1
|
Kuthan R. Nakaseomyces glabratus ( Candida glabrata) MLST Genotypes in Central Poland. Int J Mol Sci 2025; 26:4407. [PMID: 40362646 PMCID: PMC12072302 DOI: 10.3390/ijms26094407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/01/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
Nakaseomyces glabratus is a medically important fungal pathogen responsible for various opportunistic, life-threatening, and fatal infections, mainly among immunodepressed patients worldwide. Herein, genotypes identified in Central Poland by multilocus sequence typing (MLST) are presented. Along with the genotyping, drug susceptibility was performed. The research was conducted on 30 non-redundant clinical strains, and 15 distinct sequence types (STs) were identified, including three novel STs: ST212, ST213, and ST214. The most prevalent sequence types were ST3, ST6, and ST10. Antifungal susceptibility testing revealed varied resistance rates to azoles, with fluconazole susceptibility at 16.7% and high susceptibility to amphotericin B. No correlation between ST and antifungals MIC were found. The study findings highlight the genetic diversity of N. glabratus in Central Poland and the role of surveillance and research to elucidate antifungals resistance and molecular epidemiology of N. glabratus.
Collapse
Affiliation(s)
- Robert Kuthan
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chałubińskiego Street, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Chedraoui C, Fattouh N, El Hachem S, Younes M, Khalaf RA. Induction of Antifungal Tolerance Reveals Genetic and Phenotypic Changes in Candida glabrata. J Fungi (Basel) 2025; 11:284. [PMID: 40278105 PMCID: PMC12028409 DOI: 10.3390/jof11040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 04/26/2025] Open
Abstract
Candida glabrata is an opportunistic, pathogenic fungus that is increasingly isolated from hospitalized patients. The incidence of drug tolerance, heteroresistance, and resistance is on the rise due to an overuse of antifungal drugs. The aim of this study was to expose a sensitive C. glabrata strain to sequentially increasing concentrations of two antifungal drugs, fluconazole, an azole that targets ergosterol biosynthesis, or caspofungin, an echinocandin that targets cell wall glucan synthesis. Analysis of the drug-exposed isolates showed development of antifungal tolerance, chromosomal abnormalities, decreased adhesion, attenuated virulence, and an increase in efflux pump activity. Furthermore, whole genome sequencing of all isolates exposed to different concentrations of fluconazole or caspofungin was performed to determine mutations in key genes that could correlate with the observed phenotypes. Mutations were found in genes implicated in adhesion, such as in the AWP, PWP, and EPA family of genes. Isolates exposed to higher drug concentrations displayed more mutations than those at lower concentrations.
Collapse
Affiliation(s)
- Christy Chedraoui
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.C.); (N.F.); (S.E.H.); (M.Y.)
| | - Nour Fattouh
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.C.); (N.F.); (S.E.H.); (M.Y.)
- Department of Biology, Saint George University of Beirut, Beirut 1100-2807, Lebanon
| | - Setrida El Hachem
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.C.); (N.F.); (S.E.H.); (M.Y.)
| | - Maria Younes
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.C.); (N.F.); (S.E.H.); (M.Y.)
| | - Roy A. Khalaf
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.C.); (N.F.); (S.E.H.); (M.Y.)
| |
Collapse
|
3
|
Huang X, Dong Q, Zhou Q, Fang S, Xu Y, Long H, Chen J, Li X, Qin H, Mu D, Cai X. Genomics insights of candidiasis: mechanisms of pathogenicity and drug resistance. Front Microbiol 2025; 16:1531543. [PMID: 40083780 PMCID: PMC11903725 DOI: 10.3389/fmicb.2025.1531543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Candidiasis, a prevalent class of human infections caused by fungi belonging to the Candida genus, is garnering increasing attention due to its pathogenicity and the emergence of drug resistance. The advancement of genomics technologies has offered powerful tools for investigating the pathogenic mechanisms and drug resistance characteristics of Candida. This comprehensive review provides an overview of the applications of genomics in candidiasis research, encompassing genome sequencing, comparative genomics, and functional genomics, along with the pathogenic features and core virulence factors of Candida. Moreover, this review highlights the role of genomic variations in the emergence of drug resistance, further elucidating the evolutionary and adaptive mechanisms of Candida. In conclusion, the review underscores the current state of research and prospective avenues for exploration of candidiasis, providing a theoretical basis for clinical treatments and public health strategies.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qin Dong
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Qi Zhou
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Shitao Fang
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Yiheng Xu
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Hongjie Long
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Jingyi Chen
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xiao Li
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Huaguang Qin
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Dan Mu
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xunchao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Scott NE, Wash E, Zajac C, Erayil SE, Kline SE, Selmecki A. Heterogeneity of Candida bloodstream isolates in an academic medical center and affiliated hospitals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636768. [PMID: 39975022 PMCID: PMC11839140 DOI: 10.1101/2025.02.05.636768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Invasive Candida bloodstream infections (candidemia) are a deadly global health threat. Rare Candida species are increasingly important causes of candidemia and phenotypic data, including patterns of antifungal drug resistance, is limited. There is geographic variation in the distribution of Candida species and frequency of antifungal drug resistance, which means that collecting and reporting regional data can have significant clinical value. Here, we report the first survey of species distribution, frequency of antifungal drug resistance, and phenotypic variability of Candida bloodstream isolates from an academic medical center and 5 affiliated hospitals in the Minneapolis-Saint Paul region of Minnesota, collected during an 18-month period from 2019 to 2021. We collected 288 isolates spanning 11 species from 119 patients. C. albicans was the most frequently recovered species, followed by C. glabrata and C. parapsilosis, with 10% of cases representing additional, rare species. We performed antifungal drug susceptibility for the three major drug classes and, concerningly, we identified fluconazole, micafungin and multidrug resistance rates in C. glabrata that were ~ 2 times higher than that reported in other regions of the United States. We report some of the first phenotypic data in rare non-albicans Candida species. Through analysis of serial isolates from individual patients, we identified clinically relevant within-patient differences of MIC values in multiple drug classes. Our results provide valuable clinical data relevant to antifungal stewardship efforts and highlight important areas of future research, including within-patient dynamics of infection and the mechanisms of drug resistance in rare Candida species.
Collapse
Affiliation(s)
- Nancy E. Scott
- University of Minnesota, Bioinformatics and Computational Biology Program
- University of Minnesota, Department of Microbiology and Immunology
| | - Elizabeth Wash
- University of Minnesota, Department of Microbiology and Immunology
- University of Minnesota, Molecular, Cellular, Developmental Biology and Genetics Program
| | | | - Serin E. Erayil
- University of Minnesota, Department of Medicine, Division of Infectious Diseases and International Medicine
| | - Susan E. Kline
- University of Minnesota, Department of Medicine, Division of Infectious Diseases and International Medicine
| | - Anna Selmecki
- University of Minnesota, Bioinformatics and Computational Biology Program
- University of Minnesota, Department of Microbiology and Immunology
- University of Minnesota, Molecular, Cellular, Developmental Biology and Genetics Program
| |
Collapse
|
5
|
Childers DS, Usher J. Is metabolic generalism the Breakfast of Champions for pathogenic Candida species? PLoS Pathog 2024; 20:e1012752. [PMID: 39661646 PMCID: PMC11633977 DOI: 10.1371/journal.ppat.1012752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Affiliation(s)
- Delma S. Childers
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, United Kingdom
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Hwang IJ, Kwon YJ, Lim HJ, Hong KH, Lee H, Yong D, Won EJ, Byun SA, Lee GY, Kim SH, Song ES, Shin JH. Nosocomial transmission of fluconazole-resistant Candida glabrata bloodstream isolates revealed by whole-genome sequencing. Microbiol Spectr 2024; 12:e0088324. [PMID: 39162519 PMCID: PMC11448407 DOI: 10.1128/spectrum.00883-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
The clonal transmission of fluconazole-resistant Candida glabrata isolates within hospitals has seldom been analyzed by whole-genome sequencing (WGS). We performed WGS on 79 C. glabrata isolates, comprising 31 isolates from three premature infants with persistent C. glabrata bloodstream infection despite antifungal treatment in the same neonatal intensive care unit (NICU) in 2022 and 48 (27 fluconazole-resistant and 21 fluconazole-susceptible dose-dependent) bloodstream isolates from 48 patients in 15 South Korean hospitals from 2010 to 2022. Phylogenetic analysis based on WGS single-nucleotide polymorphisms (SNPs) distinguished the 79 isolates according to multilocus sequence typing (MLST) (17 sequence type [ST]3, 13 ST7, two ST22, 41 ST26, four ST55, and two ST59 isolates) and unveiled two possible clusters of nosocomial transmission among ST26 isolates. One cluster from two premature infants with overlapping NICU hospitalizations in 2022 encompassed 15 fluconazole-resistant isolates harboring pleiotropic drug-resistance transcription factor (Pdr1p) P258L (13 isolates) or N1086I (two isolates), together with 10 fluconazole-susceptible dose-dependent isolates lacking Pdr1p SNPs. The other cluster indicated unforeseen clonal transmission of fluconazole-resistant bloodstream isolates among five patients (four post-lung transplantation and one with diffuse interstitial lung disease) in the same hospital over 8 months. Among these five isolates, four obtained after exposure to azole antifungals harbored distinct Pdr1p SNPs (N1091D, E388Q, K365E, and R376Q). The findings reveal the transmission patterns of clonal bloodstream isolates of C. glabrata among patients undergoing antifungal treatment, exhibiting different levels of fluconazole susceptibility or distinct Pdr1p SNP profiles. IMPORTANCE The prevalence of fluconazole-resistant bloodstream infections caused by Candida glabrata is increasing globally, but the transmission of these resistant strains within hospitals has rarely been documented. Through whole-genome sequencing and epidemiological analyses, this study identified two potential clusters of C. glabrata bloodstream infections within the same hospital, revealing the transmission of clonal C. glabrata strains with different levels of fluconazole susceptibility or distinct transcription factor pleiotropic drug resistance protein 1 (Pdr1p) single-nucleotide polymorphism profiles among patients receiving antifungal therapy.
Collapse
Affiliation(s)
- In Ji Hwang
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, South Korea
| | - Yong Jun Kwon
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Ha Jin Lim
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Ki Ho Hong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung A Byun
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Ga Yeong Lee
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Soo Hyun Kim
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Eun Song Song
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, South Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
7
|
Hernández-Hernández G, Vera-Salazar LA, Gutiérrez-Escobedo G, Gómez-Hernández N, Leiva-Peláez O, De Las Peñas A, Castaño I. Abf1 negatively regulates the expression of EPA1 and affects adhesion in Candida glabrata. J Med Microbiol 2024; 73. [PMID: 39360930 DOI: 10.1099/jmm.0.001905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Introduction. Adherence is a major virulence trait in Candida glabrata that, in many strains, depends on the EPA (epithelial adhesin) genes, which confer the ability to adhere to epithelial and endothelial cells of the host. The EPA genes are generally found at subtelomeric regions, which makes them subject to subtelomeric silencing. In C. glabrata, subtelomeric silencing depends on different protein complexes, such as silent information regulator and yKu complexes, and other proteins, such as Repressor/activator protein 1 (Rap1) and Abf1. At the EPA1 locus, which encodes the main adhesin Epa1, we previously found at least two cis-acting elements, the protosilencer Sil2126 and the negative element, that contribute to the propagation of silencing from the telomere to the subtelomeric region.Hypothesis. Abf1 binds to the regulatory regions of EPA1 and other regions at the telomere E-R, thereby negatively regulating EPA1 transcription.Aim. To determine whether Abf1 and Rap1 silencing proteins bind to previously identified cis-acting elements on the right telomere of chromosome E (E-R subtelomeric region), resulting in negative regulation of EPA1 transcription and infer Abf1 and Rap1 recognition sites in C. glabrata.Methodology. We used chromatin immunoprecipitation (ChIP) followed by quantitative PCR to determine the binding sites for Abf1 and Rap1 in the intergenic regions between EPA1 and EPA2 and HYR1 and EPA1, and mutants were used to determine the silencing level of the EPA1 promoter region.Results. We found that Abf1 predominantly binds to the EPA1 promoter region, leading to negative regulation of EPA1 expression. Furthermore, the mutant abf1-43, which lacks the last 43 amino acids at its C-terminal end and is defective for subtelomeric silencing, exhibits hyperadherence to epithelial cells in vitro compared to the parental strain, suggesting that EPA1 is derepressed. We also determined the motif-binding sequences for Abf1 and Rap1 in C. glabrata using data from the ChIP assays.Conclusion. Together these data indicate that Abf1 negatively regulates EPA1 expression, leading to decreased adhesion of C. glabrata to epithelial cells.
Collapse
Affiliation(s)
- Grecia Hernández-Hernández
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Laura A Vera-Salazar
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Nicolás Gómez-Hernández
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Osney Leiva-Peláez
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro De Las Peñas
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Irene Castaño
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| |
Collapse
|
8
|
Nickels TJ, Gale AN, Harrington AA, Timp W, Cunningham KW. Transposon-sequencing (Tn-seq) of the Candida glabrata reference strain CBS138 reveals epigenetic plasticity, structural variation, and intrinsic mechanisms of resistance to micafungin. G3 (BETHESDA, MD.) 2024; 14:jkae173. [PMID: 39047065 PMCID: PMC11373651 DOI: 10.1093/g3journal/jkae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Candida glabrata (also called Nakaseomyces glabratus) is an opportunistic pathogen that can resist common antifungals and rapidly acquire multidrug resistance. A large amount of genetic variation exists between isolates, which complicates generalizations. Portable transposon-sequencing (Tn-seq) methods can efficiently provide genome-wide information on strain differences and genetic mechanisms. Using the Hermes transposon, the CBS138 reference strain and a commonly studied derivative termed 2001 were subjected to Tn-seq in control conditions and after exposure to varying doses of the clinical antifungal micafungin. The approach revealed large differences between these strains, including a 131-kb tandem duplication and a variety of fitness differences. Additionally, both strains exhibited up to 1,000-fold increased transposon accessibility in subtelomeric regions relative to the BG2 strain, indicative of open subtelomeric chromatin in these isolates and large epigenetic variation within the species. Unexpectedly, the Pdr1 transcription factor conferred resistance to micafungin through targets other than CDR1. Other micafungin resistance pathways were also revealed including mannosyltransferase activity and biosynthesis of the lipid precursor sphingosine, the inhibition of which by SDZ 90-215 and myriocin enhanced the potency of micafungin in vitro. These findings provide insights into the complexity of the C. glabrata species as well as strategies for improving antifungal efficacy.
Collapse
Affiliation(s)
- Timothy J Nickels
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew N Gale
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
9
|
Chen PY, Huang YS, Chuang YC, Wang JT, Sheng WH, Chen YC, Chang SC. Implication of genotypes for prognosis of Candida glabrata bloodstream infections. J Antimicrob Chemother 2024; 79:2008-2016. [PMID: 38906829 PMCID: PMC11290879 DOI: 10.1093/jac/dkae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Genotyping isolates of a specific pathogen may demonstrate unique patterns of antimicrobial resistance, virulence or outcomes. However, evidence for genotype-outcome association in Candida glabrata is scarce. We aimed to characterize the mycological and clinical relevance of genotypes on C. glabrata bloodstream infections (BSIs). METHODS Non-duplicated C. glabrata blood isolates from hospitalized adults were genotyped by MLST, and further clustered by the unweighted pair group method with arithmetic averages (UPGMA). A clonal complex (CC) was defined by UPGMA similarities of >90%. Antifungal susceptibility testing was performed by a colorimetric microdilution method and interpreted following CLSI criteria. RESULTS Of 48 blood isolates evaluated, 13 STs were identified. CC7 was the leading CC (n = 14; 29.2%), including 13 ST7. The overall fluconazole and echinocandin resistance rates were 6.6% and 0%, respectively. No specific resistance patterns were associated with CC7 or other CCs. Charlson comorbidity index (adjusted OR, 1.49; 95% CI, 1.05-3.11) was the only predictor for CC7. By multivariable Cox regression analyses, CC7 was independently associated with 28 day mortality [adjusted HR (aHR), 3.28; 95% CI, 1.31-8.23], even after considering potential interaction with neutropenia (aHR, 3.41; 95% CI, 1.23-9.42; P for interaction, 0.24) or limited to 34 patients with monomicrobial BSIs (aHR, 2.85; 95% CI, 1.15-7.08). Also, the Kaplan-Meier estimate showed greater mortality with CC7 (P = 0.003). Fluconazole resistance or echinocandin therapy had no significant impact on mortality. CONCLUSIONS Our data suggested comorbid patients were at risk of developing CC7 BSIs. Further, CC7 was independently associated with worse outcomes.
Collapse
Affiliation(s)
- Pao-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Taipei City, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- Department of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Taipei City, Taiwan
- Department of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- Department of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| |
Collapse
|
10
|
Misas E, Seagle E, Jenkins EN, Rajeev M, Hurst S, Nunnally NS, Bentz ML, Lyman MM, Berkow E, Harrison LH, Schaffner W, Markus TM, Pierce R, Farley MM, Chow NA, Lockhart SR, Litvintseva AP. Genomic description of acquired fluconazole- and echinocandin-resistance in patients with serial Candida glabrata isolates. J Clin Microbiol 2024; 62:e0114023. [PMID: 38265207 PMCID: PMC10865870 DOI: 10.1128/jcm.01140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 01/25/2024] Open
Abstract
Candida glabrata is one of the most common causes of systemic candidiasis, often resistant to antifungal medications. To describe the genomic context of emerging resistance, we conducted a retrospective analysis of 82 serially collected isolates from 33 patients from population-based candidemia surveillance in the United States. We used whole-genome sequencing to determine the genetic relationships between isolates obtained from the same patient. Phylogenetic analysis demonstrated that isolates from 29 patients were clustered by patient. The median SNPs between isolates from the same patient was 30 (range: 7-96 SNPs), while unrelated strains infected four patients. Twenty-one isolates were resistant to echinocandins, and 24 were resistant to fluconazole. All echinocandin-resistant isolates carried a mutation either in the FKS1 or FKS2 HS1 region. Of the 24 fluconazole-resistant isolates, 17 (71%) had non-synonymous polymorphisms in the PDR1 gene, which were absent in susceptible isolates. In 11 patients, a genetically related resistant isolate was collected after recovering susceptible isolates, indicating in vivo acquisition of resistance. These findings allowed us to estimate the intra-host diversity of C. glabrata and propose an upper boundary of 96 SNPs for defining genetically related isolates, which can be used to assess donor-to-host transmission, nosocomial transmission, or acquired resistance. IMPORTANCE In our study, mutations associated to azole resistance and echinocandin resistance were detected in Candida glabrata isolates using a whole-genome sequence. C. glabrata is the second most common cause of candidemia in the United States, which rapidly acquires resistance to antifungals, in vitro and in vivo.
Collapse
Affiliation(s)
- E. Misas
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - E. Seagle
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - E. N. Jenkins
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- ASRT, Inc., Atlanta, Georgia, USA
| | - M. Rajeev
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - S. Hurst
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - N. S. Nunnally
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M. L. Bentz
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M. M. Lyman
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - E. Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - L. H. Harrison
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - W. Schaffner
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - T. M. Markus
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - R. Pierce
- Oregon Public Health Division, Oregon Health Authority, Portland, USA
| | - M. M. Farley
- Emory University School of Medicine, Decatur, Georgia, USA
| | - N. A. Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - S. R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - A. P. Litvintseva
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Dunaiski CM, Kock MM, Chan WY, Ismail A, Peters RPH. Molecular epidemiology and antimicrobial resistance of vaginal Candida glabrata isolates in Namibia. Med Mycol 2024; 62:myae009. [PMID: 38308518 DOI: 10.1093/mmy/myae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024] Open
Abstract
Candida glabrata is the most common non-albicans Candida species that causes vulvovaginal candidiasis (VVC). Given the intrinsically low susceptibility of C. glabrata to azole drugs, investigations into C. glabrata prevalence, fungal susceptibility profile, and molecular epidemiology are necessary to optimise the treatment of VVC. This molecular epidemiological study was conducted to determine antifungal drug profile, single nucleotide polymorphisms (SNPs) associated with phenotypic antifungal resistance and epidemic diversity of C. glabrata isolates from women with VVC in Namibia. Candida glabrata isolates were identified using phenotypic and molecular methods. Antifungal susceptibility of strains was determined for fluconazole, itraconazole, amphotericin B, and anidulafungin. Whole genome sequencing was used to determine SNPs in antifungal resistance genes and sequence type (ST) allocation. Among C. glabrata isolates, all (20/20; 100%) exhibited phenotypic resistance to the azole class antifungal drug, (fluconazole), and phenotypic susceptibility to the polyene class (amphotericin B), and the echinocandins (anidulafungin). Non-synonymous SNPs were identified in antifungal resistance genes of all fluconazole-resistant C. glabrata isolates including ERG6 (15%), ERG7 (15%), CgCDR1 (25%), CgPDR1 (60%), SNQ2 (10%), FKS1 (5.0%), FKS2 (5.0%), CgFPS1 (5.0%), and MSH2 (15%). ST15 (n = 8/20, 40%) was predominant. This study provides important insight into phenotypic and genotypic antifungal resistance across C. glabrata isolates from women with VVC in Namibia. In this study, azole resistance is determined by an extensive range of SNPs, while the observed polyene and echinocandin resistance-associated SNPs despite phenotypic susceptibility require further investigation.
Collapse
Affiliation(s)
- Cara M Dunaiski
- Namibia University of Sciences and Technology, Department of Health and Applied Sciences, Windhoek 10005, Namibia
- University of Pretoria, Department of Medical Microbiology, Pretoria 0001, South Africa
| | - Marleen M Kock
- University of Pretoria, Department of Medical Microbiology, Pretoria 0001, South Africa
- National Health Laboratory Service, Tshwane, Academic Division, Pretoria 3191, South Africa
| | - Wai Yin Chan
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0081, South Africa
- Right to care, Centurion 0157, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Remco P H Peters
- University of Pretoria, Department of Medical Microbiology, Pretoria 0001, South Africa
- University of Cape Town, Division of Medical Microbiology, Cape Town 7701, South Africa
- Foundation for Professional Development, Research Unit, East London 5217, South Africa
| |
Collapse
|
12
|
Wang Y, Xu J, Ben Abid F, Salah H, Sundararaju S, Al Ismail K, Wang K, Sara Matthew L, Taj-Aldeen S, Ibrahim EB, Tang P, Perez-Lopez A, Tsui CKM. Population genomic analyses reveal high diversity, recombination and nosocomial transmission among Candida glabrata ( Nakaseomyces glabrata) isolates causing invasive infections. Microb Genom 2024; 10:001179. [PMID: 38226964 PMCID: PMC10868614 DOI: 10.1099/mgen.0.001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Candida glabrata is a commensal yeast of the gastrointestinal tract and skin of humans. However, it causes opportunistic infections in immunocompromised patients, and is the second most common Candida pathogen causing bloodstream infections. Although there are many studies on the epidemiology of C. glabrata infections, the fine- and large-scale geographical nature of C. glabrata remain incompletely understood. Here we investigated both the fine- and large-scale population structure of C. glabrata through genome sequencing of 80 clinical isolates obtained from six tertiary hospitals in Qatar and by comparing with global collections. Our fine-scale analyses revealed high genetic diversity within the Qatari population of C. glabrata and identified signatures of recombination, inbreeding and clonal expansion within and between hospitals, including evidence for nosocomial transmission among coronavirus disease 2019 (COVID-19) patients. In addition to signatures of recombination at the population level, both MATa and MATα alleles were detected in most hospitals, indicating the potential for sexual reproduction in clinical environments. Comparisons with global samples showed that the Qatari C. glabrata population was very similar to those from other parts of the world, consistent with the significant role of recent anthropogenic activities in shaping its population structure. Genome-wide association studies identified both known and novel genomic variants associated with reduced susceptibilities to fluconazole, 5-flucytosine and echinocandins. Together, our genomic analyses revealed the diversity, transmission patterns and antifungal drug resistance mechanisms of C. glabrata in Qatar as well as the relationships between Qatari isolates and those from other parts of the world.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Fatma Ben Abid
- Department of Medicine, Division of Infectious Diseases, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Communicable Disease Centre, Hamad Medical Corporation, Doha, Qatar
| | - Husam Salah
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | | | - Khalil Al Ismail
- Communicable Disease Centre, Hamad Medical Corporation, Doha, Qatar
| | - Kun Wang
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Saad Taj-Aldeen
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Emad B. Ibrahim
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Patrick Tang
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Andres Perez-Lopez
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Clement K. M. Tsui
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Infectious Diseases Research Laboratory, National Center for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Schikora-Tamarit MÀ, Gabaldón T. Recent gene selection and drug resistance underscore clinical adaptation across Candida species. Nat Microbiol 2024; 9:284-307. [PMID: 38177305 PMCID: PMC10769879 DOI: 10.1038/s41564-023-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Understanding how microbial pathogens adapt to treatments, humans and clinical environments is key to infer mechanisms of virulence, transmission and drug resistance. This may help improve therapies and diagnostics for infections with a poor prognosis, such as those caused by fungal pathogens, including Candida. Here we analysed genomic variants across approximately 2,000 isolates from six Candida species (C. glabrata, C. auris, C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis) and identified genes under recent selection, suggesting a highly complex clinical adaptation. These involve species-specific and convergently affected adaptive mechanisms, such as adhesion. Using convergence-based genome-wide association studies we identified known drivers of drug resistance alongside potentially novel players. Finally, our analyses reveal an important role of structural variants and suggest an unexpected involvement of (para)sexual recombination in the spread of resistance. Our results provide insights on how opportunistic pathogens adapt to human-related environments and unearth candidate genes that deserve future attention.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
14
|
Li Y, Hou X, Li R, Liao K, Ma L, Wang X, Ji P, Kong H, Xia Y, Ding H, Kang W, Zhang G, Li J, Xiao M, Li Y, Xu Y. Whole genome analysis of echinocandin non-susceptible Candida Glabrata clinical isolates: a multi-center study in China. BMC Microbiol 2023; 23:341. [PMID: 37974063 PMCID: PMC10652494 DOI: 10.1186/s12866-023-03105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Candida glabrata is an important cause of invasive candidiasis. Echinocandins are the first-line treatment of invasive candidiasis caused by C. glabrata. The epidemiological echinocandin sensitivity requires long-term surveillance and the understanding about whole genome characteristics of echinocandin non-susceptible isolates was limited. RESULTS The present study investigated the echinocandin susceptibility of 1650 C. glabrata clinical isolates in China from August 2014 to July 2019. The in vitro activity of micafungin was significantly better than those of caspofungin and anidulafungin (P < 0.001), assessed by MIC50/90 values. Whole genome sequencing was conducted on non-susceptible isolates and geography-matched susceptible isolates. Thirteen isolates (0.79%) were resistant to at least one echinocandin. Six isolates (0.36%) were solely intermediate to caspofungin. Common evolutionary analysis of echinocandin-resistant and echinocandin-intermediate isolates revealed genes related with reduced caspofungin sensitivity, including previously identified sphinganine hydroxylase encoding gene SUR2. Genome-wide association study identified SNPs at subtelometric regions that were associated with echinocandin non-susceptibility. In-host evolution of echinocandin resistance of serial isolates revealed an enrichment for non-synonymous mutations in adhesins genes and loss of subtelometric regions containing adhesin genes. CONCLUSIONS The echinocandins are highly active against C. glabrata in China with a resistant rate of 0.79%. Echinocandin non-susceptible isolates carried common evolved genes which are related with reduced caspofungin sensitivity. In-host evolution of C. glabrata accompanied intensive changing of adhesins profile.
Collapse
Affiliation(s)
- Yi Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xin Hou
- Department of Laboratory Medicine, Peking University Third Hospital, Peking University, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Peking University, Beijing, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ling Ma
- Union Hospital Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Wang
- The First Hospital of Jilin University, Jilin, China
| | - Ping Ji
- Department of Laboratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Haishen Kong
- Department of Microbiology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yun Xia
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Ding
- Department of Laboratory Medicine, Lishui Municipal Central Hospital, Lishui, China
| | - Wei Kang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ge Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yingxing Li
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.
| |
Collapse
|
15
|
Badrane H, Cheng S, Dupont CL, Hao B, Driscoll E, Morder K, Liu G, Newbrough A, Fleres G, Kaul D, Espinoza JL, Clancy CJ, Nguyen MH. Genotypic diversity and unrecognized antifungal resistance among populations of Candida glabrata from positive blood cultures. Nat Commun 2023; 14:5918. [PMID: 37739935 PMCID: PMC10516878 DOI: 10.1038/s41467-023-41509-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023] Open
Abstract
The longstanding model is that most bloodstream infections (BSIs) are caused by a single organism. We perform whole genome sequencing of five-to-ten strains from blood culture (BC) bottles in each of ten patients with Candida glabrata BSI. We demonstrate that BCs contain mixed populations of clonal but genetically diverse strains. Genetically distinct strains from two patients exhibit phenotypes that are potentially important during BSIs, including differences in susceptibility to antifungal agents and phagocytosis. In both patients, the clinical microbiology lab recovered a fluconazole-susceptible index strain, but we identify mixed fluconazole-susceptible and -resistant populations. Diversity in drug susceptibility is likely clinically relevant, as fluconazole-resistant strains were subsequently recovered by the clinical laboratory during persistent or relapsing infections. In one patient, unrecognized respiration-deficient small colony variants are fluconazole-resistant and significantly attenuated for virulence during murine candidiasis. Our data suggest a population-based model of C. glabrata genotypic and phenotypic diversity during BSIs.
Collapse
Affiliation(s)
| | | | | | - Binghua Hao
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Guojun Liu
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Drishti Kaul
- J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | | | - Cornelius J Clancy
- University of Pittsburgh, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | | |
Collapse
|
16
|
Sephton-Clark P, Nguyen T, Hoa NT, Ashton P, van Doorn HR, Ly VT, Le T, Cuomo CA. Impact of pathogen genetics on clinical phenotypes in a population of Talaromyces marneffei from Vietnam. Genetics 2023; 224:iyad100. [PMID: 37226893 PMCID: PMC10411598 DOI: 10.1093/genetics/iyad100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Talaromycosis, a severe and invasive fungal infection caused by Talaromyces marneffei, is difficult to treat and impacts those living in endemic regions of Southeast Asia, India, and China. While 30% of infections result in mortality, our understanding of the genetic basis of pathogenesis for this fungus is limited. To address this, we apply population genomics and genome-wide association study approaches to a cohort of 336 T. marneffei isolates collected from patients who enrolled in the Itraconazole vs Amphotericin B for Talaromycosis trial in Vietnam. We find that isolates from northern and southern Vietnam form two distinct geographical clades, with isolates from southern Vietnam associated with increased disease severity. Leveraging longitudinal isolates, we identify multiple instances of disease relapse linked to unrelated strains, highlighting the potential for multistrain infections. In more frequent cases of persistent talaromycosis caused by the same strain, we identify variants arising over the course of patient infections that impact genes predicted to function in the regulation of gene expression and secondary metabolite production. By combining genetic variant data with patient metadata for all 336 isolates, we identify pathogen variants significantly associated with multiple clinical phenotypes. In addition, we identify genes and genomic regions under selection across both clades, highlighting loci undergoing rapid evolution, potentially in response to external pressures. With this combination of approaches, we identify links between pathogen genetics and patient outcomes and identify genomic regions that are altered during T. marneffei infection, providing an initial view of how pathogen genetics affects disease outcomes.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thu Nguyen
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Oxford University, Ho Chi Minh City 749000, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Microbiology department and Biological Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Philip Ashton
- Veterinary and Ecological Sciences, Institute of Infection, University of Liverpool, Liverpool CH647TE, UK
| | - H Rogier van Doorn
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Oxford University Clinical Research Unit, Oxford University, Hanoi 113000, Vietnam
| | - Vo Trieu Ly
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Department of Medicine and Pharmacy, Hospital for Tropical Diseases, Ho Chi Minh City 749000, Vietnam
| | - Thuy Le
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA
- Tropical Medicine Research Center for Talaromycosis, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Proctor DM, Drummond RA, Lionakis MS, Segre JA. One population, multiple lifestyles: Commensalism and pathogenesis in the human mycobiome. Cell Host Microbe 2023; 31:539-553. [PMID: 37054674 PMCID: PMC10155287 DOI: 10.1016/j.chom.2023.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 04/15/2023]
Abstract
Candida auris and Candida albicans can result in invasive fungal diseases. And yet, these species can stably and asymptomatically colonize human skin and gastrointestinal tracts. To consider these disparate microbial lifestyles, we first review factors shown to influence the underlying microbiome. Structured by the damage response framework, we then consider the molecular mechanisms deployed by C. albicans to switch between commensal and pathogenic lifestyles. Next, we explore this framework with C. auris to highlight how host physiology, immunity, and/or antibiotic receipt are associated with progression from colonization to infection. While treatment with antibiotics increases the risk that an individual will succumb to invasive candidiasis, the underlying mechanisms remain unclear. Here, we describe several hypotheses that may explain this phenomenon. We conclude by highlighting future directions integrating genomics with immunology to advance our understanding of invasive candidiasis and human fungal disease.
Collapse
Affiliation(s)
- Diana M Proctor
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, Institute of Microbiology & Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Badrane H, Cheng S, Dupont CL, Hao B, Driscoll E, Morder K, Liu G, Newbrough A, Fleres G, Kaul D, Espinoza JL, Clancy CJ, Nguyen MH. Genotypic diversity and unrecognized antifungal resistance among populations of Candida glabrata from positive blood cultures. RESEARCH SQUARE 2023:rs.3.rs-2706400. [PMID: 37066226 PMCID: PMC10104189 DOI: 10.21203/rs.3.rs-2706400/v1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The longstanding paradigm is that most bloodstream infections (BSIs) are caused by a single organism. We performed whole genome sequencing of five-to-ten strains from blood culture (BC) bottles in each of ten patients with Candida glabrata BSI. We demonstrated that BCs contained mixed populations of clonal but genetically diverse strains. Genetically distinct strains from two patients exhibited phenotypes that were potentially important during BSIs, including differences in susceptibility to antifungal agents and phagocytosis. In both patients, the clinical microbiology lab recovered a fluconazole-susceptible index strain, but we identified mixed fluconazole-susceptible and â€"resistant populations. Diversity in drug susceptibility was likely clinically relevant, as fluconazole-resistant strains were subsequently recovered by the clinical laboratory during persistent or relapsing infections. In one patient, unrecognized respiration-deficient small colony variants were fluconazole-resistant and significantly attenuated for virulence during murine candidiasis. Our data suggest a new population-based paradigm of C. glabrata genotypic and phenotypic diversity during BSIs.
Collapse
Affiliation(s)
| | - Shaoji Cheng
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Binghua Hao
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Guojun Liu
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | - Cornelius J Clancy
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
19
|
Sephton-Clark P, Nguyen T, Hoa NT, Ashton P, van Doorn HR, Ly VT, Le T, Cuomo CA. Impact of pathogen genetics on clinical phenotypes in a population of Talaromyces marneffei from Vietnam. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534926. [PMID: 37034632 PMCID: PMC10081260 DOI: 10.1101/2023.03.30.534926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Talaromycosis, a severe and invasive fungal infection caused by Talaromyces marneffei , is difficult to treat and impacts those living in endemic regions of southeast Asia, India, and China. While 30% of infections result in mortality, our understanding of the genetic basis of pathogenesis for this fungus is limited. To address this, we apply population genomics and genome wide association study approaches to a cohort of 336 T. marneffei isolates collected from patients who enrolled in the Itraconazole versus Amphotericin B for Talaromycosis (IVAP) trial in Vietnam. We find that isolates from northern and southern Vietnam form two distinct geographical clades, with isolates from southern Vietnam associated with increased disease severity. Leveraging longitudinal isolates, we identify multiple instances of disease relapse linked to unrelated strains, highlighting the potential for multi-strain infections. In more frequent cases of persistent talaromycosis caused by the same strain, we identify variants arising over the course of patient infections that impact genes predicted to function in the regulation of gene expression and secondary metabolite production. By combining genetic variant data with patient metadata for all 336 isolates, we identify pathogen variants significantly associated with multiple clinical phenotypes. In addition, we identify genes and genomic regions under selection across both clades, highlighting loci undergoing rapid evolution, potentially in response to external pressures. With this combination of approaches, we identify links between pathogen genetics and patient outcomes and identify genomic regions that are altered during T. marneffei infection, providing an initial view of how pathogen genetics affects disease outcomes.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 02142
| | - Thu Nguyen
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Microbiology department and Biological Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Philip Ashton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK CH647TE
| | - H. Rogier van Doorn
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Vo Trieu Ly
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Thuy Le
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA 27710
- Tropical Medicine Research Center for Talaromycosis, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 02142
| |
Collapse
|