1
|
Joyce Tang W, Chen JS, Zeller RW. Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev Biol 2013; 378:183-93. [PMID: 23545329 DOI: 10.1016/j.ydbio.2013.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
The formation of the sensory organs and cells that make up the peripheral nervous system (PNS) relies on the activity of transcription factors encoded by proneural genes (PNGs). Although PNGs have been identified in the nervous systems of both vertebrates and invertebrates, the complexity of their interactions has complicated efforts to understand their function in the context of their underlying regulatory networks. To gain insight into the regulatory network of PNG activity in chordates, we investigated the roles played by PNG homologs in regulating PNS development of the invertebrate chordate Ciona intestinalis. We discovered that in Ciona, MyT1, Pou4, Atonal, and NeuroD-like are expressed in a sequential regulatory cascade in the developing epidermal sensory neurons (ESNs) of the PNS and act downstream of Notch signaling, which negatively regulates these genes and the number of ESNs along the tail midlines. Transgenic embryos mis-expressing any of these proneural genes in the epidermis produced ectopic midline ESNs. In transgenic embryos mis-expressing Pou4, and MyT1 to a lesser extent, numerous ESNs were produced outside of the embryonic midlines. In addition we found that the microRNA miR-124, which inhibits Notch signaling in ESNs, is activated downstream of all the proneural factors we tested, suggesting that these genes operate collectively in a regulatory network. Interestingly, these factors are encoded by the same genes that have recently been demonstrated to convert fibroblasts into neurons. Our findings suggest the ascidian PNS can serve as an in vivo model to study the underlying regulatory mechanisms that enable the conversion of cells into sensory neurons.
Collapse
Affiliation(s)
- W Joyce Tang
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | | | |
Collapse
|
2
|
Yang M, Hatton-Ellis E, Simpson P. The kinase Sgg modulates temporal development of macrochaetes in Drosophila by phosphorylation of Scute and Pannier. Development 2011; 139:325-34. [PMID: 22159580 DOI: 10.1242/dev.074260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Evolution of novel structures is often made possible by changes in the timing or spatial expression of genes regulating development. Macrochaetes, large sensory bristles arranged into species-specific stereotypical patterns, are an evolutionary novelty of cyclorraphous flies and are associated with changes in both the temporal and spatial expression of the proneural genes achaete (ac) and scute (sc). Changes in spatial expression are associated with the evolution of cis-regulatory sequences, but it is not known how temporal regulation is achieved. One factor required for ac-sc expression, the expression of which coincides temporally with that of ac-sc in the notum, is Wingless (Wg; also known as Wnt). Wingless downregulates the activity of the serine/threonine kinase Shaggy (Sgg; also known as GSK-3). We demonstrate that Scute is phosphorylated by Sgg on a serine residue and that mutation of this residue results in a form of Sc with heightened proneural activity that can rescue the loss of bristles characteristic of wg mutants. We suggest that the phosphorylated form of Sc has reduced transcriptional activity such that sc is unable to autoregulate, an essential function for the segregation of bristle precursors. Sgg also phosphorylates Pannier, a transcriptional activator of ac-sc, the activity of which is similarly dampened when in the phosphorylated state. Furthermore, we show that Wg signalling does not act directly via a cis-regulatory element of the ac-sc genes. We suggest that temporal control of ac-sc activity in cyclorraphous flies is likely to be regulated by permissive factors and might therefore not be encoded at the level of ac-sc gene sequences.
Collapse
Affiliation(s)
- Mingyao Yang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | |
Collapse
|
3
|
The pronotum LIM-HD gene tailup is both a positive and a negative regulator of the proneural genes achaete and scute of Drosophila. Mech Dev 2010; 127:393-406. [PMID: 20580820 DOI: 10.1016/j.mod.2010.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/10/2010] [Accepted: 05/14/2010] [Indexed: 01/14/2023]
Abstract
Early in the development of the imaginal wing disc of Drosophila, the LIM-HD gene tailup (islet), together with the HD genes of the iroquois complex, specify the notum territory of the disc. Later, tailup has been shown to act as a prepattern gene that antagonizes formation of sensory bristles on the notum of this fly. It has been proposed that Tailup downregulates the expression of the proneural genes achaete and scute by interfering with factors needed to activate these genes in the dorsocentral and scutellar regions of the disc. By means of a clonal analysis performed with tailup null alleles, here we show that, on the one hand, tailup is necessary to prevent formation of extra macrochaetae on most of the 11 sites where these landmark bristles arise on the fly notum. On the other hand, tailup is required to activate achaete and scute at the dorsocentral region, probably by acting as an hexameric complex with the cofactor Chip and the transcriptional activator Sspd on the dorsocentral enhancer of the achaete-scute complex. In contrast, in the scutellar region Tailup acts downstream of achaete-scute, antagonizing the proneural function of these genes probably in cooperation with Chip. We conclude that tailup acts on bristle development by several, even antagonistic, mechanisms.
Collapse
|
4
|
Negre B, Simpson P. Evolution of the achaete-scute complex in insects: convergent duplication of proneural genes. Trends Genet 2009; 25:147-52. [PMID: 19285745 DOI: 10.1016/j.tig.2009.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 11/17/2022]
Abstract
Proneural genes encode transcriptional activators of the basic Helix-loop-helix class that are involved in neuronal specification and differentiation. We have used the recent availability of genome sequences of multiple distant insect species to study the evolution of a family of proneural genes, the achaete-scute genes, and to examine their genomic organization and evolution. We document independent evolution of multiple copies of achaete-scute homologues and argue that this might have contributed to morphological diversity in Diptera and Lepidoptera.
Collapse
Affiliation(s)
- Bárbara Negre
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | |
Collapse
|
5
|
Redundant mechanisms mediate bristle patterning on the Drosophila thorax. Proc Natl Acad Sci U S A 2008; 105:20112-7. [PMID: 19104061 DOI: 10.1073/pnas.0804282105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thoracic bristle pattern of Drosophila results from the spatially restricted expression of the achaete-scute (ac-sc) genes in clusters of cells, mediated by the activity of many discrete cis-regulatory sequences. However, ubiquitous expression of sc or asense (ase) achieved with a heterologous promoter, in the absence of endogenous ac-sc expression, and the activity of the cis-regulatory elements, allows the development of bristles positioned at wild-type locations. We demonstrate that the products of the genes stripe, hairy, and extramacrochaetae contribute to rescue by antagonizing the activity of Sc and Ase. The three genes are expressed in specific but overlapping spatial domains of expression that form a prepattern that allows precise positioning of bristles. The redundant mechanisms might contribute to the robustness of the pattern. We discuss the possibility that patterning in trans by antagonism is ancestral and that the positional cis-regulatory sequences might be of recent origin.
Collapse
|
6
|
NF-kappaB/Rel-mediated regulation of the neural fate in Drosophila. PLoS One 2007; 2:e1178. [PMID: 18000549 PMCID: PMC2064963 DOI: 10.1371/journal.pone.0001178] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/17/2007] [Indexed: 11/19/2022] Open
Abstract
Two distinct roles are described for Dorsal, Dif and Relish, the three NF-kappaB/Rel proteins of Drosophila, in the development of the peripheral nervous system. First, these factors regulate transcription of scute during the singling out of sensory organ precursors from clusters of cells expressing the proneural genes achaete and scute. This effect is possibly mediated through binding sites for NF-kappaB/Rel proteins in a regulatory module of the scute gene required for maintenance of scute expression in precursors as well as repression in cells surrounding precursors. Second, genetic evidence suggests that the receptor Toll-8, Relish, Dif and Dorsal, and the caspase Dredd pathway are active over the entire imaginal disc epithelium, but Toll-8 expression is excluded from sensory organ precursors. Relish promotes rapid turnover of transcripts of the target genes scute and asense through an indirect, post-transcriptional mechanism. We propose that this buffering of gene expression levels serves to keep the neuro-epithelium constantly poised for neurogenesis.
Collapse
|
7
|
Multiple enhancers contribute to spatial but not temporal complexity in the expression of the proneural gene, amos. BMC DEVELOPMENTAL BIOLOGY 2006; 6:53. [PMID: 17094800 PMCID: PMC1657009 DOI: 10.1186/1471-213x-6-53] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/09/2006] [Indexed: 11/30/2022]
Abstract
Background The regulation of proneural gene expression is an important aspect of neurogenesis. In the study of the Drosophila proneural genes, scute and atonal, several themes have emerged that contribute to our understanding of the mechanism of neurogenesis. First, spatial complexity in proneural expression results from regulation by arrays of enhancer elements. Secondly, regulation of proneural gene expression occurs in distinct temporal phases, which tend to be under the control of separate enhancers. Thirdly, the later phase of proneural expression often relies on positive autoregulation. The control of these phases and the transition between them appear to be central to the mechanism of neurogenesis. We present the first investigation of the regulation of the proneural gene, amos. Results Amos protein expression has a complex pattern and shows temporally distinct phases, in common with previously characterised proneural genes. GFP reporter gene constructs were used to demonstrate that amos has an array of enhancer elements up- and downstream of the gene, which are required for different locations of amos expression. However, unlike other proneural genes, there is no evidence for separable enhancers for the different temporal phases of amos expression. Using mutant analysis and site-directed mutagenesis of potential Amos binding sites, we find no evidence for positive autoregulation as an important part of amos control during neurogenesis. Conclusion For amos, as for other proneural genes, a complex expression pattern results from the sum of a number of simpler sub-patterns driven by specific enhancers. There is, however, no apparent separation of enhancers for distinct temporal phases of expression, and this correlates with a lack of positive autoregulation. For scute and atonal, both these features are thought to be important in the mechanism of neurogenesis. Despite similarities in function and expression between the Drosophila proneural genes, amos is regulated in a fundamentally different way from scute and atonal.
Collapse
|
8
|
Beckingham KM, Texada MJ, Baker DA, Munjaal R, Armstrong JD. Genetics of graviperception in animals. ADVANCES IN GENETICS 2006; 55:105-45. [PMID: 16291213 DOI: 10.1016/s0065-2660(05)55004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Gravity is a constant stimulus for life on Earth and most organisms have evolved structures to sense gravitational force and incorporate its influence into their behavioral repertoire. Here we focus attention on animals and their diverse structures for perceiving and responding to the gravitational vector-one of the few static reference stimuli for any mobile organism. We discuss vertebrate, arthropod, and nematode models from the perspective of the role that genetics is playing in our understanding of graviperception in each system. We describe the key sensory structures in each class of organism and present what is known about the genetic control of development of these structures and the molecular signaling pathways operating in the mature organs. We also discuss the role of large genetic screens in identifying specific genes with roles in mechanosensation and graviperception.
Collapse
Affiliation(s)
- Kathleen M Beckingham
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | | | | | |
Collapse
|
9
|
Acar M, Jafar-Nejad H, Giagtzoglou N, Yallampalli S, David G, He Y, Delidakis C, Bellen HJ. Senseless physically interacts with proneural proteins and functions as a transcriptional co-activator. Development 2006; 133:1979-89. [PMID: 16624856 DOI: 10.1242/dev.02372] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The zinc-finger transcription factor Senseless is co-expressed with basic helix-loop-helix (bHLH) proneural proteins in Drosophila sensory organ precursors and is required for their normal development. High levels of Senseless synergize with bHLH proteins and upregulate target gene expression,whereas low levels of Senseless act as a repressor in vivo. However, the molecular mechanism for this dual role is unknown. Here, we show that Senseless binds bHLH proneural proteins via its core zinc fingers and is recruited by proneural proteins to their target enhancers to function as a co-activator. Some point mutations in the Senseless zinc-finger region abolish its DNA-binding ability but partially spare the ability of Senseless to synergize with proneural proteins and to induce sensory organ formation in vivo. Therefore, we propose that the structural basis for the switch between the repressor and co-activator functions of Senseless is the ability of its core zinc fingers to interact physically with both DNA and bHLH proneural proteins. As Senseless zinc fingers are ∼90% identical to the corresponding zinc fingers of its vertebrate homologue Gfi1, which is thought to cooperate with bHLH proteins in several contexts, the Senseless/bHLH interaction might be evolutionarily conserved.
Collapse
Affiliation(s)
- Melih Acar
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Marcellini S, Gibert JM, Simpson P. achaete, but not scute, is dispensable for the peripheral nervous system of Drosophila. Dev Biol 2006; 285:545-53. [PMID: 16084506 DOI: 10.1016/j.ydbio.2005.06.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/13/2005] [Accepted: 06/21/2005] [Indexed: 11/20/2022]
Abstract
The achaete-scute complex of Drosophila has been the focus of extensive genetic and developmental analysis. Of the four genes at this locus, achaete and scute appear to act redundantly to specify the peripheral nervous system. They share cis-regulatory elements and are co-expressed at the same locations. A mutation removing scute activity has been previously described; it causes a loss of some sensory bristles. Thus, when Scute is absent, the activity of achaete allows formation of the remaining bristles. However, all existing achaete mutants are rearrangements affecting regulatory sequences common to both achaete and scute. To determine the level of redundancy between the two genes, we have used a P element approach to generate a null allele of achaete, which leaves scute and all cis-regulatory elements intact. We find that the peripheral nervous system of achaete null mutant larvae and imagos lacks any detectable phenotype. However, when the levels of Scute are limiting, then some sensory organs are missing in achaete mutant flies. achaete and scute are thought to have arisen from a duplication event about 100 Myr ago. The difference between achaete and scute null flies is surprising and raises the question of the retention of both genes during the course of evolution.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | |
Collapse
|
11
|
Abstract
In Drosophila, the genetic approach is still the method of choice for answering fundamental questions on cell biology, signal transduction, development, physiology and behavior. In this approach, a gene's function is ascertained by altering either the amount or quality of the gene product, and then observing the consequences. The genetic approach is itself polymorphous, encompassing new and more complex techniques that typically employ the growing collections of transgenes. The keystone of these modern Drosophila transgenic techniques has been the Gal4 binary system. Recently, several new techniques have modified this binary system to offer greater control over the timing, tissue specificity and magnitude of gene expression. Additionally, the advances in post-transcriptional gene silencing, or RNAi, have greatly expanded the ability to knockdown almost any gene's function. Regardless of the growing experimental intricacy, the application of these advances to modify gene activity still obeys the fundamental principles of genetic analysis. Several of these transgenic techniques, which offer more precise control over a gene's activity, will be reviewed here with a discussion on how they may be used for determining a gene's function.
Collapse
Affiliation(s)
- Gregg Roman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Jafar-Nejad H, Acar M, Nolo R, Lacin H, Pan H, Parkhurst SM, Bellen HJ. Senseless acts as a binary switch during sensory organ precursor selection. Genes Dev 2004; 17:2966-78. [PMID: 14665671 PMCID: PMC289154 DOI: 10.1101/gad.1122403] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During sensory organ precursor (SOP) specification, a single cell is selected from a proneural cluster of cells. Here, we present evidence that Senseless (Sens), a zinc-finger transcription factor, plays an important role in this process. We show that Sens is directly activated by proneural proteins in the presumptive SOPs and a few cells surrounding the SOP in most tissues. In the cells that express low levels of Sens, it acts in a DNA-binding-dependent manner to repress transcription of proneural genes. In the presumptive SOPs that express high levels of Sens, it acts as a transcriptional activator and synergizes with proneural proteins. We therefore propose that Sens acts as a binary switch that is fundamental to SOP selection.
Collapse
Affiliation(s)
- Hamed Jafar-Nejad
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Frankfort BJ, Pepple KL, Mamlouk M, Rose MF, Mardon G. Senseless is required for pupal retinal development inDrosophila. Genesis 2004; 38:182-94. [PMID: 15083519 DOI: 10.1002/gene.20018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drosophila sensory organs are specified by a family of proneural genes which induce the expression of several common targets. One such target is senseless, which encodes a zinc finger transcription factor. We analyzed the function of senseless during pupal retinal development and found that senseless is required for recruitment of both cone and pigment cells, the pupal-derived ommatidial support cells. We also found that Senseless is expressed in neural precursors shortly after the larval-pupal transition and is both necessary and sufficient for interommatidial bristle development. Furthermore, senseless is the primary target of achaete and scute during interommatidial bristle development. We also identified several differences between the development of interommatidial bristles and other macrochaete. In particular, EGFR signaling is not required for interommatidial bristle development, nor is positive feedback regulation of proneural genes by senseless. A model for interommatidial bristle specification is presented.
Collapse
Affiliation(s)
- Benjamin J Frankfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
14
|
zur Lage PI, Prentice DRA, Holohan EE, Jarman AP. The Drosophila proneural gene amos promotes olfactory sensillum formation and suppresses bristle formation. Development 2003; 130:4683-93. [PMID: 12925594 DOI: 10.1242/dev.00680] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proneural genes encode basic-helix-loop-helix (bHLH) transcription factors required for neural precursor specification. Recently amos was identified as a new candidate Drosophila proneural gene related to atonal. Having isolated the first specific amos loss-of-function mutations, we show definitively that amos is required to specify the precursors of two classes of olfactory sensilla. Unlike other known proneural mutations, a novel characteristic of amos loss of function is the appearance of ectopic sensory bristles in addition to loss of olfactory sensilla, owing to the inappropriate function of scute. This supports a model of inhibitory interactions between proneural genes, whereby ato-like genes (amos and ato) must suppress sensory bristle fate as well as promote alternative sense organ subtypes.
Collapse
Affiliation(s)
- Petra I zur Lage
- The Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|
15
|
Villa-Cuesta E, de Navascués J, Ruiz-Gómez M, Diez del Corral R, Domínguez M, de Celis JF, Modolell J. Tufted is a gain-of-function allele that promotes ectopic expression of the proneural gene amos in Drosophila. Genetics 2003; 163:1403-12. [PMID: 12702684 PMCID: PMC1462506 DOI: 10.1093/genetics/163.4.1403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Tufted(1) (Tft(1)) dominant mutation promotes the generation of ectopic bristles (macrochaetae) in the dorsal mesothorax of Drosophila. Here we show that Tft(1) corresponds to a gain-of-function allele of the proneural gene amos that is associated with a chromosomal aberration at 36F-37A. This causes ectopic expression of amos in large domains of the lateral-dorsal embryonic ectoderm, which results in supernumerary neurons of the PNS, and in the notum region of the third instar imaginal wing, which gives rise to the mesothoracic extra bristles. Revertants of Tft(1), which lack ectopic neurons and bristles, do not show ectopic expression of amos. One revertant is a loss-of-function allele of amos and has a recessive phenotype in the embryonic PNS. Our results suggest that both normal and ectopic Tft(1) bristles are generated following similar rules, and both are subjected to Notch-mediated lateral inhibition. The ability of Tft(1) bristles to appear close together may be due to amos having a stronger proneural capacity than that of other proneural genes like asense and scute. This ability might be related to the wild-type function of amos in promoting development of large clusters of closely spaced olfactory sensilla.
Collapse
Affiliation(s)
- Eugenia Villa-Cuesta
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|