1
|
Longo VD, Anderson RM. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022; 185:1455-1470. [PMID: 35487190 PMCID: PMC9089818 DOI: 10.1016/j.cell.2022.04.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
Diet as a whole, encompassing food composition, calorie intake, and the length and frequency of fasting periods, affects the time span in which health and functional capacity are maintained. Here, we analyze aging and nutrition studies in simple organisms, rodents, monkeys, and humans to link longevity to conserved growth and metabolic pathways and outline their role in aging and age-related disease. We focus on feasible nutritional strategies shown to delay aging and/or prevent diseases through epidemiological, model organism, clinical, and centenarian studies and underline the need to avoid malnourishment and frailty. These findings are integrated to define a longevity diet based on a multi-pillar approach adjusted for age and health status to optimize lifespan and healthspan in humans.
Collapse
Affiliation(s)
- Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; IFOM, FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milano, Italy.
| | - Rozalyn M Anderson
- Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA; GRECC, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
2
|
Salvadori G, Mirisola MG, Longo VD. Intermittent and Periodic Fasting, Hormones, and Cancer Prevention. Cancers (Basel) 2021; 13:cancers13184587. [PMID: 34572814 PMCID: PMC8472354 DOI: 10.3390/cancers13184587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The restriction of proteins, amino acids or sugars can have profound effects on the levels of hormones and factors including growth hormone, IGF-1 and insulin. In turn, these can regulate intracellular signaling pathways as well as cellular damage and aging, but also multisystem regeneration. Both intermittent (IF) and periodic fasting (PF) have been shown to have both acute and long-term effects on these hormones. Here, we review the effects of nutrients and fasting on hormones and genes established to affect aging and cancer. We describe the link between dietary interventions and genetic pathways affecting the levels of these hormones and focus on the mechanisms responsible for the cancer preventive effects. We propose that IF and PF can reduce tumor incidence both by delaying aging and preventing DNA damage and immunosenescence and also by killing damaged, pre-cancerous and cancer cells.
Collapse
Affiliation(s)
- Giulia Salvadori
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Mario Giuseppe Mirisola
- Department of Surgical, Oncological, and Oral Sciences, University of Palermo, 90127 Palermo, Italy;
| | - Valter D. Longo
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Department of Biological Sciences, Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
3
|
Guevara-Aguirre J, Torres C, Peña G, Palacios M, Bautista C, Guevara A, Gavilanes AW. IGF-I deficiency and enhanced insulin sensitivity due to a mutated growth hormone receptor gene in humans. Mol Cell Endocrinol 2021; 519:111044. [PMID: 33053393 DOI: 10.1016/j.mce.2020.111044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Human size is achieved by the coordinated expression of many genes. From conception to adulthood, a given genomic endowment is modified by highly variable environmental circumstances. During each stage of a person's life, distinct nutritional and hormonal influences continuously shape growing physical features until mature characteristics are attained. Underlying processes depend on precise provision of substrates and energy extracted by insulin action from nutrients, which allows cell proliferation, differentiation, and survival, under the concerted actions of growth hormone and insulin-like growth factor-I (IGF-I). It should be noted that growth and metabolic signaling pathways are interdependent and superimposed at multiple levels. Attainment of a fully developed human phenotype should be considered as a harmonious increment in body size rather than a simple increase in height. From this perspective we herein analyze adult features of individuals with an inactive growth hormone receptor, who consequently have severely diminished concentrations of serum insulin and endocrine IGF-I.
Collapse
Affiliation(s)
- Jaime Guevara-Aguirre
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador; Maastricht University, Maastricht, the Netherlands; Instituto de Endocrinología IEMYR, Quito, Ecuador.
| | - Carlos Torres
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - Gabriela Peña
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - María Palacios
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - Camila Bautista
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | | | | |
Collapse
|
4
|
Arum O, Boparai RK, Saleh JK, Wang F, Dirks AL, Turner JG, Kopchick JJ, Liu J, Khardori RK, Bartke A. Specific suppression of insulin sensitivity in growth hormone receptor gene-disrupted (GHR-KO) mice attenuates phenotypic features of slow aging. Aging Cell 2014; 13:981-1000. [PMID: 25244225 PMCID: PMC4326932 DOI: 10.1111/acel.12262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2014] [Indexed: 12/20/2022] Open
Abstract
In addition to their extended lifespans, slow-aging growth hormone receptor/binding protein gene-disrupted (knockout) (GHR-KO) mice are hypoinsulinemic and highly sensitive to the action of insulin. It has been proposed that this insulin sensitivity is important for their longevity and increased healthspan. We tested whether this insulin sensitivity of the GHR-KO mouse is necessary for its retarded aging by abrogating that sensitivity with a transgenic alteration that improves development and secretory function of pancreatic β-cells by expressing Igf-1 under the rat insulin promoter 1 (RIP::IGF-1). The RIP::IGF-1 transgene increased circulating insulin content in GHR-KO mice, and thusly fully normalized their insulin sensitivity, without affecting the proliferation of any non-β-cell cell types. Multiple (nonsurvivorship) longevity-associated physiological and endocrinological characteristics of these mice (namely beneficial blood glucose regulatory control, altered metabolism, and preservation of memory capabilities) were partially or completely normalized, thus supporting the causal role of insulin sensitivity for the decelerated senescence of GHR-KO mice. We conclude that a delayed onset and/or decreased pace of aging can be hormonally regulated.
Collapse
Affiliation(s)
- Oge Arum
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - Ravneet K. Boparai
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - Jamal K. Saleh
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - Feiya Wang
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - Angela L. Dirks
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - Jeremy G. Turner
- Division of ENT‐Otolaryngology Department of Surgery Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - John J. Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens OH 45701USA
| | - Jun‐Li Liu
- Fraser Laboratories for Diabetes Research Department of Medicine McGill University Health Centre 687 Pine Avenue West Montreal QC H3A 1A1 Canada
| | - Romesh K. Khardori
- Division of Endocrinology & Metabolism Department of Internal Medicine Eastern Virginia Medical School 700 West Olney Road Norfolk VA 23507 USA
| | - Andrzej Bartke
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| |
Collapse
|
5
|
Arum O, Saleh J, Boparai R, Turner J, Kopchick J, Khardori R, Bartke A. Interaction of growth hormone receptor/binding protein gene disruption and caloric restriction for insulin sensitivity and attenuated aging. F1000Res 2014; 3:256. [PMID: 25789159 PMCID: PMC4358413 DOI: 10.12688/f1000research.5378.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 11/20/2022] Open
Abstract
The correlation of physiological sensitivity to insulin ( vis-à-vis glycemic regulation) and longevity is extensively established, creating a justifiable gerontological interest on whether insulin sensitivity is causative, or even predictive, of some or all phenotypes of slowed senescence (including longevity). The growth hormone receptor/ binding protein gene-disrupted (GHR-KO) mouse is the most extensively investigated insulin-sensitive, attenuated aging model. It was reported that, in a manner divergent from similar mutants, GHR-KO mice fail to respond to caloric restriction (CR) by altering their insulin sensitivity. We hypothesized that maximized insulin responsiveness is what causes GHR-KO mice to exhibit a suppressed survivorship response to dietary (including caloric) restriction; and attempted to refute this hypothesis by assessing the effects of CR on GHR-KO mice for varied slow-aging-associated phenotypes. In contrast to previous reports, we found GHR-KO mice on CR to be less responsive than their ad libitum (A.L.) counterparts to the hypoglycemia-inducing effects of insulin. Further, CR had negligible effects on the metabolism or cognition of GHR-KO mice. Therefore, our data suggest that the effects of CR on the insulin sensitivity of GHR-KO mice do not concur with the effects of CR on the aging of GHR-KO mice.
Collapse
Affiliation(s)
- Oge Arum
- Department of Internal Medicine, Southern Illinois University-School of Medicine, Springfield, IL, 62794, USA
| | - Jamal Saleh
- Department of Internal Medicine, Southern Illinois University-School of Medicine, Springfield, IL, 62794, USA
| | - Ravneet Boparai
- Department of Internal Medicine, Southern Illinois University-School of Medicine, Springfield, IL, 62794, USA
| | - Jeremy Turner
- Department of Surgery, Division of ENT-Otolaryngology, Southern Illinois University-School of Medicine, Springfield, IL, 62794, USA
| | - John Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Romesh Khardori
- Department of Internal Medicine, Division of Endocrinology & Metabolism, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University-School of Medicine, Springfield, IL, 62794, USA
| |
Collapse
|
6
|
Arum O, Rickman DJ, Kopchick JJ, Bartke A. The slow-aging growth hormone receptor/binding protein gene-disrupted (GHR-KO) mouse is protected from aging-resultant neuromusculoskeletal frailty. AGE (DORDRECHT, NETHERLANDS) 2014; 36:117-27. [PMID: 23824747 PMCID: PMC3889906 DOI: 10.1007/s11357-013-9551-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 06/03/2013] [Indexed: 05/19/2023]
Abstract
Neuromusculoskeletal (physical) frailty is an aging-attributable biomedical issue of extremely high import, from both public health and individual perspectives. Yet, it is rarely studied in nonhuman research subjects and very rarely studied in animals with extended longevity. In an effort to address this relatively neglected area, we have conducted a longitudinal investigation of the neuromusculoskeletal healthspan in mice with two senescence-slowing interventions: growth hormone (GH) resistance, produced by GH receptor "knockout" (GHR-KO), and caloric restriction (CR). We report marked improvements in the retention of strength, balance, and motor coordination by the longevity-conferring GHR/BP gene disruption, CR regimen, or a combination of the two. Specifically, GHR-KO mice exhibit superior grip strength, balance, and motor coordination at middle age, and CR mice display superior grip strength at middle age. The advantageous effects established by middle-age are more pronounced in old-age, and these robust alterations are, generally, not gender-specific. Thus, we show that genetic and/or dietary interventions that engender longevity are also beneficial for the retention of neuromusculoskeletal health and functionality. The translational knowledge to be gained from subsequent molecular or histological investigations of these models of preserved functionality and decelerated senescence is potentially relevant to the efforts to reduce the specter of fear, falls, fracture, and frailty in the elderly.
Collapse
Affiliation(s)
- Oge Arum
- />Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794 USA
- />631 N. 6th St., 2B, Springfield, IL 62702 USA
| | - Dustin J. Rickman
- />Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794 USA
| | - John J. Kopchick
- />Edison Biotechnology Institute and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| | - Andrzej Bartke
- />Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794 USA
| |
Collapse
|
7
|
Transcriptomics and Metabonomics Identify Essential Metabolic Signatures in Calorie Restriction (CR) Regulation across Multiple Mouse Strains. Metabolites 2013; 3:881-911. [PMID: 24958256 PMCID: PMC3937836 DOI: 10.3390/metabo3040881] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
Calorie restriction (CR) has long been used to study lifespan effects and oppose the development of a broad array of age-related biological and pathological changes (increase healthspan). Yet, a comprehensive comparison of the metabolic phenotype across different genetic backgrounds to identify common metabolic markers affected by CR is still lacking. Using a system biology approach comprising metabonomics and liver transcriptomics we revealed the effect of CR across multiple mouse strains (129S1/SvlmJ, C57BL6/J, C3H/HeJ, CBA/J, DBA/2J, JC3F1/J). Oligonucleotide microarrays identified 76 genes as differentially expressed in all six strains confirmed. These genes were subjected to quantitative RT-PCR analysis in the C57BL/6J mouse strain, and a CR-induced change expression was confirmed for 14 genes. To fully depict the metabolic pathways affected by CR and complement the changes observed through differential gene expression, the metabolome of C57BL6/J was further characterized in liver tissues, urine and plasma levels using a combination or targeted mass spectrometry and proton nuclear magnetic resonance spectroscopy. Overall, our integrated approach commonly confirms that energy metabolism, stress response, lipids regulators and the insulin/IGF-1 are key determinants factors involved in CR regulation.
Collapse
|
8
|
Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, Hwang D, Martin-Montalvo A, Saavedra J, Ingles S, de Cabo R, Cohen P, Longo VD. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 2011; 3:70ra13. [PMID: 21325617 PMCID: PMC3357623 DOI: 10.1126/scitranslmed.3001845] [Citation(s) in RCA: 530] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in growth signaling pathways extend life span, as well as protect against age-dependent DNA damage in yeast and decrease insulin resistance and cancer in mice. To test their effect in humans, we monitored for 22 years Ecuadorian individuals who carry mutations in the growth hormone receptor (GHR) gene that lead to severe GHR and IGF-1 (insulin-like growth factor-1) deficiencies. We combined this information with surveys to identify the cause and age of death for individuals in this community who died before this period. The individuals with GHR deficiency exhibited only one nonlethal malignancy and no cases of diabetes, in contrast to a prevalence of 17% for cancer and 5% for diabetes in control subjects. A possible explanation for the very low incidence of cancer was suggested by in vitro studies: Serum from subjects with GHR deficiency reduced DNA breaks but increased apoptosis in human mammary epithelial cells treated with hydrogen peroxide. Serum from GHR-deficient subjects also caused reduced expression of RAS, PKA (protein kinase A), and TOR (target of rapamycin) and up-regulation of SOD2 (superoxide dismutase 2) in treated cells, changes that promote cellular protection and life-span extension in model organisms. We also observed reduced insulin concentrations (1.4 μU/ml versus 4.4 μU/ml in unaffected relatives) and a very low HOMA-IR (homeostatic model assessment-insulin resistance) index (0.34 versus 0.96 in unaffected relatives) in individuals with GHR deficiency, indicating higher insulin sensitivity, which could explain the absence of diabetes in these subjects. These results provide evidence for a role of evolutionarily conserved pathways in the control of aging and disease burden in humans.
Collapse
|