1
|
Wang X, Pedersen CET, Athanasiadis G, Garcia-Erill G, Hanghøj K, Bertola LD, Rasmussen MS, Schubert M, Liu X, Li Z, Lin L, Balboa RF, Jørsboe E, Nursyifa C, Liu S, Muwanika V, Masembe C, Chen L, Wang W, Moltke I, Siegismund HR, Albrechtsen A, Heller R. Persistent Gene Flow Suggests an Absence of Reproductive Isolation in an African Antelope Speciation Model. Syst Biol 2024; 73:979-994. [PMID: 39140829 PMCID: PMC11637686 DOI: 10.1093/sysbio/syae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
African antelope diversity is a globally unique vestige of a much richer world-wide Pleistocene megafauna. Despite this, the evolutionary processes leading to the prolific radiation of African antelopes are not well understood. Here, we sequenced 145 whole genomes from both subspecies of the waterbuck (Kobus ellipsiprymnus), an African antelope believed to be in the process of speciation. We investigated genetic structure and population divergence and found evidence of a mid-Pleistocene separation on either side of the eastern Great Rift Valley, consistent with vicariance caused by a rain shadow along the so-called "Kingdon's Line." However, we also found pervasive evidence of both recent and widespread historical gene flow across the Rift Valley barrier. By inferring the genome-wide landscape of variation among subspecies, we found 14 genomic regions of elevated differentiation, including a locus that may be related to each subspecies' distinctive coat pigmentation pattern. We investigated these regions as candidate speciation islands. However, we observed no significant reduction in gene flow in these regions, nor any indications of selection against hybrids. Altogether, these results suggest a pattern whereby climatically driven vicariance is the most important process driving the African antelope radiation and suggest that reproductive isolation may not set in until very late in the divergence process. This has a significant impact on taxonomic inference, as many taxa will be in a gray area of ambiguous systematic status, possibly explaining why it has been hard to achieve consensus regarding the species status of many African antelopes. Our analyses demonstrate how population genetics based on low-depth whole genome sequencing can provide new insights that can help resolve how far lineages have gone along the path to speciation.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820, Gentofte, Denmark
| | - Georgios Athanasiadis
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal, 643, Les Corts, 08028, Barcelona,Spain
| | - Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Malthe Sebro Rasmussen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Long Lin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Emil Jørsboe
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, OX3 7LF, Regne Unit, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, OX3 7LF, Regne Unit, Oxford, UK
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, 2934+RXP, Haidian District, 100193, Beijing, China
| | - Vincent Muwanika
- Department of Environmental Management, Makerere University, Wandegeya, Makerere, PO Box 7062, Kampala, Uganda
| | - Charles Masembe
- Department of Biology, Makerere University, Wandegeya, Makerere, PO Box 7062, Kampala, Uganda
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Anders Albrechtsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| |
Collapse
|
2
|
Ferrer T, Boveng P, Hauser DDW, Withrow D, Burkanov V, Quinn TP, O'Corry-Crowe G. Genetic and evolutionary divergence of harbour seals ( Phoca vitulina) in Iliamna Lake, Alaska. Biol Lett 2024; 20:20240166. [PMID: 39406337 PMCID: PMC11523099 DOI: 10.1098/rsbl.2024.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 11/01/2024] Open
Abstract
Freshwater populations of typically marine species present unique opportunities to investigate biodiversity, evolutionary divergence, and the adaptive potential and niche width of species. A few pinniped species have populations that reside solely in freshwater. The harbour seals inhabiting Iliamna Lake, Alaska constitute one such population. Their remoteness, however, has long hindered scientific inquiry. We used DNA from seal scat and tissue samples provided by Indigenous hunters to screen for mitochondrial DNA and microsatellite variation within Iliamna Lake and eight regions across the Pacific Ocean. The Iliamna seals (i) were substantially and significantly discrete from all other populations ( [Formula: see text]F st-mtDNA = 0.544, [Formula: see text]Φ st - mtDNA = 0.541, [Formula: see text]F st-microsatellites = 0.308), (ii) formed a discrete genetic cluster separate from all marine populations (modal ∆k = 2, PC1 = 14.8%), had (iii) less genetic diversity (Hd, π, H exp), and (iv) higher inbreeding (F) than marine populations. These findings are both striking and unexpected revealing that Iliamna seals have likely been on a separate evolutionary trajectory for some time and may represent a unique evolutionary legacy for the species. Attention must now be given to the selective processes driving evolutionary divergence from harbour seals in marine habitats and to ensuring the future of the Iliamna seal.
Collapse
Affiliation(s)
- Tatiana Ferrer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL34946, USA
| | - Peter Boveng
- NOAA Fisheries, Alaska Fisheries Science Center, Seattle, WA98115, USA
| | - Donna D. W. Hauser
- International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK99775, USA
| | - David Withrow
- NOAA Fisheries, Alaska Fisheries Science Center, Seattle, WA98115, USA
| | | | - Thomas P. Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA98195, USA
| | - Greg O'Corry-Crowe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL34946, USA
| |
Collapse
|
3
|
Bertola LD, Quinn L, Hanghøj K, Garcia-Erill G, Rasmussen MS, Balboa RF, Meisner J, Bøggild T, Wang X, Lin L, Nursyifa C, Liu X, Li Z, Chege M, Moodley Y, Brüniche-Olsen A, Kuja J, Schubert M, Agaba M, Santander CG, Sinding MHS, Muwanika V, Masembe C, Siegismund HR, Moltke I, Albrechtsen A, Heller R. Giraffe lineages are shaped by major ancient admixture events. Curr Biol 2024; 34:1576-1586.e5. [PMID: 38479386 DOI: 10.1016/j.cub.2024.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/29/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.
Collapse
Affiliation(s)
- Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bøggild
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mumbi Chege
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands; Wildlife Research and Training Institute, Naivasha, Kenya
| | - Yoshan Moodley
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa
| | | | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Morris Agaba
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Nelson Mandela Road, Arusha, Tanzania
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Charles Masembe
- College of Natural Sciences, Makerere University, P O. Box 7062, Kampala, Uganda
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Pontarp M, Runemark A, Friberg M, Opedal ØH, Persson AS, Wang L, Smith HG. Evolutionary plant-pollinator responses to anthropogenic land-use change: impacts on ecosystem services. Biol Rev Camb Philos Soc 2024; 99:372-389. [PMID: 37866400 DOI: 10.1111/brv.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Agricultural intensification at field and landscape scales, including increased use of agrochemicals and loss of semi-natural habitats, is a major driver of insect declines and other community changes. Efforts to understand and mitigate these effects have traditionally focused on ecological responses. At the same time, adaptations to pesticide use and habitat fragmentation in both insects and flowering plants show the potential for rapid evolution. Yet we lack an understanding of how such evolutionary responses may propagate within and between trophic levels with ensuing consequences for conservation of species and ecological functions in agroecosystems. Here, we review the literature on the consequences of agricultural intensification on plant and animal evolutionary responses and interactions. We present a novel conceptualization of evolutionary change induced by agricultural intensification at field and landscape scales and emphasize direct and indirect effects of rapid evolution on ecosystem services. We exemplify by focusing on economically and ecologically important interactions between plants and pollinators. We showcase available eco-evolutionary theory and plant-pollinator modelling that can improve predictions of how agricultural intensification affects interaction networks, and highlight available genetic and trait-focused methodological approaches. Specifically, we focus on how spatial genetic structure affects the probability of propagated responses, and how the structure of interaction networks modulates effects of evolutionary change in individual species. Thereby, we highlight how combined trait-based eco-evolutionary modelling, functionally explicit quantitative genetics, and genomic analyses may shed light on conditions where evolutionary responses impact important ecosystem services.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Anna Runemark
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Øystein H Opedal
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Anna S Persson
- Centre for Environmental and Climate Science (CEC), Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Lingzi Wang
- Centre for Environmental and Climate Science (CEC), Lund University, Sölvegatan 37, Lund, 22362, Sweden
- School of Mathematical Sciences, University of Southampton, 58 Salisbury Rd, Southampton, SO17 1BJ, UK
| | - Henrik G Smith
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Centre for Environmental and Climate Science (CEC), Lund University, Sölvegatan 37, Lund, 22362, Sweden
| |
Collapse
|
5
|
Balboa RF, Bertola LD, Brüniche-Olsen A, Rasmussen MS, Liu X, Besnard G, Salmona J, Santander CG, He S, Zinner D, Pedrono M, Muwanika V, Masembe C, Schubert M, Kuja J, Quinn L, Garcia-Erill G, Stæger FF, Rakotoarivony R, Henrique M, Lin L, Wang X, Heaton MP, Smith TPL, Hanghøj K, Sinding MHS, Atickem A, Chikhi L, Roos C, Gaubert P, Siegismund HR, Moltke I, Albrechtsen A, Heller R. African bushpigs exhibit porous species boundaries and appeared in Madagascar concurrently with human arrival. Nat Commun 2024; 15:172. [PMID: 38172616 PMCID: PMC10764920 DOI: 10.1038/s41467-023-44105-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (<500,000 years). Thus, our study challenges key arguments for splitting Potamochoerus into two species and suggests their speciation might be incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African populations and underwent a limited bottleneck 1000-5000 years ago, concurrent with human arrival in Madagascar. These results shed light on the evolutionary history of an iconic and widespread African mammal and provide insight into the longstanding biogeographic puzzle surrounding the bushpig's presence in Madagascar.
Collapse
Affiliation(s)
- Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guillaume Besnard
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
| | - Jordi Salmona
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shixu He
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dietmar Zinner
- Cognitive Ecology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Leibniz Science Campus Primate Cognition, 37077, Göttingen, Germany
| | - Miguel Pedrono
- UMR ASTRE, CIRAD, Campus International de Baillarguet, Montpellier, France
| | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Mikkel Schubert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Anagaw Atickem
- Department of Zoological Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Lounès Chikhi
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Blanco-Pastor JL. Inclusion of highly admixed genotypes in grapevine genomic analyses leads to an equivocal reconstruction of its domestication history. Proc Natl Acad Sci U S A 2023; 120:e2310026120. [PMID: 38011571 DOI: 10.1073/pnas.2310026120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Affiliation(s)
- José Luis Blanco-Pastor
- Departamento de Biología, Instituto de Investigación Vitivinícola y Agroalimentaria, Campus de Excelencia Internacional Agroalimentario, Universidad de Cádiz, Puerto Real, Cádiz E-11510, Spain
| |
Collapse
|
7
|
Ågren R, Patil S, Zhou X, Sahlholm K, Pääbo S, Zeberg H. Major Genetic Risk Factors for Dupuytren's Disease Are Inherited From Neandertals. Mol Biol Evol 2023; 40:msad130. [PMID: 37315093 DOI: 10.1093/molbev/msad130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Dupuytren's disease is characterized by fingers becoming permanently bent in a flexed position. Whereas people of African ancestry are rarely afflicted by Dupuytren's disease, up to ∼30% of men over 60 years suffer from this condition in northern Europe. Here, we meta-analyze 3 biobanks comprising 7,871 cases and 645,880 controls and find 61 genome-wide significant variants associated with Dupuytren's disease. We show that 3 of the 61 loci harbor alleles of Neandertal origin, including the second and third most strongly associated ones (P = 6.4 × 10-132 and P = 9.2 × 10-69, respectively). For the most strongly associated Neandertal variant, we identify EPDR1 as the causal gene. Dupuytren's disease is an example of how admixture with Neandertals has shaped regional differences in disease prevalence.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Snehal Patil
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Kristoffer Sahlholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Hugo Zeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
8
|
Sharko FS, Zhur KV, Trifonov VA, Prokhortchouk EB. Distortion of Population Statistics due to the Use of Different Methodological Approaches to the Construction of Genomic DNA Libraries. Acta Naturae 2023; 15:87-96. [PMID: 37153511 PMCID: PMC10154772 DOI: 10.32607/actanaturae.11898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/03/2023] [Indexed: 05/09/2023] Open
Abstract
Several different methods of DNA library preparation for paleogenetic studies are now available. However, the chemical reactions underlying each of them can affect the primary sequence of ancient DNA (aDNA) in the libraries and taint the results of a statistical analysis. In this paper, we compare the results of a sequencing of the aDNA libraries of a Bronze Age sample from burials of the Caucasian burial ground Klady, prepared using three different approaches: (1) shotgun sequencing, (2) strategies for selecting target genomic regions, and (3) strategies for selecting target genomic regions, including DNA pre-treatment with a mixture of uracil-DNA glycosylase (UDG) and endonuclease VIII. The impact of the studied approaches to genomic library preparation on the results of a secondary analysis of the statistical data, namely F4 statistics, ADMIXTURE, and principal component analysis (PCA), was analyzed. It was shown that preparation of genomic libraries without the use of UDG can result in distorted statistical data due to postmortem chemical modifications of the aDNA. This distortion can be alleviated by analyzing only the single nucleotide polymorphisms caused by transversions in the genome.
Collapse
Affiliation(s)
- F. S. Sharko
- Laboratory of vertebrate genomics and epigenomics, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, 119071 Russian Federation
| | - K. V. Zhur
- Laboratory of vertebrate genomics and epigenomics, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, 119071 Russian Federation
| | - V. A. Trifonov
- Laboratory of vertebrate genomics and epigenomics, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, 119071 Russian Federation
- Institute for the History of Material Culture of the Russian Academy of Sciences, Saint Petersburg, 191186 Russian Federation
| | - E. B. Prokhortchouk
- Laboratory of vertebrate genomics and epigenomics, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, 119071 Russian Federation
| |
Collapse
|
9
|
Garcia-Erill G, Jørgensen CHF, Muwanika VB, Wang X, Rasmussen MS, de Jong YA, Gaubert P, Olayemi A, Salmona J, Butynski TM, Bertola LD, Siegismund HR, Albrechtsen A, Heller R. Warthog Genomes Resolve an Evolutionary Conundrum and Reveal Introgression of Disease Resistance Genes. Mol Biol Evol 2022; 39:6627297. [PMID: 35779009 PMCID: PMC9250280 DOI: 10.1093/molbev/msac134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
African wild pigs have a contentious evolutionary and biogeographic history. Until recently, desert warthog (Phacochoerus aethiopicus) and common warthog (P. africanus) were considered a single species. Molecular evidence surprisingly suggested they diverged at least 4.4 million years ago, and possibly outside of Africa. We sequenced the first whole-genomes of four desert warthogs and 35 common warthogs from throughout their range. We show that these two species diverged much later than previously estimated, 400,000–1,700,000 years ago depending on assumptions of gene flow. This brings it into agreement with the paleontological record. We found that the common warthog originated in western Africa and subsequently colonized eastern and southern Africa. During this range expansion, the common warthog interbred with the desert warthog, presumably in eastern Africa, underlining this region’s importance in African biogeography. We found that immune system–related genes may have adaptively introgressed into common warthogs, indicating that resistance to novel diseases was one of the most potent drivers of evolution as common warthogs expanded their range. Hence, we solve some of the key controversies surrounding warthog evolution and reveal a complex evolutionary history involving range expansion, introgression, and adaptation to new diseases.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Christian H F Jørgensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Vincent B Muwanika
- Department of Environmental Management, Makerere University, PO Box 7062, Kampala, Uganda
| | - Xi Wang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Malthe S Rasmussen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Yvonne A de Jong
- Eastern Africa Primate Diversity and Conservation Program & Lolldaiga Hills Research Programme, PO Box 149, Nanyuki 10400, Kenya
| | - Philippe Gaubert
- Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, HO 220005 Ile Ife, Nigeria
| | - Jordi Salmona
- Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Thomas M Butynski
- Eastern Africa Primate Diversity and Conservation Program & Lolldaiga Hills Research Programme, PO Box 149, Nanyuki 10400, Kenya
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Anders Albrechtsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
10
|
Larena M, McKenna J, Sanchez-Quinto F, Bernhardsson C, Ebeo C, Reyes R, Casel O, Huang JY, Hagada KP, Guilay D, Reyes J, Allian FP, Mori V, Azarcon LS, Manera A, Terando C, Jamero L, Sireg G, Manginsay-Tremedal R, Labos MS, Vilar RD, Latiph A, Saway RL, Marte E, Magbanua P, Morales A, Java I, Reveche R, Barrios B, Burton E, Salon JC, Kels MJT, Albano A, Cruz-Angeles RB, Molanida E, Granehäll L, Vicente M, Edlund H, Loo JH, Trejaut J, Ho SYW, Reid L, Lambeck K, Malmström H, Schlebusch C, Endicott P, Jakobsson M. Philippine Ayta possess the highest level of Denisovan ancestry in the world. Curr Biol 2021; 31:4219-4230.e10. [PMID: 34388371 PMCID: PMC8596304 DOI: 10.1016/j.cub.2021.07.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
Multiple lines of evidence show that modern humans interbred with archaic Denisovans. Here, we report an account of shared demographic history between Australasians and Denisovans distinctively in Island Southeast Asia. Our analyses are based on ∼2.3 million genotypes from 118 ethnic groups of the Philippines, including 25 diverse self-identified Negrito populations, along with high-coverage genomes of Australopapuans and Ayta Magbukon Negritos. We show that Ayta Magbukon possess the highest level of Denisovan ancestry in the world-∼30%-40% greater than that of Australians and Papuans-consistent with an independent admixture event into Negritos from Denisovans. Together with the recently described Homo luzonensis, we suggest that there were multiple archaic species that inhabited the Philippines prior to the arrival of modern humans and that these archaic groups may have been genetically related. Altogether, our findings unveil a complex intertwined history of modern and archaic humans in the Asia-Pacific region, where distinct Islander Denisovan populations differentially admixed with incoming Australasians across multiple locations and at various points in time.
Collapse
Affiliation(s)
- Maximilian Larena
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden.
| | - James McKenna
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden
| | - Federico Sanchez-Quinto
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden; Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Carolina Bernhardsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden
| | - Carlo Ebeo
- National Committee on Cultural Education, National Commission for Culture and the Arts, Intramuros, Manila, Philippines; National Museum of the Philippines, Padre Burgos Avenue, Rizal Park, Ermita, Manila, Philippines
| | - Rebecca Reyes
- Ayta Magbukon Cultural Bearer, Ayta Magbukon Indigenous Cultural Community, Abucay, Bataan, Philippines; National Commission on Indigenous Peoples, Philippines
| | - Ophelia Casel
- Mindanao Doctors Hospital and Cancer Center, Kabacan, Cotabato, Philippines
| | - Jin-Yuan Huang
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei City 10449, Taiwan
| | - Kim Pullupul Hagada
- National Commission on Indigenous Peoples, Philippines; Young Indigenous Peoples Empowered to Act in Community Engagement, Diffun, Quirino
| | - Dennis Guilay
- Balangao Indigenous Cultural Community, Paracelis, Mountain Province, Cordillera Administrative Region, Philippines
| | - Jennelyn Reyes
- Department of Education - Bataan Division, Bataan, Philippines
| | - Fatima Pir Allian
- Nisa Ul Haqq fi Bangsamoro, Zamboanga City, Bangsamoro Autonomous Region in Muslim Mindanao, Philippines; Tarbilang Foundation, Inc., Bongao, Tawi-Tawi, Bangsamoro Autonomous Region in Muslim Mindanao, Philippines
| | - Virgilio Mori
- Tarbilang Foundation, Inc., Bongao, Tawi-Tawi, Bangsamoro Autonomous Region in Muslim Mindanao, Philippines
| | - Lahaina Sue Azarcon
- Center for Language and Culture, Quirino State University, Barangay Andres Bonifacio, Diffun, Quirino, Philippines
| | - Alma Manera
- Center for Language and Culture, Cagayan State University - Andrews Campus, Caritan Highway, Tuguegarao, Cagayan, Philippines
| | - Celito Terando
- Tagakaulo Indigenous Cultural Community, Malungon, Sarangani, Philippines; Sulong Tribu Program, Provincial Government of Sarangani, Glan, Sarangani, Philippines
| | - Lucio Jamero
- Ayta Magbukon Cultural Bearer, Ayta Magbukon Indigenous Cultural Community, Abucay, Bataan, Philippines
| | - Gauden Sireg
- Subanen Indigenous Cultural Community, Lakewood, Zamboanga del Sur, Philippines; Dumendingan Arts Guild Inc., Pagadian City, Zamboanga del Sur, Philippines
| | | | - Maria Shiela Labos
- Ateneo Institute of Anthropology, Ateneo de Davao University, Roxas Avenue, 8016 Davao City, Philippines; Museo Dabawenyo, Andres Bonifacio Rotunda, Poblacion District, Davao City, Philippines
| | - Richard Dian Vilar
- Cultural Outreach Program, Kaliwat Performing Artists Collective, Gumamela St., Lanang, Davao City, Philippines; Culture, Heritage, and Arts Office, Local Government Unit of Butuan, Butuan City, Philippines
| | - Acram Latiph
- Institute for Peace and Development in Mindanao, Mindanao State University - Marawi Campus, Marawi City, Lanao del Sur, Bangsamoro Autonomous Region in Muslim Mindanao, Philippines
| | | | - Erwin Marte
- Legal Affairs Office, Indigenous People's Mandatory Representative - Sangguniang Panlalawigan, Bukidnon, Northern Mindanao, Philippines
| | - Pablito Magbanua
- National Commission on Indigenous Peoples, Philippines; Cuyonon Indigenous Cultural Community, Cuyo Island, Palawan, Philippines
| | - Amor Morales
- Surigaonon Heritage Center, Surigao City, Surigao del Norte, Philippines
| | - Ismael Java
- Kabankalan City Cultural and Tourism Foundation, Inc., Kabankalan City, Negros Occidental, Philippines; Cultural Research and Documentation, Negros Museum, Gatuslao St., Bacolod, Negros Occidental, Philippines
| | - Rudy Reveche
- Cultural Research and Documentation, Negros Museum, Gatuslao St., Bacolod, Negros Occidental, Philippines; Culture and Arts Program, Colegio San Agustin, BS Aquino Drive, Bacolod, Negros Occidental, Philippines
| | - Becky Barrios
- Panaghiusa Alang Sa Kaugalingnan Ug Kalingkawasan, Inc., Bunawan, Agusan del Sur, Philippines; Agusan Manobo Indigenous Cultural Community, La Paz, Agusan del Sur, Philippines
| | - Erlinda Burton
- Museo de Oro, Xavier University - Ateneo de Cagayan, Corrales Avenue, Cagayan de Oro City, Philippines
| | - Jesus Christopher Salon
- Museo de Oro, Xavier University - Ateneo de Cagayan, Corrales Avenue, Cagayan de Oro City, Philippines; City Museum of Cagayan de Oro, Fernandez St., Cagayan de Oro City, Philippines
| | - Ma Junaliah Tuazon Kels
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden
| | - Adrian Albano
- Kalanguya Indigenous Cultural Community, Tinoc, Ifugao, Cordillera Administrative Region, Philippines; Office of Tinoc Campus Administrator, Ifugao State University, Tinoc, Ifugao, Cordillera Administrative Region, Philippines
| | | | - Edison Molanida
- Heritage Office, National Commission for Culture and the Arts, Intramuros, Manila, Philippines; Office of the Executive Director, National Commission for Culture and the Arts, Intramuros, Manila, Philippines
| | - Lena Granehäll
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden
| | - Mário Vicente
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden
| | - Hanna Edlund
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden
| | - Jun-Hun Loo
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei City 10449, Taiwan
| | - Jean Trejaut
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei City 10449, Taiwan
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Lawrence Reid
- Department of Linguistics, University of Hawai'i at Mānoa, Mānoa, HI, USA; National Museum of the Philippines, Padre Burgos Avenue, Rizal Park, Ermita, Manila, Philippines
| | - Kurt Lambeck
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden; Palaeo-Research Institute, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Carina Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden; Palaeo-Research Institute, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa; SciLifeLab, Stockholm and Uppsala, Sweden
| | - Phillip Endicott
- Department Hommes Natures Societies, Musée de l'Homme, 75016 Paris, Ile de France, France
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden; Palaeo-Research Institute, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa; SciLifeLab, Stockholm and Uppsala, Sweden.
| |
Collapse
|
11
|
Rotival M, Cossart P, Quintana-Murci L. Reconstructing 50,000 years of human history from our DNA: lessons from modern genomics. C R Biol 2021; 344:177-187. [PMID: 34213855 DOI: 10.5802/crbiol.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022]
Abstract
The advent of high throughput sequencing approaches and ancient DNA techniques have enabled reconstructing the history of human populations at an unprecedented level of resolution. The symposium from the French Academy of Sciences "50,000 ans d'épopée humaine dans notre ADN" has reviewed some of the latest contributions from the fields of genomics, archaeology, and linguistics to our understanding of >300,000 years of human history. DNA has revealed the richness of the human journey, from the deep divergences between human populations in Africa, to the first encounters of Homo Sapiens with other hominins on their way to Eurasia and the peopling of Remote Oceania. The symposium has also emphasized how migrations, cultural practices, and environmental pathogens have contributed to shape the genetic diversity of modern humans, through admixture, genetic drift or genetic adaptation. Finally, special attention was also given to how human behaviours have shaped the genome of other species, through the spreading of microbes and pathogens, as in the case of Yersinia Pestis, or through domestication, as elegantly demonstrated for dogs, horses, and apples. Altogether, this conference illustrated how the complex history of human populations is tightly linked with their contemporary genetic diversity that, in turn, has direct effects on their identity and health.
Collapse
Affiliation(s)
- Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France
| | - Pascale Cossart
- Bacteria/Cell Interactions Unit, Institut Pasteur, U604, Inserm, Paris 75015, France
| | - Lluis Quintana-Murci
- Chair of Human Genomics and Evolution, Collège de France, Paris, 75005, France.,Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France
| |
Collapse
|
12
|
Mualim K, Theunert C, Slatkin M. Estimation of coalescence probabilities and population divergence times from SNP data. Heredity (Edinb) 2021; 127:1-9. [PMID: 33934123 PMCID: PMC8249664 DOI: 10.1038/s41437-021-00435-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/02/2022] Open
Abstract
We present a method called the G(A|B) method for estimating coalescence probabilities within population lineages from genome sequences when one individual is sampled from each population. Population divergence times can be estimated from these coalescence probabilities if additional assumptions about the history of population sizes are made. Our method is based on a method presented by Rasmussen et al. (2014) to test whether an archaic genome is from a population directly ancestral to a present-day population. The G(A|B) method does not require distinguishing ancestral from derived alleles or assumptions about demographic history before population divergence. We discuss the relationship of our method to two similar methods, one introduced by Green et al. (2010) and called the F(A|B) method and the other introduced by Schlebusch et al. (2017) and called the TT method. When our method is applied to individuals from three or more populations, it provides a test of whether the population history is treelike because coalescence probabilities are additive on a tree. We illustrate the use of our method by applying it to three high-coverage archaic genomes, two Neanderthals (Vindija and Altai) and a Denisovan.
Collapse
Affiliation(s)
- Kristy Mualim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christoph Theunert
- Department of Integrative Biology, University of California, Berkeley, CA, USA.,mewedo Ltd., Leipzig, Germany
| | - Montgomery Slatkin
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
13
|
Abstract
A key link to understand human history in Island Southeast Asia is the Philippine archipelago and its poorly investigated genetic diversity. We analyzed the most comprehensive set of population-genomic data for the Philippines: 1,028 individuals covering 115 indigenous communities. We demonstrate that the Philippines were populated by at least five waves of human migration. The Cordillerans migrated into the Philippines prior to the arrival of rice agriculture, where some remain as the least admixed East Asians carrying an ancestry shared by all Austronesian-speaking populations, thereby challenging an exclusive out-of-Taiwan model of joint farming–language–people dispersal. Altogether, our findings portray the Philippines as a crucial gateway, with a multilayered history, that ultimately changed the genetic landscape of the Asia-Pacific region. Island Southeast Asia has recently produced several surprises regarding human history, but the region’s complex demography remains poorly understood. Here, we report ∼2.3 million genotypes from 1,028 individuals representing 115 indigenous Philippine populations and genome-sequence data from two ∼8,000-y-old individuals from Liangdao in the Taiwan Strait. We show that the Philippine islands were populated by at least five waves of human migration: initially by Northern and Southern Negritos (distantly related to Australian and Papuan groups), followed by Manobo, Sama, Papuan, and Cordilleran-related populations. The ancestors of Cordillerans diverged from indigenous peoples of Taiwan at least ∼8,000 y ago, prior to the arrival of paddy field rice agriculture in the Philippines ∼2,500 y ago, where some of their descendants remain to be the least admixed East Asian groups carrying an ancestry shared by all Austronesian-speaking populations. These observations contradict an exclusive “out-of-Taiwan” model of farming–language–people dispersal within the last four millennia for the Philippines and Island Southeast Asia. Sama-related ethnic groups of southwestern Philippines additionally experienced some minimal South Asian gene flow starting ∼1,000 y ago. Lastly, only a few lowlanders, accounting for <1% of all individuals, presented a low level of West Eurasian admixture, indicating a limited genetic legacy of Spanish colonization in the Philippines. Altogether, our findings reveal a multilayered history of the Philippines, which served as a crucial gateway for the movement of people that ultimately changed the genetic landscape of the Asia-Pacific region.
Collapse
|