In addition, we uncovered a role for mop1 in the biogenesis of a subset of microRNAs (miRNAs) and show that it functions at the level of production of the primary miRNA transcripts.
Collapse
|
48
|
Arteaga-Vazquez MA, Chandler VL. Paramutation in maize: RNA mediated trans-generational gene silencing. Curr Opin Genet Dev 2010; 20:156-63. [PMID: 20153628 DOI: 10.1016/j.gde.2010.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/18/2010] [Accepted: 01/22/2010] [Indexed: 11/29/2022]
Abstract
Paramutation involves trans-interactions between alleles or homologous sequences that establish distinct gene expression states that are heritable for generations. It was first described in maize by Alexander Brink in the 1950s, with his studies of the red1 (r1) locus. Since that time, paramutation-like phenomena have been reported in other maize genes, other plants, fungi, and animals. Paramutation can occur between endogenous genes, two transgenes or an endogenous gene, and transgene. Recent results indicate that paramutation involves RNA-mediated heritable chromatin changes and a number of genes implicated in RNAi pathways. However, not all aspects of paramutation can be explained by known mechanisms of RNAi-mediated transcriptional silencing.
Collapse
|
49
|
Suter CM, Martin DIK. Paramutation: the tip of an epigenetic iceberg? Trends Genet 2010; 26:9-14. [PMID: 19945764 PMCID: PMC3137459 DOI: 10.1016/j.tig.2009.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
Abstract
Paramutation describes the transfer of an acquired epigenetic state to an unlinked homologous locus, resulting in a meiotically heritable alteration in gene expression. Early investigations of paramutation characterized a mode of change and inheritance distinct from mendelian genetics, catalyzing the concept of the epigenome. Numerous examples of paramutation and paramutation-like phenomena have now emerged, with evidence that implicates small RNAs in the transfer and maintenance of epigenetic states. In animals Piwi-interacting RNA (piRNA)-mediated retrotransposon suppression seems to drive a vast system of epigenetic inheritance with paramutation-like characteristics. The classic examples of paramutation might be merely informative aberrations of pervasive and broadly conserved mechanisms that use RNA to sense homology and target epigenetic modification. When viewed in this context, paramutation is only one aspect of a common and broadly distributed form of inheritance based on epigenetic states.
Collapse
Affiliation(s)
- Catherine M Suter
- Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
50
|
Sidorenko L, Dorweiler JE, Cigan AM, Arteaga-Vazquez M, Vyas M, Kermicle J, Jurcin D, Brzeski J, Cai Y, Chandler VL. A dominant mutation in mediator of paramutation2, one of three second-largest subunits of a plant-specific RNA polymerase, disrupts multiple siRNA silencing processes. PLoS Genet 2009; 5:e1000725. [PMID: 19936058 PMCID: PMC2774164 DOI: 10.1371/journal.pgen.1000725] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 10/15/2009] [Indexed: 01/03/2023] Open
Abstract
Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA-mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V. Maize encodes three second-largest subunit genes: all three genes potentially encode full length proteins with highly conserved polymerase domains, and each are expressed in multiple overlapping tissues. The isolation of a recessive paramutation mutation in mop2 from a forward genetic screen suggests limited or no functional redundancy of these three genes. Potential alternative Pol-IV/Pol-V-like complexes could provide maize with a greater diversification of RNA-mediated transcriptional silencing machinery relative to Arabidopsis. Mop2-1 disrupts paramutation at multiple loci when heterozygous, whereas previously silenced alleles are only up-regulated when Mop2-1 is homozygous. The dramatic reduction in b1 tandem repeat siRNAs, but no disruption of silencing in Mop2-1 heterozygotes, suggests the major role for tandem repeat siRNAs is not to maintain silencing. Instead, we hypothesize the tandem repeat siRNAs mediate the establishment of the heritable silent state-a process fully disrupted in Mop2-1 heterozygotes. The dominant Mop2-1 mutation, which has a single nucleotide change in a domain highly conserved among all polymerases (E. coli to eukaryotes), disrupts both siRNA biogenesis (Pol-IV-like) and potentially processes downstream (Pol-V-like). These results suggest either the wild-type protein is a subunit in both complexes or the dominant mutant protein disrupts both complexes. Dominant mutations in the same domain in E. coli RNA polymerase suggest a model for Mop2-1 dominance: complexes containing Mop2-1 subunits are non-functional and compete with wild-type complexes.
Collapse
Affiliation(s)
- Lyudmila Sidorenko
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Jane E. Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - A. Mark Cigan
- Pioneer Hi-Bred International, Johnston, Iowa, United States of America
| | - Mario Arteaga-Vazquez
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Meenal Vyas
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Jerry Kermicle
- Genetics Department, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Diane Jurcin
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Jan Brzeski
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Yu Cai
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Vicki L. Chandler
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|