1
|
Albinhassan TH, Alharbi BM, AlSuhaibani ES, Mohammad S, Malik SS. Small Heat Shock Proteins: Protein Aggregation Amelioration and Neuro- and Age-Protective Roles. Int J Mol Sci 2025; 26:1525. [PMID: 40003991 PMCID: PMC11855743 DOI: 10.3390/ijms26041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Protein misfolding, aggregation, and aberrant aggregate accumulation play a central role in neurodegenerative disease progression. The proteotoxic factors also govern the aging process to a large extent. Molecular chaperones modulate proteostasis and thereby impact aberrant-protein-induced proteotoxicity. These chaperones have a diverse functional spectrum, including nascent protein folding, misfolded protein sequestration, refolding, or degradation. Small heat shock proteins (sHsps) possess an ATP-independent chaperone-like activity that prevents protein aggregation by keeping target proteins in a folding-competent state to be refolded by ATP-dependent chaperones. Due to their near-universal upregulation and presence in sites of proteotoxic stress like diseased brains, sHsps were considered pathological. However, gene knockdown and overexpression studies have established their protective functions. This review provides an updated overview of the sHsp role in protein aggregation amelioration and highlights evidence for sHsp modulation of neurodegenerative disease-related protein aggregation and aging.
Collapse
Affiliation(s)
- Tahani H. Albinhassan
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Bothina Mohammed Alharbi
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| | | | - Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| |
Collapse
|
2
|
Sluzala ZB, Hamati A, Fort PE. Key Role of Phosphorylation in Small Heat Shock Protein Regulation via Oligomeric Disaggregation and Functional Activation. Cells 2025; 14:127. [PMID: 39851555 PMCID: PMC11764305 DOI: 10.3390/cells14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins share a conserved α-crystallin domain (ACD) critical for their chaperone function, with flexible N- and C-terminal extensions that facilitate oligomer formation. Phosphorylation, a key post-translational modification (PTM), plays a dynamic role in regulating sHSP structure, oligomeric state, stability, and chaperone function. Unlike other PTMs such as deamidation, oxidation, and glycation-which are often linked to protein destabilization-phosphorylation generally induces structural transitions that enhance sHSP activity. Specifically, phosphorylation promotes the disaggregation of sHSP oligomers into smaller, more active complexes, thereby increasing their efficiency. This disaggregation mechanism is crucial for protecting cells from stress-induced damage, including apoptosis, inflammation, and other forms of cellular dysfunction. This review explores the role of phosphorylation in modulating the function of sHSPs, particularly HSPB1, HSPB4, and HSPB5, and discusses how these modifications influence their protective functions in cellular stress responses.
Collapse
Affiliation(s)
- Zachary B. Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Patrice E. Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Hunt LC, Curley M, Nyamkondiwa K, Stephan A, Jiao J, Kavdia K, Pagala VR, Peng J, Demontis F. The ubiquitin-conjugating enzyme UBE2D maintains a youthful proteome and ensures protein quality control during aging by sustaining proteasome activity. PLoS Biol 2025; 23:e3002998. [PMID: 39879147 PMCID: PMC11778781 DOI: 10.1371/journal.pbio.3002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are key for protein turnover and quality control via ubiquitination. Some E2s also physically interact with the proteasome, but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Mechanistically, UBE2D/eff is necessary to maintain optimal proteasome function: UBE2D/eff knockdown reduces the proteolytic activity of the proteasome, and this is rescued by transgenic expression of human UBE2D2, an eff homolog. Likewise, human UBE2D2 partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi and re-establishes the physiological levels of effRNAi-regulated proteins. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. However, some of the proteins that are concertedly up-regulated by aging and effRNAi are proteostasis regulators (e.g., chaperones and Pomp) that are transcriptionally induced presumably as part of an adaptive stress response to the loss of proteostasis. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.
Collapse
Affiliation(s)
- Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kudzai Nyamkondiwa
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Vishwajeeth R. Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
4
|
Zhao Z, Brooks D, Guo Y, Geisbrecht ER. Identification of CryAB as a target of NUAK kinase activity in Drosophila muscle tissue. Genetics 2023; 225:iyad167. [PMID: 37713608 PMCID: PMC10627272 DOI: 10.1093/genetics/iyad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
Phosphorylation reactions performed by protein kinases are one of the most studied post-translational modifications within cells. Much is understood about conserved residues within protein kinase domains that perform catalysis of the phosphotransfer reaction, yet the identity of the target substrates and downstream biological effects vary widely among cells, tissues, and organisms. Here, we characterize key residues essential for NUAK kinase activity in Drosophila melanogaster myogenesis and homeostasis. Creation of a NUAK kinase-dead mutation using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 results in lethality at the embryo to larval transition, while loss of NUAK catalytic function later in development produces aggregation of the chaperone protein αB-crystallin/CryAB in muscle tissue. Yeast 2-hybrid assays demonstrate a physical interaction between NUAK and CryAB. We further show that a phospho-mimetic version of NUAK promotes the phosphorylation of CryAB and this post-translational modification occurs at 2 previously unidentified phosphosites that are conserved in the primary sequence of human CryAB. Mutation of these serine residues in D. melanogaster NUAK abolishes CryAB phosphorylation, thus, proving their necessity at the biochemical level. These studies together highlight the importance of kinase activity regulation and provide a platform to further explore muscle tissue proteostasis.
Collapse
Affiliation(s)
- Ziwei Zhao
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - Yungui Guo
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| |
Collapse
|
5
|
Perez K, Ciotlos S, McGirr J, Limbad C, Doi R, Nederveen JP, Nilsson MI, Winer DA, Evans W, Tarnopolsky M, Campisi J, Melov S. Single nuclei profiling identifies cell specific markers of skeletal muscle aging, frailty, and senescence. Aging (Albany NY) 2022; 14:9393-9422. [PMID: 36516485 PMCID: PMC9792217 DOI: 10.18632/aging.204435] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Aging is accompanied by a loss of muscle mass and function, termed sarcopenia, which causes numerous morbidities and economic burdens in human populations. Mechanisms implicated in age-related sarcopenia or frailty include inflammation, muscle stem cell depletion, mitochondrial dysfunction, and loss of motor neurons, but whether there are key drivers of sarcopenia are not yet known. To gain deeper insights into age-related muscle loss, we performed transcriptome profiling on lower limb muscle biopsies from 72 young, elderly, and frail human subjects using bulk RNA-seq (N = 72) and single-nuclei RNA-seq (N = 17). This combined approach revealed changes in gene expression that occur with age and frailty in multiple cell types comprising mature skeletal muscle. Notably, we found increased expression of the genes MYH8 and PDK4, and decreased expression of the gene IGFN1, in aged muscle. We validated several key genes changes in fixed human muscle tissue using digital spatial profiling. We also identified a small population of nuclei that express CDKN1A, present only in aged samples, consistent with p21cip1-driven senescence in this subpopulation. Overall, our findings identify unique cellular subpopulations in aged and sarcopenic skeletal muscle, which will facilitate the development of new therapeutic strategies to combat age-related frailty.
Collapse
Affiliation(s)
- Kevin Perez
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | - Serban Ciotlos
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | - Julia McGirr
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | | | - Ryosuke Doi
- Buck Institute for Research on Aging, Novato, CA 94952, USA
- Drug Discovery Research, Astellas Pharma, Tsukuba, Ibaraki, Japan
| | | | | | | | - William Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| |
Collapse
|
6
|
Gonçalves RSDSA, Maciel ÁCC, Rolland Y, Vellas B, de Souto Barreto P. Frailty biomarkers under the perspective of geroscience: A narrative review. Ageing Res Rev 2022; 81:101737. [PMID: 36162706 DOI: 10.1016/j.arr.2022.101737] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
Cellular and molecular aging biomarkers might contribute to identify at-risk individuals for frailty before overt clinical manifestations appear. Although studies on the associations of aging biomarkers and frailty exist, no investigation has gathered this information using a structured framework for identifying aging biomarkers; as a result, the evidence on frailty and aging biomarkers is diffuse and incomplete. Therefore, this narrative review aimed to gather information on the associations of the hallmarks of aging and frailty under the perspective of geroscience. The literature on human studies on this topic is sparse and mainly composed of cross-sectional investigations performed in small study samples. The main putative aging biomarkers associated to frailty were: mitochondrial DNA copy number (genomic instability and mitochondrial dysfunction), telomere length (telomere attrition), global DNA methylation (epigenetic alterations), Hsp70 and Hsp72 (loss of proteostasis), IGF-1 and SIRT1 (deregulated nutrient-sensing), GDF-15 (mitochondrial dysfunction, cellular senescence and altered intercellular communication), CD4 + and CD8 + cell percentages (cellular senescence), circulating osteogenic progenitor (COP) cells (stem cell exhaustion), and IL-6, CRP and TNF-alpha (altered intercellular communication). IGF-1, SIRT1, GDF-15, IL-6, CRP and TNF-alpha presented more evidence among these biomarkers, highlighting the importance of inflammation and nutrient sensing on frailty. Further longitudinal studies investigating biomarkers across the hallmarks of aging would provide valuable information on this topic.
Collapse
Affiliation(s)
| | | | - Yves Rolland
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| |
Collapse
|
7
|
Li F, Sun H, Lin X, Li Q, Zhao D, Cheng Z, Liu J, Fan Q. Increased cytochrome C threonine 50 phosphorylation in aging heart as a novel defensive signaling against hypoxia/reoxygenation induced apoptosis. Aging (Albany NY) 2022; 14:5699-5709. [PMID: 35896004 PMCID: PMC9365549 DOI: 10.18632/aging.204159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that aging promotes myocardial apoptosis. However, the detailed mechanisms remain unclear. Our recent studies revealed that aging not only activates apoptosis, but also activates some anti-apoptotic factors. By quantitative phosphoproteomics, here we demonstrated that aging increases cytochrome c (Cytc) phosphorylation at threonine 50 (T50), a post-translational modification with unknown functional impact. With point mutation and lentivirus transfection, cardiomyocytes were divided into four groups: empty vector group, WT (wild type), T50E (as a phosphomimic variant), and T50A (non-phosphorylatable). TUNEL staining and flow cytometry were used to determine the apoptosis ratio in different groups after hypoxic/reoxygenated (H/R) treatment. The results showed that T50-phosphorylated Cytc suppressed myocardial apoptosis induced by H/R. Furthermore, Western Blot and ELISA measurements revealed that Cytc T50 phosphorylation inhibited caspase-9 and caspase-3 activity without altering caspase-8, BCL-2, BCL-XL, and Bax expression. In our study, we demonstrated that aging increases phosphorylation Cytc at T50 and this aging-increasing phosphorylation site can suppress H/R-induced apoptosis.
Collapse
Affiliation(s)
- Fanqi Li
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Haoxuan Sun
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Xiaolong Lin
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Qiuyu Li
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Donghui Zhao
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Zichao Cheng
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Jinghua Liu
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Qian Fan
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| |
Collapse
|
8
|
Balasubramanian P, Schaar AE, Gustafson GE, Smith AB, Howell PR, Greenman A, Baum S, Colman RJ, Lamming DW, Diffee GM, Anderson RM. Adiponectin receptor agonist AdipoRon improves skeletal muscle function in aged mice. eLife 2022; 11:e71282. [PMID: 35297761 PMCID: PMC8963882 DOI: 10.7554/elife.71282] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The loss of skeletal muscle function with age, known as sarcopenia, significantly reduces independence and quality of life and can have significant metabolic consequences. Although exercise is effective in treating sarcopenia it is not always a viable option clinically, and currently, there are no pharmacological therapeutic interventions for sarcopenia. Here, we show that chronic treatment with pan-adiponectin receptor agonist AdipoRon improved muscle function in male mice by a mechanism linked to skeletal muscle metabolism and tissue remodeling. In aged mice, 6 weeks of AdipoRon treatment improved skeletal muscle functional measures in vivo and ex vivo. Improvements were linked to changes in fiber type, including an enrichment of oxidative fibers, and an increase in mitochondrial activity. In young mice, 6 weeks of AdipoRon treatment improved contractile force and activated the energy-sensing kinase AMPK and the mitochondrial regulator PGC-1a (peroxisome proliferator-activated receptor gamma coactivator one alpha). In cultured cells, the AdipoRon induced stimulation of AMPK and PGC-1a was associated with increased mitochondrial membrane potential, reorganization of mitochondrial architecture, increased respiration, and increased ATP production. Furthermore, the ability of AdipoRon to stimulate AMPK and PGC1a was conserved in nonhuman primate cultured cells. These data show that AdipoRon is an effective agent for the prevention of sarcopenia in mice and indicate that its effects translate to primates, suggesting it may also be a suitable therapeutic for sarcopenia in clinical application.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Anne E Schaar
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Grace E Gustafson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Alex B Smith
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Porsha R Howell
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Angela Greenman
- Department of Kinesiology, University of Wisconsin-MadisonMadisonUnited States
| | - Scott Baum
- Wisconsin National Primate Research Center, University of Wisconsin-MadisonMadisonUnited States
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-MadisonMadisonUnited States
- Department of Cell and Regenerative Biology, University of WisconsinMadisonUnited States
| | - Dudley W Lamming
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans HospitalMadisonUnited States
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-MadisonMadisonUnited States
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
9
|
Hunt LC, Graca FA, Pagala V, Wang YD, Li Y, Yuan ZF, Fan Y, Labelle M, Peng J, Demontis F. Integrated genomic and proteomic analyses identify stimulus-dependent molecular changes associated with distinct modes of skeletal muscle atrophy. Cell Rep 2021; 37:109971. [PMID: 34758314 PMCID: PMC8852763 DOI: 10.1016/j.celrep.2021.109971] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy is a debilitating condition that occurs with aging and disease, but the underlying mechanisms are incompletely understood. Previous work determined that common transcriptional changes occur in muscle during atrophy induced by different stimuli. However, whether this holds true at the proteome level remains largely unexplored. Here, we find that, contrary to this earlier model, distinct atrophic stimuli (corticosteroids, cancer cachexia, and aging) induce largely different mRNA and protein changes during muscle atrophy in mice. Moreover, there is widespread transcriptome-proteome disconnect. Consequently, atrophy markers (atrogenes) identified in earlier microarray-based studies do not emerge from proteomics as generally induced by atrophy. Rather, we identify proteins that are distinctly modulated by different types of atrophy (herein defined as “atroproteins”) such as the myokine CCN1/Cyr61, which regulates myofiber type switching during sarcopenia. Altogether, these integrated analyses indicate that different catabolic stimuli induce muscle atrophy via largely distinct mechanisms. Skeletal muscle wasting is caused by many catabolic stimuli, which were thought to act via shared mechanisms. Hunt et al. now show that distinct catabolic stimuli induce muscle wasting via largely different molecular changes. The authors identify atrophy-associated proteins (“atroproteins”) that may represent diagnostic biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zuo-Fei Yuan
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
10
|
Franco-Romero A, Sandri M. Role of autophagy in muscle disease. Mol Aspects Med 2021; 82:101041. [PMID: 34625292 DOI: 10.1016/j.mam.2021.101041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
Beside inherited muscle diseases many catabolic conditions such as insulin resistance, malnutrition, cancer growth, aging, infections, chronic inflammatory status, inactivity, obesity are characterized by loss of muscle mass, strength and function. The decrease of muscle quality and quantity increases morbidity, mortality and has a major impact on the quality of life. One of the pathogenetic mechanisms of muscle wasting is the dysregulation of the main protein and organelles quality control system of the cell: the autophagy-lysosome. This review will focus on the role of the autophagy-lysosome system in the different conditions of muscle loss. We will also dissect the signalling pathways that are involved in excessive or defective autophagy regulation. Finally, the state of the art of autophagy modulators that have been used in preclinical or clinical studies to ameliorate muscle mass will be also described.
Collapse
Affiliation(s)
- Anais Franco-Romero
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy; Myology Center, University of Padova, via G. Colombo 3, 35100, Padova, Italy; Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
11
|
Pras A, Nollen EAA. Regulation of Age-Related Protein Toxicity. Front Cell Dev Biol 2021; 9:637084. [PMID: 33748125 PMCID: PMC7973223 DOI: 10.3389/fcell.2021.637084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Proteome damage plays a major role in aging and age-related neurodegenerative diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic protein misfolding and aggregation. These mechanisms include molecular chaperones for protein folding, spatial compartmentalization for sequestration, and degradation pathways for the removal of harmful proteins. These mechanisms decline with age, resulting in the accumulation of aggregation-prone proteins that are harmful to cells. In the past decades, a variety of fast- and slow-aging model organisms have been used to investigate the biological mechanisms that accelerate or prevent such protein toxicity. In this review, we describe the most important mechanisms that are required for maintaining a healthy proteome. We describe how these mechanisms decline during aging and lead to toxic protein misassembly, aggregation, and amyloid formation. In addition, we discuss how optimized protein homeostasis mechanisms in long-living animals contribute to prolonging their lifespan. This knowledge might help us to develop interventions in the protein homeostasis network that delay aging and age-related pathologies.
Collapse
Affiliation(s)
| | - Ellen A. A. Nollen
- Laboratory of Molecular Neurobiology of Ageing, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Reddy VS, Pandarinath S, Archana M, Reddy GB. Impact of chronic hyperglycemia on Small Heat Shock Proteins in diabetic rat brain. Arch Biochem Biophys 2021; 701:108816. [PMID: 33631184 DOI: 10.1016/j.abb.2021.108816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022]
Abstract
Small heat shock proteins (sHsps) are a family of proteins. Some are induced in response to multiple stimuli and others are constitutively expressed. They are involved in fundamental cellular processes, including protein folding, apoptosis, and maintenance of cytoskeletal integrity. Hyperglycemia created during diabetes leads to neuronal derangements in the brain. In this study, we investigated the impact of chronic hyperglycemia on the expression of sHsps and heat shock transcription factors (HSFs), solubility and aggregation of sHsps and amyloidogenic proteins, and their role in neuronal apoptosis in a diabetic rat model. Diabetes was induced in Sprague-Dawley rats with streptozotocin and hyperglycemia was maintained for 16 weeks. Expressions of sHsps and HSFs were analyzed by qRT-PCR and immunoblotting in the cerebral cortex. Solubility of sHsps and amyloidogenic proteins, including α-synuclein and Tau, was analyzed by the detergent soluble assay. Neuronal cell death was analyzed by TUNEL staining and apoptotic markers. The interaction of sHsps with amyloidogenic proteins and Bax was assessed using co-immunoprecipitation. Hyperglycemia decreased Hsp27 and HSF1, and increased αBC, Hsp22, and HSF4 levels at transcript and protein levels. Diabetes induced the aggregation of αBC, Hsp22, α-synuclein, and pTau, as their levels were higher in the insoluble fraction. Additionally, diabetes impaired the interaction of αBC with α-synuclein and pTau. Furthermore, diabetes reduced the interaction of αBC with Bax, which may possibly contribute to neuronal apoptosis. Together, these results indicate that chronic hyperglycemia induces differential responses of sHsps by altering their expression, solubility, interaction, and roles in apoptosis.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - S Pandarinath
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - M Archana
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | | |
Collapse
|
13
|
Jurivich DA, Manocha GD, Trivedi R, Lizakowski M, Rakoczy S, Brown-Borg H. Multifactorial Attenuation of the Murine Heat Shock Response With Age. J Gerontol A Biol Sci Med Sci 2021; 75:1846-1852. [PMID: 31612204 DOI: 10.1093/gerona/glz204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
Age-dependent perturbation of the cellular stress response affects proteostasis and other key functions relevant to cellular action and survival. Central to age-related changes in the stress response is loss of heat shock factor 1 (HSF1)-DNA binding and transactivation properties. This report elucidates how age alters different checkpoints of HSF1 activation related to posttranslational modification and protein interactions. When comparing liver extracts from middle aged (12 M) and old (24 M) mice, significant differences are found in HSF1 phosphorylation and acetylation. HSF1 protein levels and messenger RNA decline with age, but its protein levels are stress-inducible and exempt from age-dependent changes. This surprising adaptive change in the stress response has additional implications for aging and chronic physiological stress that might explain an age-dependent dichotomy of HSF1 protein levels that are low in neurodegeneration and elevated in cancer.
Collapse
Affiliation(s)
- Donald A Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Gunjan D Manocha
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Rachana Trivedi
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Mary Lizakowski
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Sharlene Rakoczy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Holly Brown-Borg
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
14
|
Effects of acute and chronic strength training on skeletal muscle autophagy in frail elderly men and women. Exp Gerontol 2020; 142:111122. [PMID: 33132146 DOI: 10.1016/j.exger.2020.111122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
Aging is associated with alterations in skeletal muscle autophagy, potentially affecting both muscle mass and quality in a negative manner. Strength training with protein supplementation has been reported to improve both muscle mass and quality in frail elderly individuals, but whether improvements are accompanied by alterations in protein quality control is not known. To address this issue, we investigated protein degradation markers in skeletal muscle biopsies (m. vastus lateralis) from twenty-four frail elderly men and women (86 ± 7 yr) after acute and chronic (10 weeks) strength training with protein supplementation (ST + PRO) or protein supplementation alone (PRO). Acute increases in mRNA expression of genes related to the ubiquitin proteasome system (MuRF-1, MUSA1), autophagy (ATG7, LC3, p62), and mitochondrial fission (DRP1) were observed after the first, but not after the last training session in ST + PRO. Acute changes in gene expression were accompanied by changes in protein levels of both LC3-I and LC3-II. Hence, the acute training-induced activation of proteasomal degradation and autophagy seems to depend on training status, with activation in the untrained, but not trained state. The ten-week training intervention did not affect basal levels of autophagy mRNAs and proteins, and neither markers of the ubiquitin-proteasome system. This suggests that a relatively short period of strength training may not be sufficient to increase the basal rate of protein degradation in frail elderly.
Collapse
|
15
|
Molecular Chaperones and Proteolytic Machineries Regulate Protein Homeostasis In Aging Cells. Cells 2020; 9:cells9051308. [PMID: 32456366 PMCID: PMC7291254 DOI: 10.3390/cells9051308] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially provided by the cell proteostasis network, which consists of molecular chaperones, a ubiquitin-proteasome system of degradation and autophagy. The cooperation of these systems impacts the correct function of protein synthesis/modification/transport machinery starting from the adaption of nascent polypeptides to cellular overcrowding until the utilization of damaged or needless proteins. Eventually, aging cells, in parallel to the accumulation of flawed proteins, gradually lose their proteostasis mechanisms, and this loss leads to the degeneration of large cellular masses and to number of age-associated pathologies and ultimately death. In this review, we describe the function of proteostasis mechanisms with an emphasis on the possible associations between them.
Collapse
|
16
|
Abstract
Ageing is a major risk factor for the development of many diseases, prominently including neurodegenerative disorders such as Alzheimer disease and Parkinson disease. A hallmark of many age-related diseases is the dysfunction in protein homeostasis (proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a complex proteostasis network, comprising molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation. However, sustaining proteome balance is a challenging task in the face of various external and endogenous stresses that accumulate during ageing. These stresses lead to the decline of proteostasis network capacity and proteome integrity. The resulting accumulation of misfolded and aggregated proteins affects, in particular, postmitotic cell types such as neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur during ageing inform strategies to improve proteostasis. The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan.
Collapse
|
17
|
Etienne J, Liu C, Skinner CM, Conboy MJ, Conboy IM. Skeletal muscle as an experimental model of choice to study tissue aging and rejuvenation. Skelet Muscle 2020; 10:4. [PMID: 32033591 PMCID: PMC7007696 DOI: 10.1186/s13395-020-0222-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is among the most age-sensitive tissues in mammal organisms. Significant changes in its resident stem cells (i.e., satellite cells, SCs), differentiated cells (i.e., myofibers), and extracellular matrix cause a decline in tissue homeostasis, function, and regenerative capacity. Based on the conservation of aging across tissues and taking advantage of the relatively well-characterization of the myofibers and associated SCs, skeletal muscle emerged as an experimental system to study the decline in function and maintenance of old tissues and to explore rejuvenation strategies. In this review, we summarize the approaches for understanding the aging process and for assaying the success of rejuvenation that use skeletal muscle as the experimental system of choice. We further discuss (and exemplify with studies of skeletal muscle) how conflicting results might be due to variations in the techniques of stem cell isolation, differences in the assays of functional rejuvenation, or deciding on the numbers of replicates and experimental cohorts.
Collapse
Affiliation(s)
- Jessy Etienne
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Colin M Skinner
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA.
| |
Collapse
|
18
|
Aas SN, Hamarsland H, Cumming KT, Rognlien SH, Aase OJ, Nordseth M, Karsrud S, Godager S, Tømmerbakke D, Handegard V, Raastad T. The impact of age and frailty on skeletal muscle autophagy markers and specific strength: A cross-sectional comparison. Exp Gerontol 2019; 125:110687. [PMID: 31404624 DOI: 10.1016/j.exger.2019.110687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/18/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023]
Abstract
Aging is associated with reduced specific strength, defined as strength normalized to the cross-sectional area of a given muscle or muscle group. Dysregulated autophagy, impairing removal of dysfunctional proteins and organelles, is suggested as one of the underlying mechanisms. The aim of this study was to investigate levels of autophagic markers in skeletal muscle in groups known to differ in specific strength. Sixty-two volunteers were assigned to the following study groups: young, old non-frail, old pre-frail, and old frail individuals. Leg lean mass was assessed with dual-energy X-ray absorptiometry and quadriceps femoris muscle strength by isometric maximal voluntary contraction. The abundance of autophagic proteins within skeletal muscle cytosolic and membrane sub-fractions were determined by western blotting. In addition, the level of heat shock proteins and proteins involved in the regulation of protein synthesis were measured. The abundance of LC3-I was higher in old frail compared to young individuals. If the three elderly groups were pooled, the level of LC3-II was higher in old compared to young subjects. Pre-frail and frail elderly also displayed higher levels of certain heat shock proteins. No between-group differences were observed for p62, LC3-II/LC3-I ratio, or any of the anabolic signaling molecules. A negative correlation was observed between cytosolic LC3-I and specific strength. Higher levels of LC3-I in the frail elderly might represent attenuated autophagosome formation. However, higher LC3-II levels indicate an increased abundance of autophagosomes. These findings may therefore imply that both the process of autophagosome formation and autophagosome-lysosome fusion are affected in frail elderly. Higher levels of heat shock proteins might represent an auto-protective mechanism against increased levels of misfolded proteins, possibly due to inefficient degradation. In conclusion, the reduction in specific strength with aging and frailty may partly be caused by alterations in muscle protein quality control.
Collapse
Affiliation(s)
- Sigve Nyvik Aas
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| | - Håvard Hamarsland
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Simen Helset Rognlien
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Ole Jølle Aase
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Martin Nordseth
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Stian Karsrud
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Sindre Godager
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Daniel Tømmerbakke
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Vilde Handegard
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
19
|
Jiao J, Demontis F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol 2017; 34:1-6. [DOI: 10.1016/j.coph.2017.03.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/16/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
|
20
|
Ayyadevara S, Balasubramaniam M, Suri P, Mackintosh SG, Tackett AJ, Sullivan DH, Shmookler Reis RJ, Dennis RA. Proteins that accumulate with age in human skeletal-muscle aggregates contribute to declines in muscle mass and function in Caenorhabditis elegans. Aging (Albany NY) 2016; 8:3486-3497. [PMID: 27992858 PMCID: PMC5270681 DOI: 10.18632/aging.101141] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Protein aggregation increases with age in normal tissues, and with pathology and age in Alzheimer's hippocampus and mouse cardiac muscle. We now ask whether human skeletal muscle accumulates aggregates with age. Detergent-insoluble protein aggregates were isolated from vastus lateralis biopsies from 5 young (23–27 years of age) and 5 older (64-80 years) adults. Aggregates, quantified after gel electrophoresis, contain 2.1-fold more protein (P<0.0001) when isolated from older subjects relative to young. Of 515 proteins identified by liquid chromatography coupled to tandem mass spectrometry, 56 (11%) were significantly more abundant in older muscle, while 21 (4%) were depleted with age (each P<0.05). Orthologs to seven of these proteins were then targeted in C. elegans by RNA interference. Six of the seven knockdown treatments decreased protein aggregation (range 6-45%, P<0.01 to <0.0001) and increased muscle mass (range 1.5- to 1.85-fold, P<0.01 to <0.0001) in aged nematodes, and rescued mobility (range 1.4 to 1.65-fold, P≤0.0005 each) in a nematode amyloidopathy model. We conclude that specific aggregate proteins, discovered as differentially abundant in aging human muscle, have orthologs that contribute functionally to aggregation and age-associated muscle loss in nematodes, and thus can be considered potential drug targets for sarcopenia in humans.
Collapse
Affiliation(s)
- Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Meenakshisundaram Balasubramaniam
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Pooja Suri
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samuel G. Mackintosh
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J. Tackett
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Dennis H. Sullivan
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Geriatric Research, Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Robert J. Shmookler Reis
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Geriatric Research, Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Richard A. Dennis
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Geriatric Research, Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| |
Collapse
|
21
|
Pinceti E, Shults CL, Rao YS, Pak TR. Differential Effects of E2 on MAPK Activity in the Brain and Heart of Aged Female Rats. PLoS One 2016; 11:e0160276. [PMID: 27487271 PMCID: PMC4972350 DOI: 10.1371/journal.pone.0160276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
Aging and the coincident loss of circulating estrogens at menopause lead to increased risks for neurological and cardiovascular pathologies. Clinical studies show that estrogen therapy (ET) can be beneficial in mitigating these negative effects, in both the brain and heart, when it is initiated shortly after the perimenopausal transition. However, this same therapy is detrimental when initiated >10 years postmenopause. Importantly, the molecular mechanisms underlying this age-related switch in ET efficacy are unknown. Estrogen receptors (ERs) mediate the neuroprotective and cardioprotective functions of estrogens by modulating gene transcription or, non-genomically, by activating second messenger signaling pathways, such as mitogen activated protein kinases (MAPK). These kinases are critical regulators of cell signaling pathways and have widespread downstream effects. Our hypothesis is that age and estrogen deprivation following menopause alters the expression and activation of the MAPK family members p38 and ERK in the brain and heart. To test this hypothesis, we used a surgically induced model of menopause in 18 month old rats through bilateral ovariectomy (OVX) followed by an acute dose of 17β-estradiol (E2) administered at varying time points post-OVX (1 week, 4 weeks, 8 weeks, or 12 weeks). Age and E2 treatment differentially regulated kinase activity in both the brain and heart, and the effects were also brain region specific. MAPK signaling plays an integral role in aging, and the aberrant regulation of those signaling pathways might be involved in age-related disorders. Clinical studies show benefits of ET during early menopause but detrimental effects later, which might be reflective of changes in kinase expression and activation status.
Collapse
Affiliation(s)
- Elena Pinceti
- Department of Cell and Molecular Physiology, Health Science Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Cody L. Shults
- Department of Cell and Molecular Physiology, Health Science Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Yathindar S. Rao
- Department of Cell and Molecular Physiology, Health Science Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Toni R. Pak
- Department of Cell and Molecular Physiology, Health Science Division, Loyola University Chicago, Maywood, Illinois, United States of America
- * E-mail:
| |
Collapse
|
22
|
Bakthisaran R, Akula KK, Tangirala R, Rao CM. Phosphorylation of αB-crystallin: Role in stress, aging and patho-physiological conditions. Biochim Biophys Acta Gen Subj 2015; 1860:167-82. [PMID: 26415747 DOI: 10.1016/j.bbagen.2015.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND αB-crystallin, once thought to be a lenticular protein, is ubiquitous and has critical roles in several cellular processes that are modulated by phosphorylation. Serine residues 19, 45 and 59 of αB-crystallin undergo phosphorylation. Phosphorylation of S45 is mediated by p44/42 MAP kinase, whereas S59 phosphorylation is mediated by MAPKAP kinase-2. Pathway involved in S19 phosphorylation is not known. SCOPE OF REVIEW The review highlights the role of phosphorylation in (i) oligomeric structure, stability and chaperone activity, (ii) cellular processes such as apoptosis, myogenic differentiation, cell cycle regulation and angiogenesis, and (iii) aging, stress, cardiomyopathy-causing αB-crystallin mutants, and in other diseases. MAJOR CONCLUSIONS Depending on the context and extent of phosphorylation, αB-crystallin seems to confer beneficial or deleterious effects. Phosphorylation alters structure, stability, size distribution and dynamics of the oligomeric assembly, thus modulating chaperone activity and various cellular processes. Phosphorylated αB-crystallin has a tendency to partition to the cytoskeleton and hence to the insoluble fraction. Low levels of phosphorylation appear to be protective, while hyperphosphorylation has negative implications. Mutations in αB-crystallin, such as R120G, Q151X and 464delCT, associated with inherited myofibrillar myopathy lead to hyperphosphorylation and intracellular inclusions. An ongoing study in our laboratory with phosphorylation-mimicking mutants indicates that phosphorylation of R120GαB-crystallin increases its propensity to aggregate. GENERAL SIGNIFICANCE Phosphorylation of αB-crystallin has dual role that manifests either beneficial or deleterious consequences depending on the extent of phosphorylation and interaction with cytoskeleton. Considering that disease-causing mutants of αB-crystallin are hyperphosphorylated, moderation of phosphorylation may be a useful strategy in disease management. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Kranthi Kiran Akula
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
23
|
Ikeda K, Ito A, Sato M, Kanno S, Kawabe Y, Kamihira M. Effects of heat stimulation and l-ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs. J Tissue Eng Regen Med 2015; 11:1322-1331. [PMID: 26033935 DOI: 10.1002/term.2030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 01/19/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
Although skeletal muscle tissue engineering has been extensively studied, the physical forces produced by tissue-engineered skeletal muscles remain to be improved for potential clinical utility. In this study, we examined the effects of mild heat stimulation and supplementation of a l-ascorbic acid derivative, l-ascorbic acid 2-phosphate (AscP), on myoblast differentiation and physical force generation of tissue-engineered skeletal muscles. Compared with control cultures at 37°C, mouse C2C12 myoblast cells cultured at 39°C enhanced myotube diameter (skeletal muscle hypertrophy), whereas mild heat stimulation did not promote myotube formation (differentiation rate). Conversely, AscP supplementation resulted in an increased differentiation rate but did not induce skeletal muscle hypertrophy. Following combined treatment with mild heat stimulation and AscP supplementation, both skeletal muscle hypertrophy and differentiation rate were enhanced. Moreover, the active tension produced by the tissue-engineered skeletal muscles was improved following combined treatment. These findings indicate that tissue culture using mild heat stimulation and AscP supplementation is a promising approach to enhance the function of tissue-engineered skeletal muscles. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kazushi Ikeda
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Ito
- Department of Chemical Engineering, Kyushu University, Fukuoka, Japan
| | - Masanori Sato
- Department of Chemical Engineering, Kyushu University, Fukuoka, Japan
| | - Shota Kanno
- Department of Chemical Engineering, Kyushu University, Fukuoka, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Kyushu University, Fukuoka, Japan
| | - Masamichi Kamihira
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan.,Department of Chemical Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Reddy VS, Reddy GB. Role of crystallins in diabetic complications. Biochim Biophys Acta Gen Subj 2015; 1860:269-77. [PMID: 25988654 DOI: 10.1016/j.bbagen.2015.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/05/2015] [Accepted: 05/10/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Crystallins are the major structural proteins of vertebrate eye lens responsible for maintaining the refractive index of the lens. However, recent studies suggest that they also have a functional significance in non-lenticular tissues. Prolonged uncontrolled diabetes results in the development of macro and microvascular complications that are the leading causes of morbidity and mortality in diabetic patients all over the world. SCOPE OF REVIEW Recent studies have shown that crystallins play an instrumental role in diabetes and its complications. Therefore, this review highlights the current data on the impact of chronic hyperglycemia on expression, distribution, glycation, phosphorylation, chaperone-like function and, anti-apoptotic activity of crystallins. Furthermore, we discussed the insights for developing therapeutic strategies for diabetic complications including natural agents, peptides, and pharmacological chaperones that modulate or mimic chaperone activity of α-crystallins. MAJOR CONCLUSIONS Upregulation of crystallins appears to be a common feature of chronic diabetes. Further, chronic hyperglycemia induces the glycation and phosphorylation of crystallins, mainly α-crystallins and thereby alters their properties. The disturbed interaction of αB-crystallin with various apoptotic mediators including Bax and caspases is also an important factor for increased cell death in diabetes. Numerous dietary agents, peptides, and chemical chaperones prevent apoptosis and the loss of chaperone activity in diabetes. GENERAL SIGNIFICANCE Understanding the role of crystallins will aid in developing therapeutic strategies for alleviating pathophysiological conditions such as protein aggregation, inflammation, oxidative stress and apoptosis associated with chronic complications of diabetes including cataract, retinopathy, and cardiomyopathy. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Vadde Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500 007, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500 007, India.
| |
Collapse
|
25
|
Frankenberg NT, Lamb GD, Overgaard K, Murphy RM, Vissing K. Small heat shock proteins translocate to the cytoskeleton in human skeletal muscle following eccentric exercise independently of phosphorylation. J Appl Physiol (1985) 2014; 116:1463-72. [PMID: 24699855 DOI: 10.1152/japplphysiol.01026.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small heat shock proteins (sHSPs) are a subgroup of the highly conserved family of HSPs that are stress inducible and confer resistance to cellular stress and injury. This study aimed to quantitatively examine whether type of contraction (concentric or eccentric) affects sHSPs, HSP27 and αB-crystallin, localization, and phosphorylation in human muscle. Vastus lateralis muscle biopsies from 11 healthy male volunteers were obtained pre- and 3 h, 24 h, and 7 days following concentric (CONC), eccentric (ECC1), and repeated bout eccentric (ECC2) exercise. No changes were apparent in a control group (n = 5) who performed no exercise. Eccentric exercise induced muscle damage, as evidenced by increased muscle force loss, perceived muscle soreness, and elevated plasma creatine kinase and myoglobin levels. Total HSP27 and αB-crystallin amounts did not change following any type of exercise. Following eccentric exercise (ECC1 and ECC2) phosphorylation of HSP27 at serine 15 (pHSP27-Ser15) was increased approximately 3- to 6-fold at 3 h, and pαB-crystallin-Ser59 increased ~10-fold at 3 h. Prior to exercise most of the sHSP and psHSP pools were present in the cytosolic compartment. Eccentric exercise resulted in partial redistribution of HSP27 (~23%) from the cytosol to the cytoskeletal fraction (~28% for pHSP27-Ser15 and ~7% for pHSP27-Ser82), with subsequent full reversal within 24 h. αB-crystallin also showed partial redistribution from the cytosolic to cytoskeletal fraction (~18% of total) 3 h post-ECC1, but not after ECC2. There was no redistribution or phosphorylation of sHSPs with CONC. Eccentric exercise results in increased sHSP phosphorylation and translocation to the cytoskeletal fraction, but the sHSP translocation is not dependent on their phosphorylation.
Collapse
Affiliation(s)
- Noni T Frankenberg
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia; and
| | - Graham D Lamb
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia; and
| | - Kristian Overgaard
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Robyn M Murphy
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia; and
| | - Kristian Vissing
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Beltran Valls MR, Wilkinson DJ, Narici MV, Smith K, Phillips BE, Caporossi D, Atherton PJ. Protein carbonylation and heat shock proteins in human skeletal muscle: relationships to age and sarcopenia. J Gerontol A Biol Sci Med Sci 2014; 70:174-81. [PMID: 24621945 PMCID: PMC4301601 DOI: 10.1093/gerona/glu007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with a gradual loss of muscle mass termed sarcopenia, which has significant impact on quality-of-life. Because oxidative stress is proposed to negatively impact upon musculoskeletal aging, we investigated links between human aging and markers of oxidative stress, and relationships to muscle mass and strength in young and old nonsarcopenic and sarcopenic adults. Sixteen young and 16 old males (further subdivided into “old” and “old sarcopenic”) were studied. The abundance of protein carbonyl adducts within skeletal muscle sarcoplasmic, myofibrillar, and mitochondrial protein subfractions from musculus vastus lateralis biopsies were determined using Oxyblot immunoblotting techniques. In addition, concentrations of recognized cytoprotective proteins (eg, heat shock proteins [HSP], αβ-crystallin) were also assayed. Aging was associated with increased mitochondrial (but not myofibrillar or sarcoplasmic) protein carbonyl adducts, independently of (stage-I) sarcopenia. Correlation analyses of all subjects revealed that mitochondrial protein carbonyl abundance negatively correlated with muscle strength ([1-repetition maximum], p = .02, r2 = −.16), but not muscle mass (p = .13, r2 = −.08). Abundance of cytoprotective proteins, including various HSPs (HSP 27 and 70), were unaffected by aging/sarcopenia. To conclude, these data reveal that mitochondrial protein carbonylation increases moderately with age, and that this increase may impact upon skeletal muscle function, but is not a hallmark of (stage-I) sarcopenia, per se.
Collapse
Affiliation(s)
- Maria R Beltran Valls
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "ForoItalico," Italy
| | - Daniel J Wilkinson
- Division of Medical Sciences & Graduate Entry Medicine, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre
| | - Marco V Narici
- Division of Medical Sciences & Graduate Entry Medicine, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre
| | - Kenneth Smith
- Division of Medical Sciences & Graduate Entry Medicine, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre
| | - Bethan E Phillips
- Division of Medical Sciences & Graduate Entry Medicine, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "ForoItalico," Italy
| | - Philip J Atherton
- Division of Medical Sciences & Graduate Entry Medicine, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre.
| |
Collapse
|
27
|
Demontis F, Piccirillo R, Goldberg AL, Perrimon N. Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis Model Mech 2013; 6:1339-52. [PMID: 24092876 PMCID: PMC3820258 DOI: 10.1242/dmm.012559] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A characteristic feature of aged humans and other mammals is the debilitating, progressive loss of skeletal muscle function and mass that is known as sarcopenia. Age-related muscle dysfunction occurs to an even greater extent during the relatively short lifespan of the fruit fly Drosophila melanogaster. Studies in model organisms indicate that sarcopenia is driven by a combination of muscle tissue extrinsic and intrinsic factors, and that it fundamentally differs from the rapid atrophy of muscles observed following disuse and fasting. Extrinsic changes in innervation, stem cell function and endocrine regulation of muscle homeostasis contribute to muscle aging. In addition, organelle dysfunction and compromised protein homeostasis are among the primary intrinsic causes. Some of these age-related changes can in turn contribute to the induction of compensatory stress responses that have a protective role during muscle aging. In this Review, we outline how studies in Drosophila and mammalian model organisms can each provide distinct advantages to facilitate the understanding of this complex multifactorial condition and how they can be used to identify suitable therapies.
Collapse
Affiliation(s)
- Fabio Demontis
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
28
|
Yamaguchi T, Omori M, Tanaka N, Fukui N. Distinct and additive effects of sodium bicarbonate and continuous mild heat stress on fiber type shift via calcineurin/NFAT pathway in human skeletal myoblasts. Am J Physiol Cell Physiol 2013; 305:C323-33. [PMID: 23703530 DOI: 10.1152/ajpcell.00393.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ingestion of sodium bicarbonate (NaHCO3) is known to enhance athletic performance, probably via increased extracellular buffering capacity. At present, little is known about the direct effects of NaHCO3 on myogenesis, especially in vitro. Here, we examined the effects of NaHCO3 and the combined effects of NaHCO3 and continuous mild heat stress (CMHS) at 39°C on the differentiation of human skeletal muscle myoblasts (HSMMs). Levels of myosin heavy chain (MyHC) type I mRNA increased with increasing NaHCO3 concentrations; in contrast, those of MyHC IIx decreased. The NaHCO3-induced fast-to-slow shift was additively enhanced by CMHS. Likewise, intracellular calcium levels and expression of three factors, nuclear factor of activated T cells c2 (NFATc2), NFATc4, and peroxisome-proliferator-activated receptor-γ coactivator-1α, were upregulated with increasing NaHCO3 concentrations; moreover, these effects of NaHCO3 were additively enhanced by CMHS. Overexpression experiments and small interfering RNA-mediated knockdown experiments confirmed that NFATc2 and NFATc4 were involved in MyHC I regulation. The present study provided evidence that NaHCO3 and CMHS distinctly and additively induced a fast-to-slow fiber type shift through changes in intracellular calcium levels and the modulation of calcium signaling.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Clinical Research Center, National Hospital Organization Sagamihara Hospital, Minami-ku, Sagamihara City, Kanagawa, Japan.
| | | | | | | |
Collapse
|
29
|
Friedrich MG, Lam J, Truscott RJW. Degradation of an old human protein: age-dependent cleavage of γS-crystallin generates a peptide that binds to cell membranes. J Biol Chem 2012; 287:39012-20. [PMID: 22995907 DOI: 10.1074/jbc.m112.391565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Long-lived proteins exist in a number of tissues in the human body; however, little is known about the reactions involved in their degradation over time. Lens proteins, which do not turn over, provide a useful system to examine such processes. Using a combination of Western blotting and proteomic methodology, age-related changes to a major protein, γS-crystallin, were studied. By teenage years, insoluble intact γS-crystallin was detected, indicative of protein denaturation. This was not the only change, however, because blots revealed evidence of significant cross-linking as well as cleavage of γS-crystallin in all adult lenses. Cleavage at a serine residue near the C terminus was a major reaction that caused the release of a 12-residue peptide, SPAVQSFRRIVE, which bound tightly to lens cell membranes. Several other crystallin-derived peptides with double basic residues also lodged in the cell membrane fraction. Model studies showed that once cleaved from γS-crystallin, SPAVQSFRRIVE adopts a markedly different shape from that in the intact protein. Further, the acquired helical conformation may explain why the peptide seems to affect water permeability. This observation may help explain the changes to cell membranes known to be associated with aging in human lenses. Age-related cleavage of long-lived proteins may therefore yield peptides with untoward biological activity.
Collapse
Affiliation(s)
- Michael G Friedrich
- Save Sight Institute, Macquarie Street, Sydney, New South Wales 2001, Australia
| | | | | |
Collapse
|
30
|
Abstract
Investigations into the possible roles of human HSPB1 in aging have focused on its role as a molecular chaperone protecting partially folded or unfolded proteins, particularly during oxidative stress. A thorough analysis of potential roles of HSPB1 in aging cells has been hampered by a limited knowledge of its functions in living cells. Most studies have employed cell-free extracts and purified proteins. For example, HSPB1 is known to bind actin in vitro, and this observation led to the hypothesis that HSPB1 regulates actin filament dynamics. In the study summarized herein, the role of HSPB1 in regulating actin filament dynamics was further investigated by using cultured human cells. These results show that HSPB1 and actin form a complex in vivo and that HSPB1 is important for cell motility. A model for HSPB1 as a regulator of actin filament dynamics is presented, and evidence from the literature on cytoskeletal alterations in aging cells is discussed.
Collapse
Affiliation(s)
- Bindi M Doshi
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | | | | |
Collapse
|
31
|
Peake J, Della Gatta P, Cameron-Smith D. Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1485-95. [PMID: 20393160 DOI: 10.1152/ajpregu.00467.2009] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The world's elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Counteracting the progressive loss of muscle mass that occurs in the elderly, known as sarcopenia, represents a major hurdle in achieving these goals. Indirect evidence for a role of inflammation in sarcopenia is that markers of systemic inflammation correlate with the loss of muscle mass and strength in the elderly. More direct evidence is that compared with skeletal muscle of young people, the number of macrophages is lower, the gene expression of several cytokines is higher, and stress signaling proteins are activated in skeletal muscle of elderly people at rest. Sarcopenia may also result from inadequate repair and chronic maladaptation following muscle injury in the elderly. Macrophage infiltration and the gene expression of certain cytokines are reduced in skeletal muscle of elderly people compared with young people following exercise-induced muscle injury. Further research is required to identify the cause(s) of inflammation in skeletal muscle of elderly people. Additional work is also needed to expand our understanding of the cells, proteins, and transcription factors that regulate inflammation in the skeletal muscle of elderly people at rest and after exercise. This knowledge is critical for devising strategies to restrict sarcopenia, and improve the health of today's elderly population.
Collapse
Affiliation(s)
- Jonathan Peake
- The University of Queensland, School of Human Movement Studies, Brisbane, Australia.
| | | | | |
Collapse
|
32
|
Yamaguchi T, Suzuki T, Arai H, Tanabe S, Atomi Y. Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow. Am J Physiol Cell Physiol 2010; 298:C140-C148. [PMID: 19605738 DOI: 10.1152/ajpcell.00050.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Local hyperthermia has been widely used as physical therapy for a number of diseases such as inflammatory osteoarticular disorders, tendinitis, and muscle injury. Local hyperthermia is clinically applied to improve blood and lymphatic flow to decrease swelling of tissues (e.g., skeletal muscle). As for muscle repair following injury, the mechanisms underlying the beneficial effects of hyperthermia-induced muscle repair are unknown. In this study, we investigated the direct effects of continuous heat stress on the differentiation of cultured mammalian myoblasts. Compared with control cultures grown at 37 degrees C, incubation at 39 degrees C (continuous mild heat stress; CMHS) enhanced myotube diameter, whereas myotubes were poorly formed at 41 degrees C by primary human skeletal muscle culture cells, human skeletal muscle myoblasts (HSMMs), and C2C12 mouse myoblasts. In HSMMs and C2C12 cells exposed to CMHS, mRNA and protein levels of myosin heavy chain (MyHC) type I were increased compared with the control cultures. The mRNA level of MyHC IIx was unaltered in HSMMs and decreased in C2C12 cells, compared with cells that were not exposed to heat stress. These results indicated a fast-to-slow fiber-type shift in myoblasts. We also examined upstream signals that might be responsible for the fast-to-slow shift of fiber types. CMHS enhanced the mRNA and protein levels of peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha in HSMMS and C2C12 cells but not the activities of MAPKs (ERK1/2 and p38 MAPK) in HSMMs and C2C12 cells. These data suggest that CMHS induces a fast-to-slow fiber-type shift of mammalian myoblasts through PGC-1alpha.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Deptarment of Life Sciences, The Graduate School of Arts and Sciences, The Univ. of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | |
Collapse
|
33
|
Li YY, Ochs S, Gao ZR, Malo A, Chen CJ, Lv S, Gallmeier E, Göke B, Schäfer C. Regulation of HSP60 and the role of MK2 in a new model of severe experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 2009; 297:G981-9. [PMID: 20501446 DOI: 10.1152/ajpgi.00225.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objective of this study was to investigate the role of MAPKAP kinase 2 (MK2) and heat shock protein (HSP) HSP60 in the pathogenesis of a new model of severe acute pancreatitis (AP). MK2 plays a significant role in the regulation of cytokines. It has been shown that induction and expression of several HSPs can protect against experimental pancreatitis. Interplay between both systems seems of high interest. Mice with a homozygous deletion of the MK2 gene were used. Severe AP was induced by combined intraperitoneal injections of cerulein with lipopolysaccharide (LPS). Severity of AP was assessed by biochemical markers and histology. The serum IL-6 and lung myeloperoxidase (MPO) levels were determined for assessing the extent of systemic inflammatory response. Expression of HSP25, HSP60, HSP70, and HSP90 was analyzed by Western blotting. Repeated injections of cerulein alone or cerulein plus LPS (Cer+LPS) resulted in local inflammatory responses in the pancreas and corresponding systemic inflammatory changes with pronounced severity in the Cer+LPS group. Compared with the C57Bl wild-type mice, the MK2-/- mice presented with significant milder pancreatitis and attenuated responses of serum amylase and trypsinogen activity. Furthermore, serum IL-6 was decreased as well as lung MPO activity. Injection of LPS alone displayed neither pancreatic inflammatory responses nor alterations of pancreatic enzyme activities but evidently elevated serum IL-6 levels and increased lung MPO activity. In contrast hereto, in the MK2-/- mice, these changes were much milder. Increased expression of HSP25 and HSP60 occurred after induction of AP. Especially, HSP60 was robustly elevated after Cer+LPS treatment, in both MK2-/- and wild-type mice. Thus the homozygous deletion of the MK2 gene ameliorates the severity of acute pancreatitis and accompanying systemic inflammatory reactions in a new model of severe acute pancreatitis. Our data support the hypothesis that MK2 participates in the multifactorial regulation of early inflammatory responses in AP, independently of the regulation of stress proteins like HSP25 and HSP60 and most likely due to its effect on cytokine regulation.
Collapse
Affiliation(s)
- Yong-Yu Li
- Department of Pathophysiology, School of Medicine, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tucker NR, Ustyugov A, Bryantsev AL, Konkel ME, Shelden EA. Hsp27 is persistently expressed in zebrafish skeletal and cardiac muscle tissues but dispensable for their morphogenesis. Cell Stress Chaperones 2009; 14:521-33. [PMID: 19238587 PMCID: PMC2728285 DOI: 10.1007/s12192-009-0105-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 01/29/2009] [Accepted: 02/05/2009] [Indexed: 11/29/2022] Open
Abstract
Constitutive expression of Hsp27 has been demonstrated in vertebrate embryos, especially in developing skeletal and cardiac muscle. Results of several previous studies have indicated that Hsp27 could play a role in the development of these tissues. For example, inhibition of Hsp27 expression has been reported to cause defective development of mammalian myoblasts in vitro and frog embryos in vivo. In contrast, transgenic mice lacking Hsp27 develop normally. Here, we examined the distribution of Hsp27 protein in developing and adult zebrafish and effects of suppressing Hsp27 expression using phosphorodiamidate morpholino oligonucleotides (PMO) on zebrafish development. Consistent with our previous analysis of hsp27 messenger RNA expression, we detected the protein Hsp27 in cardiac, smooth, and skeletal muscle of both embryonic and adult zebrafish. However, embryos lacking detectable Hsp27 after injection of antisense hsp27 PMO exhibited comparable heart beat rates to that of control embryos and cardiac morphology was indistinguishable in the presence or absence of Hsp27. Loss of Hsp27 also had no effect on the structure of the skeletal muscle myotomes in the developing embryo. Finally, embryos injected with antisense hsp27 and scrambled control PMO displayed equal motility. We conclude that Hsp27 is dispensable for zebrafish morphogenesis but could play a role in long-term maintenance of heart and muscle tissues.
Collapse
Affiliation(s)
- Nathan R. Tucker
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164 USA
| | - Alexey Ustyugov
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164 USA
| | - Anton L. Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Michael E. Konkel
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164 USA
| | - Eric. A. Shelden
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164 USA
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
35
|
Doran P, Donoghue P, O'Connell K, Gannon J, Ohlendieck K. Proteomics of skeletal muscle aging. Proteomics 2009; 9:989-1003. [DOI: 10.1002/pmic.200800365] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Doran P, Gannon J, O'Connell K, Ohlendieck K. Aging skeletal muscle shows a drastic increase in the small heat shock proteins αB-crystallin/HspB5 and cvHsp/HspB7. Eur J Cell Biol 2007; 86:629-40. [PMID: 17761354 DOI: 10.1016/j.ejcb.2007.07.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/30/2007] [Accepted: 07/04/2007] [Indexed: 11/22/2022] Open
Abstract
Most heat shock proteins operate as molecular chaperones and play a central role in the maintenance of normal cellular function. In skeletal muscle, members of the alpha-crystallin domain-containing family of small heat shock proteins are believed to form a cohort of essential stress proteins. Since alphaB-crystallin (alphaBC/HspB5) and the cardiovascular heat shock protein (cvHsp/HspB7) are both implicated in the molecular response to fibre transformation and muscle wasting, it was of interest to investigate the fate of these stress proteins in young adult versus aged muscle. The age-related loss of skeletal muscle mass and strength, now generally referred to as sarcopenia, is one of the most striking features of the senescent organism. In order to better understand the molecular pathogenesis of age-related muscle wasting, we have performed a two-dimensional gel electrophoretic analysis, immunoblotting and confocal microscopy study of aged rat gastrocnemius muscle. Fluorescent labelling of the electrophoretically separated soluble muscle proteome revealed an overall relatively comparable protein expression pattern of young adult versus aged fibres, but clearly an up-regulation of alphaBC and cvHsp. This was confirmed by immunofluorescence microscopy and immunoblot analysis, which showed a dramatic age-induced increase in these small heat shock proteins. Immunodecoration of other major stress proteins showed that they were not affected or less drastically changed in their expression in aged muscle. These findings indicate that the increase in muscle-specific small heat shock proteins constitutes an essential cellular response to fibre aging and might therefore be a novel therapeutic option to treat sarcopenia of old age.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Biomarkers/analysis
- Disease Models, Animal
- Electrophoresis, Gel, Two-Dimensional
- Heat-Shock Proteins, Small/metabolism
- Immunoblotting
- Microscopy, Fluorescence
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Myocardium/metabolism
- Rats
- Rats, Wistar
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- alpha-Crystallin B Chain/metabolism
Collapse
Affiliation(s)
- Philip Doran
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|