1
|
Li Q, Liu Q, Lin Z, Lin W, Lin Z, Huang F, Zhu P. Comparison Between the Effect of Mid-Late-Life High-Intensity Interval Training and Continuous Moderate-Intensity Training in Old Mouse Hearts. J Gerontol A Biol Sci Med Sci 2025; 80:glaf025. [PMID: 39928548 PMCID: PMC11973967 DOI: 10.1093/gerona/glaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 02/12/2025] Open
Abstract
The impact of mid-late-life exercise on the aging heart remains unclear, particularly the effects of high-intensity interval training (HIIT) and continuous moderate-intensity training (CMIT). This study was the first to examine cardiac function, tissue characteristics, electrical remodeling, mitochondrial morphology, and homeostasis in old mice subjected to CMIT or HIIT, compared to untrained controls. Our results showed that 8-week HIIT significantly improved the survival rate of old mice. HIIT presented advantages on cardiac function, deposition of collagen fibers, neovascularization, aging biomarkers, and mitochondrial homeostasis. Only CMIT alleviated age-related cardiac hypertrophy. However, CMIT potentially exacerbated adverse cardiac electrical remodeling. Those findings suggested HIIT as a particularly appealing option for clinical application for aging populations.
Collapse
Affiliation(s)
- Qiaowei Li
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Qin Liu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhong Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenwen Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Zhonghua Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Feng Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Pengli Zhu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Rogina B, Anderson R, LeBrasseur NK, Curran SP, Yousefzadeh MJ, Ghosh B, Duque G, Howlett S, Austad S, Demuth I, Gerstorf D, Korfhage J, Lombard DB, Abadir P, Christensen K, Carey JR, Alberts SC, Campos F, Palavicini JP, Palmer A, Bell J, Basisty N, de Cabo R, Gomes A, Dixit VD, Sen P, Baur JA, Imai SI, Li X, Valdez G, Orr ME, Pletcher S, Andersen J, Jones L, Castillo-Azofeida D, Bonaguidi M, Suh Y, Duncan FE, Murray A, Wang MC, Burkewitz K, Henne M, Zhou K, Bouhrara M, Benjamini D, Kolind S, Walker KA, Reiter DA, Dean DC, Gorbunova V, Gladyshev VN, Palovics R, Niedernhofer LJ, Fan R, Bueckle AD, Hurley J, Esser KA, Kapahi P, Sato S, Jiang N, Ashiqueali SA, Diaz J, Mishra SP, Raimundo N, Banarjee R, Allsopp R, Reynolds LM, Zhang B, Sebastiani P, Monti S, Schork N, Rappaport N. Symposia Report of The Annual Biological Sciences Section Meeting of the Gerontological Society of America 2023, Tampa, Florida. J Gerontol A Biol Sci Med Sci 2025; 80:glaf026. [PMID: 39932386 PMCID: PMC12046124 DOI: 10.1093/gerona/glaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 05/03/2025] Open
Abstract
The aging process is universal, and it is characterized by a progressive deterioration and decrease in physiological function leading to decline on the organismal level. Nevertheless, a number of genetic and nongenetic interventions have been described, which successfully extend healthspan and lifespan in different species. Furthermore, a number of clinical trials have been evaluating the feasibility of different interventions to promote human health. The goal of the annual Biological Sciences Section of the Gerontological Society of America meeting was to share current knowledge of different topics in aging research and provide a vision of the future of aging research. The meeting gathered international experts in diverse areas of aging research including basic biology, demography, and clinical and translational studies. Specific topics included metabolism, inflammaging, epigenetic clocks, frailty, senescence, neuroscience, stem cells, reproductive aging, inter-organelle crosstalk, comparative transcriptomics of longevity, circadian clock, metabolomics, and biodemography.
Collapse
Affiliation(s)
- Blanka Rogina
- Genetics & Genome Sciences, University of Connecticut Health School of Medicine, Farmington, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut Health School of Medicine, Farmington, Connecticut, USA
| | - Rozalyn Anderson
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- GRECC, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Matthew J Yousefzadeh
- Columbia Center for Human Longevity, Department of Medicine, Columbia University, Columbia Irving Medical Center, New York, New York, USA
| | - Bhaswati Ghosh
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Susan Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Steven Austad
- Department of Biology, University of Alabama, Birmingham, Alabama, USA
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Denis Gerstorf
- Department of Psychology, Humboldt-University, Berlin, Germany
| | - Justin Korfhage
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
- Miami VA Healthcare System, Miami, Florida, USA
| | - David B Lombard
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
- Miami VA Healthcare System, Miami, Florida, USA
| | - Peter Abadir
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kaare Christensen
- Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - James R Carey
- Department of Entomology, University of California Davis, Davis, California, USA
| | - Susan C Alberts
- Department of Biology, Population Research Institute, Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Fernando Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Juan Pablo Palavicini
- Barshop Institute for Longevity and Aging Studies, San Antonio, Texas, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Allyson Palmer
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Justice Bell
- Claflin University, Orangeburg, South Carolina, USA
| | - Nathan Basisty
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Ana Gomes
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Payel Sen
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shin-ichiro Imai
- Developmental Biology and Medicine, Washington University, St. Louis, Missouri, USA
| | - Xiaoling Li
- Intramural Research Program, NIEHS, Research Triangle Park, North Carolina, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rode Island, USA
| | - Miranda E Orr
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- W. G. (Bill) Hefner VA Medical Center, Salisbury, North Carolina, USA
| | - Scott Pletcher
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Julie Andersen
- Buck Institute for Research on Aging, Novato, California, USA
| | - Leanne Jones
- Anatomy, University of California School of Medicine, San Francisco, California, USA
| | | | - Michael Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anna Murray
- Department of Clinical and Biomedical Science, University of Exeter, Exeter, UK
| | - Meng C Wang
- HHMI Janelia Research Campus, Ashburn, Virginia, USA
| | - Kristopher Burkewitz
- Department of Cell and Developmental Biology, Vanderbilt University, School of Medicine, Nashville, Tennessee, USA
| | - Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kai Zhou
- Buck Institute for Research on Aging, Novato, California, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Dan Benjamini
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Shannon Kolind
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - David A Reiter
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Douglas C Dean
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Vera Gorbunova
- Department of Biology and Medicine, University of Rochester, Rochester, New York, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Palovics
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Andreas D Bueckle
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Jennifer Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, California, USA
| | - Shogo Sato
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Nisi Jiang
- Cellular and Integrative Physiology, UT Health, San Antonio, Texas, USA
| | - Sarah A Ashiqueali
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Jose Diaz
- College of Health and Human Development, Penn State University, University Park, Pennsylvania, USA
| | - Sidharth Prasad Mishra
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, Florida, USA
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Reema Banarjee
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Richard Allsopp
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Lindsay M Reynolds
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paola Sebastiani
- Center for Quantitative Methods and Data Science, Tufts Medical Center, Boston, Massachusetts, USA
| | - Stefano Monti
- Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Nicholas Schork
- Division of Clinical Genomic and Therapeutics, Translational Genomic Institute (tgen), Phoenix, Arizona, USA
| | - Noa Rappaport
- Buck Institute for Research on Aging, Novato, California, USA
- Institute for Systems Biology, Seattle, Washington, USA
| |
Collapse
|
3
|
Xiao QX, Qin HY, Chen JJ, Fang CL, Wang QL, Li QJ, Zhu SY, Xiong LL. Multi-omics analysis reveals the potential mechanisms underlying long-term exercise-induced enhancement of learning and memory in male mice. Biogerontology 2025; 26:84. [PMID: 40159584 DOI: 10.1007/s10522-025-10225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Exercise is widely recognized for improving physical functions, learning, and memory. However, the mechanisms behind these effects are not fully understood. This study aims to investigate the potential mechanisms through which exercise enhances learning and memory in mice using multi-omics analysis. Twenty male C57BL/6J mice were divided into exercise and control groups. The exercise group underwent a 4-month treadmill training regimen (12 m/min). Learning and memory abilities were assessed using the Morris water maze test. Brain, serum, and fecal samples were collected for neurotransmitter analysis, serum metabolomics analysis, and gut microbiota analysis. Data from neurotransmitter and serum metabolomics analyses were integrated with gut microbiota analysis. For comparisons between the two groups, the independent sample t-test was employed. For comparisons involving multiple groups, a repeated measures one-way analysis of variance (ANOVA) with random unit group design was applied. Statistical significance was defined as P < 0.05. The Morris water maze test significantly improved learning and memory in the exercise group (P < 0.05). Neurotransmitter analysis revealed significant differences in cognitive function-related neurotransmitters and pathways between the exercise and control groups (P < 0.05). Serum metabolomics analysis identified differences in serum metabolites between the two groups, which were linked to key pathways involved in neural repair and cognitive function. Microbial sequencing showed greater gut microbiota diversity in the exercise group, with the most notable changes at the genus level, particularly in Allobaculum, A2, and Clostridium_sensu_stricto_1 (P < 0.05). Integrated analysis indicated correlations between changes in gut microbiota and serum metabolites associated with cognitive function. Long-term exercise enhances learning and memory in mice through multiple mechanisms, including neurotransmitter regulation, serum metabolite changes, and modulation of gut microbiota. These findings provide new insights into the neuroprotective effects of exercise.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Hao-Yue Qin
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Jun-Jie Chen
- Animal Zoology Department, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chang-Le Fang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Qiu-Lin Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Qi-Jun Li
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Shuai-Yu Zhu
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China.
| |
Collapse
|
4
|
Rose RA, Howlett SE. Preclinical Studies on the Effects of Frailty in the Aging Heart. Can J Cardiol 2024; 40:1379-1393. [PMID: 38460611 DOI: 10.1016/j.cjca.2024.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
Age is a major risk factor for the development of cardiovascular diseases in men and in women. However, not all people age at the same rate and those who are aging rapidly are considered frail, compared with their fit counterparts. Frailty is an important clinical challenge because those who are frail are more likely to develop and die from illnesses, including cardiovascular diseases, than fit people of the same age. This increase in susceptibility to cardiovascular diseases in older individuals might occur as the cellular and molecular mechanisms involved in the aging process facilitate structural and functional damage in the heart. Consistent with this, recent studies in murine frailty models have provided strong evidence that maladaptive cardiac remodelling in older mice is the most pronounced in mice with a high level of frailty. For example, there is evidence that ventricular hypertrophy and contractile dysfunction increase as frailty increases in aging mice. Additionally, fibrosis and slowing of conduction in the sinoatrial node and atria are proportional to the level of frailty. These modifications could predispose frail older adults to diseases like heart failure and atrial fibrillation. This preclinical work also raises the possibility that emerging interventions designed to "treat frailty" might also treat or prevent cardiovascular diseases. These findings might help to explain why frail older people are most likely to develop these disorders as they age.
Collapse
Affiliation(s)
- Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medicine (Geriatric Medicine), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
5
|
Liu TT, Pascal LE, Bauer SR, Miles HN, Panksepp JB, Lloyd GL, Li L, DeFranco DB, Ricke WA. Age-Dependent Effects of Voluntary Wheel Running Exercise on Voiding Behavior and Potential Age-Related Molecular Mechanisms in Mice. J Gerontol A Biol Sci Med Sci 2024; 79:glae007. [PMID: 38198648 PMCID: PMC11079951 DOI: 10.1093/gerona/glae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Older men frequently develop lower urinary tract symptoms attributed to benign prostatic hyperplasia (LUTS/BPH). Risk factors for LUTS/BPH include sedentary lifestyle, anxiety/depression, obesity, and frailty, which all increase with age. Although physical exercise may reduce the progression and/or severity of LUTS/BPH, the age-related mechanisms responsible remain unknown. METHODS Voiding symptoms, body mass, and frailty were assessed after 4-weeks of voluntary wheel running in 2-month (n = 10) and 24-month (n = 8) old C57Bl/6J male mice. In addition, various social and individual behaviors were examined in these cohorts. Finally, cellular and molecular markers of inflammation and mitochondrial protein expression were assessed in prostate tissue and systemically. RESULTS Despite running less (aged vs young X¯ = 12.3 vs 30.6 km/week; p = .04), aged mice had reduced voiding symptoms (X¯ = 67.3 vs 23.7; p < .0001) after 1 week of exercise, which was sustained through week 4 (X¯ = 67.3 vs 21.5; p < .0001). Exercise did not affect voiding symptoms in young mice. Exercise also increased mobility and decreased anxiety in both young and aged mice (p < .05). Exercise decreased expression of a key mitochondrial protein (PINK1; p < .05) and inflammation within the prostate (CD68; p < .05 and plasminogen activator inhibitor-1; p < .05) and in the serum (p < .05). However, a frailty index (X¯ = 0.17 vs 0.15; p = .46) and grip strength (X¯ = 1.10 vs 1.19; p = .24) were unchanged after 4 weeks of exercise in aged mice. CONCLUSIONS Voluntary aerobic exercise improves voiding behavior and mobility, and decreases prostatic mitochondrial protein expression and inflammation in aged mice. This promising model could be used to evaluate molecular mechanisms of aerobic exercise as a novel lifestyle intervention for older men with LUTS/BPH.
Collapse
Affiliation(s)
- Teresa T Liu
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Laura E Pascal
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott R Bauer
- Department of Medicine, Urology, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Hannah N Miles
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
- School of Pharmacy, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Jules B Panksepp
- Waisman Center, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Granville L Lloyd
- Division of Urology, Department of Surgery, Rocky Mountain Regional VA Medical Center, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin – Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William A Ricke
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Pajski ML, Byrd C, Nandigama N, Seguin E, Seguin A, Fennell A, Graber TG. Endurance exercise preserves physical function in adult and older male C57BL/6 mice: high intensity interval training (HIIT) versus voluntary wheel running (VWR). FRONTIERS IN AGING 2024; 5:1356954. [PMID: 38523671 PMCID: PMC10958787 DOI: 10.3389/fragi.2024.1356954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Exercise has been shown to improve physical function, mitigate aspects of chronic disease and to potentially alter the trajectory of age-related onset of frailty and sarcopenia. Reliable and valid preclinical models are necessary to elucidate the underlying mechanisms at the intersection of age, exercise, and functional decline. The purpose of this study was to compare, head to head, the effects of two common pre-clinical models of endurance exercise: high intensity interval training (HIIT) and voluntary wheel running (VWR). The hypothesis was that a prescribed and regimented exercise program, HIIT, would prove to be a superior training method to unregulated voluntary exercise, VWR. To investigate this hypothesis, we evaluated adult (n = 24, designated 10 m, aged 6 months at the beginning of the study, 10 months at its completion) and older adult (n = 18, designated 26 m, aging from 22 months to 26 months over the course of the study) C57BL/6 male mice. These mice were randomly assigned (with selection criteria) to a 13-week program of voluntary wheel running (VWR), high intensity interval training (HIIT), or sedentary control (SED). The functional aptitude of each mouse was determined pre- and post-training using our composite CFAB (comprehensive functional assessment battery) scoring system consisting of voluntary wheel running (volitional exercise and activity rate), treadmill (endurance), rotarod (overall motor function), grip meter (forelimb strength), and inverted cling (whole body strength/endurance). To measure sarcopenia, we tracked body mass, body composition (with EchoMRI), plantar flexor torque (in 10 m), and measured muscle wet mass post-training. Overall, adult CFAB scores decreased while body mass and percent body fat increased as they matured; however, exercise significantly mitigated the changes (p < 0.05) compared to SED. Older adults demonstrated preservation of function (CFAB) and reduced body fat (p < 0.05) compared to SED. To conclude, both types of exercise maintained physical function equally in older mice.
Collapse
Affiliation(s)
- Megan L. Pajski
- Department of Physical Therapy, East Carolina University, Greenville, NC, United States
| | - Chris Byrd
- Department of Physical Therapy, East Carolina University, Greenville, NC, United States
| | - Nainika Nandigama
- Department of Public Health, East Carolina University, Greenville, NC, United States
| | - Emily Seguin
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Anna Seguin
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Alyssa Fennell
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Ted G. Graber
- Department of Physical Therapy, East Carolina University, Greenville, NC, United States
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
- Department of Physiology, East Carolina University, Greenville, NC, United States
- East Carolina Obesity and Diabetes Institute, East Carolina University, Greenville, NC, United States
| |
Collapse
|
7
|
Marcos-Pérez D, Cruces-Salguero S, García-Domínguez E, Araúzo-Bravo MJ, Gómez-Cabrera MC, Viña J, Vergara I, Matheu A. Physical Interventions Restore Physical Frailty and the Expression of CXCL-10 and IL-1β Inflammatory Biomarkers in Old Individuals and Mice. Biomolecules 2024; 14:166. [PMID: 38397403 PMCID: PMC10886745 DOI: 10.3390/biom14020166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Frailty is a geriatric syndrome associated with negative health outcomes that represents a dynamic condition with a potential of reversibility after physical exercise interventions. Typically, inflammatory and senescence markers are increased in frail individuals. However, the impact that physical exercise exerts on inflammatory and senescence biomarkers remains unknown. We assessed the effect of physical intervention in old individuals and mice and determined the expression of inflammatory and senescence markers. METHODS Twelve elderly individuals were enrolled from a primary care setting to a 3-month intervention. Frailty was measured by SPPB and the expression of biomarkers by cytokine array and RT-qPCR. In addition, 12 aged C57BL/6 mice completed an intervention, and inflammation and senescence markers were studied. RESULTS The physical intervention improved the SPPB score, reducing frail and pre-frail individuals. This was correlated with a reduction in several pro-inflammatory biomarkers such as IL-6, CXCL-1, CXCL-10, IL-1β, IL-7, GM-CSF as well as p16INK4a and p21CIP1 senescence markers. Otherwise, the levels of anti-inflammatory biomarker IL-4 were significantly increased. Moreover, the physical intervention in mice also improved their functional capacity and restored the expression of inflammatory (Il-1β, Cxcl-10, Il-6, and Cxcl-1) and senescence (p21Cip1) markers. Additionally, PLSDA and ROC curve analysis revealed CXCL-10 and IL-1β to be the biomarkers of functional improvement in both cohorts. CONCLUSIONS Our results showed that a physical intervention improves physical frailty, and reverses inflammation and senescence biomarkers comprising CXCL-10 and IL-1β.
Collapse
Affiliation(s)
- Diego Marcos-Pérez
- Cellular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (D.M.-P.); (S.C.-S.)
| | - Sara Cruces-Salguero
- Cellular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (D.M.-P.); (S.C.-S.)
| | - Esther García-Domínguez
- Freshage Research Group, Faculty of Medicine, Fundación Investigación Hospital Clínico Universitario/Health Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain; (E.G.-D.); (M.C.G.-C.); (J.V.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Mari Carmen Gómez-Cabrera
- Freshage Research Group, Faculty of Medicine, Fundación Investigación Hospital Clínico Universitario/Health Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain; (E.G.-D.); (M.C.G.-C.); (J.V.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
| | - José Viña
- Freshage Research Group, Faculty of Medicine, Fundación Investigación Hospital Clínico Universitario/Health Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain; (E.G.-D.); (M.C.G.-C.); (J.V.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
| | - Itziar Vergara
- Primary Care Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain;
| | - Ander Matheu
- Cellular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (D.M.-P.); (S.C.-S.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
9
|
Shin P, Pian Q, Ishikawa H, Hamanaka G, Mandeville ET, Guo S, Fu B, Alfadhel M, Allu SR, Şencan-Eğilmez I, Li B, Ran C, Vinogradov SA, Ayata C, Lo E, Arai K, Devor A, Sakadžić S. Aerobic exercise reverses aging-induced depth-dependent decline in cerebral microcirculation. eLife 2023; 12:e86329. [PMID: 37402178 PMCID: PMC10319437 DOI: 10.7554/elife.86329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Aging is a major risk factor for cognitive impairment. Aerobic exercise benefits brain function and may promote cognitive health in older adults. However, underlying biological mechanisms across cerebral gray and white matter are poorly understood. Selective vulnerability of the white matter to small vessel disease and a link between white matter health and cognitive function suggests a potential role for responses in deep cerebral microcirculation. Here, we tested whether aerobic exercise modulates cerebral microcirculatory changes induced by aging. To this end, we carried out a comprehensive quantitative examination of changes in cerebral microvascular physiology in cortical gray and subcortical white matter in mice (3-6 vs. 19-21 months old), and asked whether and how exercise may rescue age-induced deficits. In the sedentary group, aging caused a more severe decline in cerebral microvascular perfusion and oxygenation in deep (infragranular) cortical layers and subcortical white matter compared with superficial (supragranular) cortical layers. Five months of voluntary aerobic exercise partly renormalized microvascular perfusion and oxygenation in aged mice in a depth-dependent manner, and brought these spatial distributions closer to those of young adult sedentary mice. These microcirculatory effects were accompanied by an improvement in cognitive function. Our work demonstrates the selective vulnerability of the deep cortex and subcortical white matter to aging-induced decline in microcirculation, as well as the responsiveness of these regions to aerobic exercise.
Collapse
Affiliation(s)
- Paul Shin
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Qi Pian
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Buyin Fu
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Mohammed Alfadhel
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Department of Bioengineering, Northeastern UniversityBostonUnited States
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
- Department of Chemistry, University of PennsylvaniaPhiladelphiaUnited States
| | - Ikbal Şencan-Eğilmez
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Biophotonics Research Center, Mallinckrodt Institute of Radiology, Department of Radiology, Washington University School of MedicineSt. LouisUnited States
| | - Baoqiang Li
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Chongzhao Ran
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
- Department of Chemistry, University of PennsylvaniaPhiladelphiaUnited States
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Eng Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Anna Devor
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Sava Sakadžić
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| |
Collapse
|
10
|
Farrell S, Kane AE, Bisset E, Howlett SE, Rutenberg AD. Measurements of damage and repair of binary health attributes in aging mice and humans reveal that robustness and resilience decrease with age, operate over broad timescales, and are affected differently by interventions. eLife 2022; 11:e77632. [PMID: 36409200 PMCID: PMC9725749 DOI: 10.7554/elife.77632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
As an organism ages, its health-state is determined by a balance between the processes of damage and repair. Measuring these processes requires longitudinal data. We extract damage and repair transition rates from repeated observations of binary health attributes in mice and humans to explore robustness and resilience, which respectively represent resisting or recovering from damage. We assess differences in robustness and resilience using changes in damage rates and repair rates of binary health attributes. We find a conserved decline with age in robustness and resilience in mice and humans, implying that both contribute to worsening aging health - as assessed by the frailty index (FI). A decline in robustness, however, has a greater effect than a decline in resilience on the accelerated increase of the FI with age, and a greater association with reduced survival. We also find that deficits are damaged and repaired over a wide range of timescales ranging from the shortest measurement scales toward organismal lifetime timescales. We explore the effect of systemic interventions that have been shown to improve health, including the angiotensin-converting enzyme inhibitor enalapril and voluntary exercise for mice. We have also explored the correlations with household wealth for humans. We find that these interventions and factors affect both damage and repair rates, and hence robustness and resilience, in age and sex-dependent manners.
Collapse
Affiliation(s)
| | - Alice E Kane
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical SchoolBostonUnited States
| | - Elise Bisset
- Department of Pharmacology, Dalhousie UniversityHalifaxCanada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie UniversityHalifaxCanada
- Department of Medicine (GeriatricMedicine), Dalhousie UniversityHalifaxCanada
| | - Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie UniversityHalifaxCanada
| |
Collapse
|
11
|
Affiliation(s)
- Elise S Bisset
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
12
|
Bisset ES, Howlett SE. The Use of Dietary Supplements and Amino Acid Restriction Interventions to Reduce Frailty in Pre-Clinical Models. Nutrients 2022; 14:2806. [PMID: 35889763 PMCID: PMC9316446 DOI: 10.3390/nu14142806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Frailty is a state of accelerated aging that increases susceptibility to adverse health outcomes. Due to its high societal and personal costs, there is growing interest in discovering beneficial interventions to attenuate frailty. Many of these interventions involve the use of lifestyle modifications such as dietary supplements. Testing these interventions in pre-clinical models can facilitate our understanding of their impact on underlying mechanisms of frailty. We conducted a narrative review of studies that investigated the impact of dietary modifications on measures of frailty or overall health in rodent models. These interventions include vitamin supplements, dietary supplements, or amino acid restriction diets. We found that vitamins, amino acid restriction diets, and dietary supplements can have beneficial effects on frailty and other measures of overall health in rodent models. Mechanistic studies show that these effects are mediated by modifying one or more mechanisms underlying frailty, in particular effects on chronic inflammation. However, many interventions do not measure frailty directly and most do not investigate effects in both sexes, which limits their applicability. Examining dietary interventions in animal models allows for detailed investigation of underlying mechanisms involved in their beneficial effects. This may lead to more successful, translatable interventions to attenuate frailty.
Collapse
Affiliation(s)
- Elise S. Bisset
- Department of Pharmacology, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada;
| | - Susan E. Howlett
- Department of Pharmacology, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada;
- Department of Medicine (Geriatric Medicine), Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
13
|
Frailty in rodents: Models, underlying mechanisms, and management. Ageing Res Rev 2022; 79:101659. [PMID: 35660004 DOI: 10.1016/j.arr.2022.101659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
Abstract
Frailty is a clinical geriatric syndrome characterized by decreased multisystem function and increased vulnerability to adverse outcomes. Although numerous studies have been conducted on frailty, the underlying mechanisms and management strategies remain unclear. As rodents share homology with humans, they are used extensively as animal models to study human diseases. Rodent frailty models can be classified broadly into the genetic modification and non-genetic modification models, the latter of which include frailty assessment models (based on the Fried frailty phenotype and frailty index methods) and induced frailty models. Such models were developed for use in investigating frailty-related physiological changes at the gene, cellular, molecular, and system levels, including the organ system level. Furthermore, exercise, diet, and medication interventions, in addition to their combinations, could improve frailty status in rodents. Rodent frailty models provide novel and effective tools for frailty research. In the present paper, we review research progress in rodent frailty models, mechanisms, and management, which could facilitate and guide further clinical research on frailty in older adults.
Collapse
|
14
|
Mach J, Kane AE, Howlett SE, Sinclair DA, Hilmer SN. Applying the AFRAID and FRIGHT clocks to novel preclinical mouse models of polypharmacy. J Gerontol A Biol Sci Med Sci 2022; 77:1304-1312. [PMID: 35313348 PMCID: PMC9255695 DOI: 10.1093/gerona/glac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 11/28/2022] Open
Abstract
The Frailty Inferred Geriatric Health Timeline (FRIGHT) and Analysis of Frailty and Death (AFRAID) clocks were developed to predict biological age and lifespan, respectively, in mice. Their utility within the context of polypharmacy (≥5 medications), which is very common in older adults, is unknown. In male C57BL/6J(B6) mice administered chronic polypharmacy, monotherapy, and undergoing treatment cessation (deprescribing), we aimed to compare these clocks between treatment groups; investigate whether treatment affected correlation of these clocks with mortality; and explore factors that may explain variation in predictive performance. Treatment (control, polypharmacy, or monotherapy) commenced from age 12 months. At age 21 months, each treatment group was subdivided to continue treatment or have it deprescribed. Frailty index was assessed and informed calculation of the clocks. AFRAID, FRIGHT, frailty index, and mortality age did not differ between continued treatment groups and control. Compared to continued treatment, deprescribing some treatments had inconsistent negative impacts on some clocks and mortality. FRIGHT and frailty index, but not AFRAID, were associated with mortality. The bias and precision of AFRAID as a predictor of mortality varied between treatment groups. Effects of deprescribing some drugs on elements of the clocks, particularly on weight loss, contributed to bias. Overall, in this cohort, FRIGHT and AFRAID measures identified no treatment effects and limited deprescribing effects (unsurprising as very few effects on frailty or mortality), with variable prediction of mortality. These clocks have utility, but context is important. Future work should refine them for intervention studies to reduce bias from specific intervention effects.
Collapse
Affiliation(s)
- John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Faculty of Medicine and Health, The University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Alice E Kane
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA
| | - Susan E Howlett
- Departments of Pharmacology and Medicine (Geriatric Medicine), Dalhousie University, Halifax, Canada
| | - David A Sinclair
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA
| | - Sarah N Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Faculty of Medicine and Health, The University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|