1
|
Memel Z, Gold SL, Pearlman M, Muratore A, Martindale R. Impact of GLP- 1 Receptor Agonist Therapy in Patients High Risk for Sarcopenia. Curr Nutr Rep 2025; 14:63. [PMID: 40289060 DOI: 10.1007/s13668-025-00649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE OF REVIEW Glucagon-like peptide- 1 receptor agonists (GLP- 1 RA) are a rapidly expanding class of medications used to treat many chronic diseases. This review explores factors that may contribute to accelerated muscle loss among higher-risk patient populations and describes tailored interventions to reduce the risk of accelerated sarcopenia and frailty. RECENT FINDINGS While GLP- 1 RA can result in total weight loss upwards of 25%, recent studies show that they can also lead to significant loss of lean body mass, reaching as high as 15-40% of total weight lost. This rapid and significant decline in muscle mass while taking GLP- 1 RA places certain patient populations already predisposed to sarcopenia at higher risk for muscle loss and adverse events. Currently, there is insufficient evidence delving into the impact of GLP- 1 RA on body composition among older adults, patients with chronic kidney disease, liver disease, and inflammatory bowel disease. However, research suggests that a high protein diet and resistance training may help prevent loss of muscle mass during GLP- 1 RA usage. A targeted and individualized nutrition and physical activity regimen should be instituted for each patient with a focus on optimizing protein intake and performing frequent resistance training in order to minimize loss of muscle mass while promoting the loss of fat mass. Future research should evaluate the impact of GLP- 1 RA on sarcopenia in high-risk patient populations.
Collapse
Affiliation(s)
- Zoe Memel
- Department of Gastroenterology, University of California San Francisco, San Francisco, California, USA
| | - Stephanie L Gold
- Department of Gastroenterology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Michelle Pearlman
- Gastroenterologist and Obesity Medicine Specialist, Co-Founder Prime Institute, Coral Gables, Florida, USA
| | - Alicia Muratore
- Department of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Martindale
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Zhang H, Liu TT, Ricke EA, Ricke WA. Prostatic androgen receptor signaling shows an age-related and lobe-specific alteration in mice. Sci Rep 2024; 14:30302. [PMID: 39638850 PMCID: PMC11621416 DOI: 10.1038/s41598-024-79879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is an age-related disease that affects millions of aging males globally. While the pathogenesis of BPH remains incompletely understood, emerging evidence suggests a pivotal role for the androgen receptor (AR) in mediating prostate growth and function. Understanding age-related AR signaling alteration may inform novel BPH treatments. Here, we analyzed the prostatic protein expressions of AR, NKX3.1, and Ki-67 in young (2 months) and aged (24 months) mice. We also examined the potential mechanism of AR protein expression. Compared to young mice, decreased AR and NKX3.1 protein expression was observed in the anterior prostate (AP) and ventral prostate (VP) of aged mice, indicating reduced AR signaling in these prostate lobes. Additionally, we observed decreased protein expression of proliferation maker Ki-67 in aged AP, VP, and dorsal-lateral prostate (DLP), with no difference in apoptosis as compared to young counterparts. We conclude that prostatic androgen receptor signaling shows an age-related and lobe-specific alteration in mice.
Collapse
Affiliation(s)
- Han Zhang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Teresa T Liu
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Emily A Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - William A Ricke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- George M. O'Brien Urology Research Center of Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
3
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Cho SJ, Jung S, Lee MY, Park CH. Sex-Specific Association of Low Muscle Mass with Depression Status in Asymptomatic Adults: A Population-Based Study. Brain Sci 2024; 14:1093. [PMID: 39595856 PMCID: PMC11591987 DOI: 10.3390/brainsci14111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The objective of this study was to examine the correlation between low muscle mass (LMM) and depression, with a specific focus on identifying the sex-specific relationship between LMM and depression in a large sample. METHODS This population-based cross-sectional study involved 292,922 community-dwelling adults from 2012 to 2019. Measurements were taken using the Center for Epidemiological Studies Depression (CESD) scale and body composition analyses. Depression was defined as a CESD score ≥ 16, and severe depression as a CESD score ≥ 22. LMM was defined as an appendicular muscle mass/height2 below 7.0 kg/m2 in men and below 5.4 kg/m2 in women. Sex-based multivariable logistic regression analyzed the LMM-depression association, adjusting for confounders, with depression status and severe depression status as dependent variables. RESULTS Both men and women in the LMM group had an increased odds of depression (men, adjusted odds ratio = 1.13 [95% confidence interval = 1.03-1.12]; women, 1.07 [1.03-1.23]) and severe depression (men, 1.20 [1.05-1.36]; women, 1.10 [1.04-1.15]) compared to those in the control group. Men showed a stronger association between LMM and the presence of depression (p for interaction = 0.025) and the presence of severe depression (p for interaction = 0.025) compared to women. CONCLUSIONS Decreased muscle mass was independently associated with increased chances of depression and severe depression in both sexes, with a significantly stronger association in men compared to women. This highlights the potential significance of LMM as a predictor of depression, particularly in men.
Collapse
Affiliation(s)
- Sung Joon Cho
- Department of Psychiatry, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea;
- Workplace Mental Health Institute, Kangbuk Samsung Hospital, Seoul 04514, Republic of Korea
| | - Sra Jung
- Department of Psychiatry, CHA University Ilsan CHA Hospital, Goyang-si 10414, Republic of Korea;
| | - Mi-Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea;
| | - Chul Hyun Park
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| |
Collapse
|
5
|
Sakai H, Imai Y. Cell-specific functions of androgen receptor in skeletal muscles. Endocr J 2024; 71:437-445. [PMID: 38281756 DOI: 10.1507/endocrj.ej23-0691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Androgens play a vital role not only in promoting the development of male sexual characteristics but also in exerting diverse physiological effects, including the regulation of skeletal muscle growth and function. Given that the effects of androgens are mediated through androgen receptor (AR) binding, an understanding of AR functionality is crucial for comprehending the mechanisms of androgen action on skeletal muscles. Drawing from insights gained using conditional knockout mouse models facilitated by Cre/loxP technology, we review the cell-specific functions of AR in skeletal muscles. We focus on three specific cell populations expressing AR within skeletal muscles: skeletal muscle cells, responsible for muscle contraction; satellite cells, which are essential stem cells contributing to the growth and regeneration of skeletal muscles; and mesenchymal progenitors, situated in interstitial areas and playing a crucial role in muscle homeostasis. Furthermore, the indirect effects of androgens on skeletal muscle through extra-muscle tissue are essential, especially for the regulation of skeletal muscle mass. The regulation of genes by AR varies across different cell types and contexts, including homeostasis, regeneration and hypertrophy of skeletal muscles. The varied mechanisms orchestrated by AR collectively influence the physiology of skeletal muscles.
Collapse
Affiliation(s)
- Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| |
Collapse
|
6
|
Tamura Y, Kawashima T, Ji R, Agata N, Itoh Y, Kawakami K. Histological and biochemical changes in lymphatic vessels after skeletal muscle injury induced by lengthening contraction in male mice. Physiol Rep 2024; 12:e15950. [PMID: 38355142 PMCID: PMC10866689 DOI: 10.14814/phy2.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Lymphatic vessels are actively involved in the recovery process of inflamed tissues. However, the changes in intramuscular lymphatic vessels during inflammation caused by skeletal muscle injury remain unclear. Therefore, the purpose of this study was to clarify the changes in lymphatic vessels after skeletal muscle injury. The left tibialis anterior muscles of male mice were subjected to lengthening contractions (LC) for inducing skeletal muscle injury, and samples were collected on Days 2, 4, and 7 for examining changes in both the skeletal muscles and intramuscular lymphatic vessels. With hematoxylin-eosin staining, the inflammatory response was observed in myofibers on Days 2 and 4 after LC, whereas regeneration of myofibers was found on Day 7 after LC. The number and area of intramuscular lymphatic vessels analyzed by immunohistochemical staining with an antibody against lymphatic vessel endothelial hyaluronan receptor 1 were significantly increased only on Day 4 after LC. Based on the abovementioned results, intramuscular lymphatic vessels undergo morphological changes such as increase under the state of muscle inflammation. This study demonstrated that the morphology of intramuscular lymphatic vessels undergoes significant changes during the initial recovery phase following skeletal muscle injury.
Collapse
Affiliation(s)
- Yuma Tamura
- Physical Therapy Research Field, Graduate School of MedicineOita UniversityYufuJapan
| | - Takafumi Kawashima
- Department of RehabilitationAkeno‐Central HospitalOitaJapan
- Faculty of Welfare and Health ScienceOita UniversityOitaJapan
| | - Rui‐Cheng Ji
- Physical Therapy Research Field, Graduate School of MedicineOita UniversityYufuJapan
- Faculty of Welfare and Health ScienceOita UniversityOitaJapan
| | - Nobuhide Agata
- Faculty of Health and Medical SciencesTokoha UniversityHamamatsuJapan
| | - Yuta Itoh
- Faculty of Rehabilitation ScienceNagoya Gakuin UniversityNagoyaJapan
| | - Keisuke Kawakami
- Physical Therapy Research Field, Graduate School of MedicineOita UniversityYufuJapan
- Faculty of Welfare and Health ScienceOita UniversityOitaJapan
| |
Collapse
|
7
|
Issertine M, Rosa‐Calwell ME, Sung D, Bouxsein ML, Rutkove SB, Mortreux M. Adaptation to full weight-bearing following disuse in rats: The impact of biological sex on musculoskeletal recovery. Physiol Rep 2024; 12:e15938. [PMID: 38383049 PMCID: PMC10881285 DOI: 10.14814/phy2.15938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 02/23/2024] Open
Abstract
With the technological advances made to expand space exploration, astronauts will spend extended amounts of time in space before returning to Earth. This situation of unloading and reloading influences human physiology, and readaptation to full weight-bearing may significantly impact astronauts' health. On Earth, similar situations can be observed in patients who are bedridden or suffer from sport-related injuries. However, our knowledge of male physiology far exceeds our knowledge of female's, which creates an important gap that needs to be addressed to understand the sex-based differences regarding musculoskeletal adaptation to unloading and reloading, necessary to preserve health of both sexes. Using a ground-based model of total unloading for 14 days and reloading at full weight-bearing for 7 days rats, we aimed to compare the musculoskeletal adaptations between males and females. Our results reveal the existence of significant differences. Indeed, males experienced bone loss both during the unloading and the reloading period while females did not. During simulated microgravity, males and females showed comparable muscle deconditioning with a significant decline in rear paw grip strength. However, after 7 days of recovery, muscle strength improved. Additionally, sex-based differences in myofiber size existing at baseline are significantly reduced or eliminated following unloading and recovery.
Collapse
Affiliation(s)
- Margot Issertine
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Megan E. Rosa‐Calwell
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Dong‐Min Sung
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Mary L. Bouxsein
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of Orthopedic SurgeryBeth Israel Deaconess Medical Center, Center for Advanced Orthopaedic StudiesBostonMassachusettsUSA
| | - Seward B. Rutkove
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Marie Mortreux
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of NutritionUniversity of Rhode IslandKingstonRhode IslandUSA
| |
Collapse
|
8
|
Rizk J, Sahu R, Duteil D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 2023; 199:109306. [PMID: 37634653 DOI: 10.1016/j.steroids.2023.109306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Androgens are a class of steroid hormones primarily associated with male sexual development and physiology, but exert pleiotropic effects in either sex. They have a crucial role in various physiological processes, including the regulation of skeletal muscle and adipose tissue homeostasis. The effects of androgens are mainly mediated through the androgen receptor (AR), a ligand-activated nuclear receptor expressed in both tissues. In skeletal muscle, androgens via AR exert a multitude of effects, ranging from increased muscle mass and strength, to the regulation of muscle fiber type composition, contraction and metabolic functions. In adipose tissue, androgens influence several processes including proliferation, fat distribution, and metabolism but they display depot-specific and organism-specific effects which differ in certain context. This review further explores the potential mechanisms underlying androgen-AR signaling in skeletal muscle and adipose tissue. Understanding the roles of androgens and their receptor in skeletal muscle and adipose tissue is essential for elucidating their contributions to physiological processes, disease conditions, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joe Rizk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
9
|
Barsky ST, Monks DA. Androgen action on myogenesis throughout the lifespan; comparison with neurogenesis. Front Neuroendocrinol 2023; 71:101101. [PMID: 37669703 DOI: 10.1016/j.yfrne.2023.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023]
Abstract
Androgens' pleiotropic actions in promoting sex differences present not only a challenge to providing a comprehensive account of their function, but also an opportunity to gain insights by comparing androgenic actions across organ systems. Although often overlooked by neuroscientists, skeletal muscle is another androgen-responsive organ system which shares with the nervous system properties of electrochemical excitability, behavioral relevance, and remarkable capacity for adaptive plasticity. Here we review androgenic regulation of mitogenic plasticity in skeletal muscle with the goal of identifying areas of interest to those researching androgenic mechanisms mediating sexual differentiation of neurogenesis. We use an organizational-activational framework to relate broad areas of similarity and difference between androgen effects on mitogenesis in muscle and brain throughout the lifespan, from early organogenesis, through pubertal organization, adult activation, and aging. The focus of the review is androgenic regulation of muscle-specific stem cells (satellite cells), which share with neural stem cells essential functions in development, plasticity, and repair, albeit with distinct, muscle-specific features. Also considered are areas of paracrine and endocrine interaction between androgen action on muscle and nervous system, including mediation of neural plasticity of innervating and distal neural populations by muscle-produced trophic factors.
Collapse
Affiliation(s)
- Sabrina Tzivia Barsky
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario, Canada.
| | - Douglas Ashley Monks
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, Faculty of Arts & Science, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
10
|
Guo Y, Zhao H, Wang F, Xu H, Liu X, Hu T, Wu D. Telomere length as a marker of changes in body composition and fractures-an analysis of data from the NHANES 2001-2002. Front Immunol 2023; 14:1181544. [PMID: 37744360 PMCID: PMC10514483 DOI: 10.3389/fimmu.2023.1181544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose There has been an association between changes in body composition, fracture incidence, and age in previous studies. Telomere length (TL) has been proposed as a biomarker of aging. However, the relationship between body composition, fractures, and TL has rarely been studied. Therefore, this study aimed to investigate the correlation between TL and body composition and fractures.Patients and methods: 20950 participants from the 2001-2002 National Health and Nutrition Examination Survey (NHANES) were included in the final analysis. In NHANES, body compositions were measured with DXA, and TL was determined with quantitative PCR. Correlation analysis of TL and body composition was conducted using multivariate weighted linear regression and logistic regression models. Results The results showed that TL positively correlated with bone mineral density (BMD) and bone mineral content (BMC) in most body parts. However, BMD and BMC were negatively connected with TL in the upper limbs and skull. Fat content was negatively associated with TL, while muscle content was positively linked to TL. In addition, TL's trend analysis results were consistent with the regression model when transformed from a continuous to a classified variable. An increase in TL was associated with a higher incidence of wrist fractures, while a decrease in spine fractures. The above correlation also has a certain degree of sex specificity. Conclusion Our study indicate that TL is associated with body composition as well as fractures, but further research is needed to confirm these contrasting associations in the skull, upper limbs, and wrists.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
You J, Barai P, Chen J. Sex differences in skeletal muscle size, function, and myosin heavy chain isoform expression during post-injury regeneration in mice. Physiol Rep 2023; 11:e15791. [PMID: 37620103 PMCID: PMC10449603 DOI: 10.14814/phy2.15791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Skeletal muscle regeneration is an essential process to restore muscle function after injury and is influenced by various factors. Despite the known importance of sex hormones in muscle regeneration, whether and what sex difference exists in this process is still unclear. In this study, we provide evidence for a clear sex difference in muscle regeneration in mice. At 7 and 14 days after barium chloride-induced muscle injury, female mice showed a faster recovery of muscle fiber size than males. Consistently, muscle force in female mice was restored faster than in males after injury, and this functional difference was maintained at 14 months of age when regenerative capacity declined. Myosin heavy chain isoform profiling and fatigability test revealed dynamic remodeling of myosin heavy chain isoform expression including a type IIB to IIA/X MHC transition and reduced fatigability in regenerated muscles compared to uninjured muscles. A significant sex difference was detected in myosin heavy chain IIX content, although this did not lead to different fatigability. Together, our results suggest that sex is an important determinant of the recovery of regenerating skeletal muscle and is partially involved in the remodeling of myosin heavy chain isoforms during muscle regeneration.
Collapse
Affiliation(s)
- Jae‐Sung You
- Department of Cell and Developmental BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of BioengineeringUniversity of Illinois at Urbana–ChampaignUrbanaIllinoisUSA
- Nick J. Holonyak Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana–ChampaignUrbanaIllinoisUSA
| | - Pallob Barai
- Department of Cell and Developmental BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Jie Chen
- Department of Cell and Developmental BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
12
|
Yuneldi RF, Airin CM, Saragih HTS, Sarmin S, Astuti P, Alimon AR. Growth, pectoralis muscle performance, and testis of pelung cockerels (Gallus gallus gallus [Linnaeus, 1758]) supplemented with blood clam shell powder (Anadara granosa [Linnaeus, 1758]). Vet World 2023; 16:474-482. [PMID: 37041827 PMCID: PMC10082742 DOI: 10.14202/vetworld.2023.474-482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/27/2023] [Indexed: 03/19/2023] Open
Abstract
Background and Aim: Pelung cockerels (Gallus gallus gallusGallus gallus gallus [Linnaeus, 1758]) are different from other native cockerels in that they have a long and unique voice, in addition to their tall, large, and sturdy body with a relatively heavy body weight (BW). The sound quality of pelung cockerels is affected by the structure of the syrinx and their large and strong chest muscles. The performance of the chest muscles, and subsequently its voice, is influenced by the hormone testosterone. The shell of blood clams (Anadara granosa Linnaeus, 1758), a saltwater bivalve is known to contain a natural aromatase blocker (NAB) capable of blocking the aromatase enzyme from converting testosterone to estradiol. This generates consistently high levels of testosterone. This study aimed to determine the effect of blood clam shell powder (BCSP) as an NAB on the growth, pectoralis muscle performance, and testes of pelung cockerels.
Materials and Methods: The study design was a completely randomized design, with 16 pelung cockerels aged 40–56 weeks divided into four treatment groups: T0 (control); T1 (BCSP [A. granosa] 0.9 mg/kg BW); T2 (zinc sulfate [ZnSO4] 0.9 mg/kg BW); and T3 (testosterone 3 mg/day). The animals were acclimatized for 7 days and then given dietary treatments for 56 days. The measurement of the comb, wattle, and chest circumference (CC) of pelung cockerels was performed on days 0, 14, 28, 42, and 56. At the end of the treatment, the pelung cockerels were sacrificed and the data of the pectoralis muscle weight (PMW), testis weight (TW), and area of the pectoralis muscle (APM) were measured. Samples of pectoralis muscle and testes were taken and fixed in 10% neutral buffer formalin for histology. The proliferating cell nuclear antigen (PCNA) was identified by immunohistochemical staining. To measure fascicle area (FA), myofiber area (MA), and enumerate, the fascicle myofibers (NM) histology preparations were stained with hematoxylin and eosin (H and E). Testicular preparations were stained with H and E to measure the diameter of the seminiferous tubules (DST) using ImageJ software.
Results: The growth performance on day 56 showed significantly (p < 0.05) higher differences of CC in T1 compared to T2 and T0, in T1 and T3 compared to T0, and in T3 and T2 compared to T0. Pectoralis muscle results, that is, FA, NM, MA, and PCNA-positive cells, showed that cockerels on treatment T3 had significantly higher results than other treatments, T1 was significantly different from T2 and T0, and T2 was significantly different from T0. In addition, the TW and DST measurement of cockerels on treatment T3 were significantly reduced (p < 0.05) than the other treatment groups.
Conclusion: The oral administration of BCSP in the role of a NAB at a dose of 0.9 mg/kg BW for 56 days improved the growth performance and pectoralis muscle, especially the CC, FA, NM, MA, and PCNA-positive cells parameters, but did not affect the PMW, APM, and testis of pelung cockerels. The administration of testosterone at 3 mg/day for 56 days contributed to the decrease in TW and DST, as well as atrophy of the seminiferous tubules of pelung cockerels.
Keywords: growth performance, muscle, natural aromatase blocker, pelung, testis.
Collapse
Affiliation(s)
- Rizki Fitrawan Yuneldi
- Post-Doctoral Program, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Claude Mona Airin
- Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hendry T. S. Saragih
- Laboratory of Animal Development Structure, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sarmin Sarmin
- Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Pudji Astuti
- Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Abdul Razak Alimon
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Yang Y, Deng S, Wang C, Wang Y, Shi Y, Lin J, Wang N, Su L, Yang F, Wang H, Zhu S. Association of Dental Caries with Muscle Mass, Muscle Strength, and Sarcopenia: A Community-Based Study. J Nutr Health Aging 2023; 27:10-20. [PMID: 36651482 DOI: 10.1007/s12603-022-1875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Changes in the oral cavity can reflect other changes throughout the body. This study aimed to investigate the association of dental caries with muscle mass, muscle strength, and sarcopenia, and also to describe the microbial diversity, composition, and community structure of severe dental caries and sarcopenia. DESIGN Cross-sectional study based on a Chinese population aged from 50 to 85 years. SETTING Communities from Lanxi City, Zhejiang Province, China. PARTICIPANTS A total of 1,442 participants aged from 50 to 85 years from a general community (62.8% women; median age 61.0 [interquartile range: 55.0, 68.0]). MEASUREMENTS Dental caries was assessed by the decayed, missing, and filled teeth (DMFT) index. Sarcopenia was defined as the presence of both low muscle mass (assessed by dual-energy X-ray absorptiometry scanning) and low muscle strength (assessed by handgrip strength). Multivariate logistic regression models were used to analyze the association of dental caries with muscle mass, muscle strength, and sarcopenia. Fecal samples underwent 16S rRNA profiling to evaluate the diversity and composition of the gut microbiota in patients with severe dental caries and/or sarcopenia. RESULTS In the fully adjusted logistic models, dental caries was positively associated with low muscle strength (DMFT ≥ 7: OR, 1.61; 95% CI, 1.25-2.06), and sarcopenia (DMFT ≥ 7: OR, 1.51; 95% CI, 1.01-2.26), but not low muscle mass. Severe dental caries was positively associated with higher alpha-diversity indices (richness, chao1, and ACE, all p < 0.05) and associated with beta-diversity based on Bray-Curtis distance (p = 0.006). The severe dental caries group and the sarcopenia group overlapped with 11 depleted and 13 enriched genera. CONCLUSION Dental caries was positively associated with low muscle strength and sarcopenia but not muscle mass, and this association was more pronounced in male individuals. Significant differences were observed in gut microbiota composition both in severe dental caries and sarcopenia, and there was an overlap of the genera features. Future longitudinal studies are needed to clarify causal relationships.
Collapse
Affiliation(s)
- Y Yang
- Dr. Huiming Wang, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, North Qiutao Road No.166, Hangzhou, Zhejiang, China, ; Tel: 13858092696; Fax: 0571-87217433; Dr. Shankuan Zhu, Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; ; Tel : +86-571-8820-8520; Fax: +86-571-8820-8520
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tian X, Lou S, Shi R. From mitochondria to sarcopenia: role of 17β-estradiol and testosterone. Front Endocrinol (Lausanne) 2023; 14:1156583. [PMID: 37152937 PMCID: PMC10157222 DOI: 10.3389/fendo.2023.1156583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Sarcopenia, characterized by a loss of muscle mass and strength with aging, is prevalent in older adults. Although the exact mechanisms underlying sarcopenia are not fully understood, evidence suggests that the loss of mitochondrial integrity in skeletal myocytes has emerged as a pivotal contributor to the complex etiology of sarcopenia. Mitochondria are the primary source of ATP production and are also involved in generating reactive oxygen species (ROS), regulating ion signals, and initiating apoptosis signals in muscle cells. The accumulation of damaged mitochondria due to age-related impairments in any of the mitochondrial quality control (MQC) processes, such as proteostasis, biogenesis, dynamics, and mitophagy, can contribute to the decline in muscle mass and strength associated with aging. Interestingly, a decrease in sex hormones (e.g., 17β-estradiol and testosterone), which occurs with aging, has also been linked to sarcopenia. Indeed, 17β-estradiol and testosterone targeted mitochondria and exhibited activities in regulating mitochondrial functions. Here, we overview the current literature on the key mechanisms by which mitochondrial dysfunction contribute to the development and progression of sarcopenia and the potential modulatory effects of 17β-estradiol and testosterone on mitochondrial function in this context. The advance in its understanding will facilitate the development of potential therapeutic agents to mitigate and manage sarcopenia.
Collapse
|
15
|
Zhang L, Lang H, Ran L, Tian G, Shen H, Zhu J, Zhang Q, Yi L, Mi M. Long-term high loading intensity of aerobic exercise improves skeletal muscle performance via the gut microbiota-testosterone axis. Front Microbiol 2022; 13:1049469. [PMID: 36620003 PMCID: PMC9811821 DOI: 10.3389/fmicb.2022.1049469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Exercise is reported to play a crucial role in skeletal muscle performance. However, the underlying mechanism is still unknown. Thus, we investigated the effect of high-intensity aerobic exercise on skeletal muscle performance. In this study, the male C57BL/6J mice were accepted by high-intensity aerobic exercise for 8 weeks to establish an exercise model. It was observed that high-intensity aerobic exercise markedly affected the expression of genes in skeletal muscle. Moreover, high-intensity aerobic exercise significantly improved skeletal muscle grip strength and serum testosterone levels. HE staining showed that the cross-sectional area (CSA) of the skeletal muscle was successfully increased after 8 weeks of high-intensity aerobic exercise. Additionally, we found that high-intensity aerobic exercise changed gut microbiota structure by altering the abundance of Akkermansia, Allobaculum, and Lactobacillus, which might be related to testosterone production. However, the beneficial effects disappeared after the elimination of the gut microbiota and recovered after fecal microbiota transplantation (FMT) experiments for 1 week. These results indicated that the beneficial effects of high-intensity aerobic exercise on skeletal muscle were partly dependent on the gut microbiota. Our results suggested that long-term high loading intensity of aerobic exercise could improve skeletal muscle performance, which was probably due to the gut microbiota-testosterone axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Long Yi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mantian Mi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
16
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
17
|
Krause JS, Watkins T, Reid AMA, Cheah JC, Pérez JH, Bishop VR, Ramenofsky M, Wingfield JC, Meddle SL. Gene expression of sex steroid metabolizing enzymes and receptors in the skeletal muscle of migrant and resident subspecies of white-crowned sparrow (Zonotrichia leucophrys). Oecologia 2022; 199:549-562. [PMID: 35732927 DOI: 10.1007/s00442-022-05204-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
Circulating sex steroid concentrations vary dramatically across the year in seasonally breeding animals. The ability of circulating sex steroids to effect muscle function can be modulated by changes in intracellular expression of steroid metabolizing enzymes (e.g., 5α-reductase type 2 and aromatase) and receptors. Together, these combined changes in plasma hormones, metabolizing enzymes and receptors allow for seasonally appropriate changes in skeletal muscle function. We tested the hypothesis that gene expression of sex steroid metabolizing enzymes and receptors would vary seasonally in skeletal muscle and these changes would differ between a migrant and resident life history strategy. We quantified annual changes in plasma testosterone and gene expression in pectoralis and gastrocnemius skeletal muscles using quantitative polymerase chain reaction (qPCR) in free-living migrant (Zonotrichia leucophrys gambelii) and resident (Z. l. nuttalli) subspecies of white-crowned sparrow during breeding, pre-basic molt, and wintering life history stages. Pectoralis muscle profile was largest in migrants during breeding, while residents maintained large muscle profiles year-round. Circulating testosterone peaked during breeding in both subspecies. Pectoralis muscle androgen receptor mRNA expression was lower in females of both subspecies during breeding. Estrogen receptor-α expression was higher in the pectoralis muscle, but not gastrocnemius, of residents throughout the annual cycle when compared to migrants. Pectoralis aromatase expression was higher in resident males compared to migrant males. No differences were observed for 5α-reductase 2. Between these two subspecies, patterns of plasma testosterone and androgen receptors appear to be conserved, however estrogen receptor gene expression appears to have diverged.
Collapse
Affiliation(s)
- Jesse S Krause
- Department of Biology, University of Nevada Reno, 1664 N. Virginia Street, Sarah Fleischmann 109, Reno, NV, 89557, USA. .,Department of Neurobiology Physiology Behavior, University of California, Davis, CA, 95616, USA.
| | - Trevor Watkins
- Department of Biology, University of Nevada Reno, 1664 N. Virginia Street, Sarah Fleischmann 109, Reno, NV, 89557, USA
| | - Angus M A Reid
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, Scotland, UK.,The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK
| | - Jeffrey C Cheah
- Department of Neurobiology Physiology Behavior, University of California, Davis, CA, 95616, USA
| | - Jonathan H Pérez
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Valerie R Bishop
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK
| | - Marilyn Ramenofsky
- Department of Neurobiology Physiology Behavior, University of California, Davis, CA, 95616, USA
| | - John C Wingfield
- Department of Neurobiology Physiology Behavior, University of California, Davis, CA, 95616, USA
| | - Simone L Meddle
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
18
|
Barone B, Napolitano L, Abate M, Cirillo L, Reccia P, Passaro F, Turco C, Morra S, Mastrangelo F, Scarpato A, Amicuzi U, Morgera V, Romano L, Calace FP, Pandolfo SD, De Luca L, Aveta A, Sicignano E, Trivellato M, Spena G, D’Alterio C, Fusco GM, Vitale R, Arcaniolo D, Crocetto F. The Role of Testosterone in the Elderly: What Do We Know? Int J Mol Sci 2022; 23:3535. [DOI: doi.org/10.3390/ijms23073535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Testosterone is the most important hormone in male health. Aging is characterized by testosterone deficiency due to decreasing testosterone levels associated with low testicular production, genetic factors, adiposity, and illness. Low testosterone levels in men are associated with sexual dysfunction (low sexual desire, erectile dysfunction), reduced skeletal muscle mass and strength, decreased bone mineral density, increased cardiovascular risk and alterations of the glycometabolic profile. Testosterone replacement therapy (TRT) shows several therapeutic effects while maintaining a good safety profile in hypogonadal men. TRT restores normal levels of serum testosterone in men, increasing libido and energy level and producing beneficial effects on bone density, strength and muscle as well as yielding cardioprotective effects. Nevertheless, TRT could be contraindicated in men with untreated prostate cancer, although poor findings are reported in the literature. In addition, different potential side effects, such as polycythemia, cardiac events and obstructive sleep apnea, should be monitored. The aim of our review is to provide an updated background regarding the pros and cons of TRT, evaluating its role and its clinical applicability in different domains.
Collapse
Affiliation(s)
- Biagio Barone
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Luigi Napolitano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Marco Abate
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Luigi Cirillo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Pasquale Reccia
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Passaro
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Carmine Turco
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Simone Morra
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Mastrangelo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Antonio Scarpato
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Ugo Amicuzi
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Vincenzo Morgera
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Lorenzo Romano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Paolo Calace
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Luigi De Luca
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Achille Aveta
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Enrico Sicignano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Massimiliano Trivellato
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Gianluca Spena
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Carlo D’Alterio
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanni Maria Fusco
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaele Vitale
- Division of Urology, AORN “San Giuseppe Moscati”, 83100 Avellino, Italy
| | - Davide Arcaniolo
- Urology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
19
|
Barone B, Napolitano L, Abate M, Cirillo L, Reccia P, Passaro F, Turco C, Morra S, Mastrangelo F, Scarpato A, Amicuzi U, Morgera V, Romano L, Calace FP, Pandolfo SD, De Luca L, Aveta A, Sicignano E, Trivellato M, Spena G, D’Alterio C, Fusco GM, Vitale R, Arcaniolo D, Crocetto F. The Role of Testosterone in the Elderly: What Do We Know? Int J Mol Sci 2022; 23:3535. [PMID: 35408895 PMCID: PMC8998588 DOI: 10.3390/ijms23073535] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Testosterone is the most important hormone in male health. Aging is characterized by testosterone deficiency due to decreasing testosterone levels associated with low testicular production, genetic factors, adiposity, and illness. Low testosterone levels in men are associated with sexual dysfunction (low sexual desire, erectile dysfunction), reduced skeletal muscle mass and strength, decreased bone mineral density, increased cardiovascular risk and alterations of the glycometabolic profile. Testosterone replacement therapy (TRT) shows several therapeutic effects while maintaining a good safety profile in hypogonadal men. TRT restores normal levels of serum testosterone in men, increasing libido and energy level and producing beneficial effects on bone density, strength and muscle as well as yielding cardioprotective effects. Nevertheless, TRT could be contraindicated in men with untreated prostate cancer, although poor findings are reported in the literature. In addition, different potential side effects, such as polycythemia, cardiac events and obstructive sleep apnea, should be monitored. The aim of our review is to provide an updated background regarding the pros and cons of TRT, evaluating its role and its clinical applicability in different domains.
Collapse
Affiliation(s)
- Biagio Barone
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Luigi Napolitano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Marco Abate
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Luigi Cirillo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Pasquale Reccia
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Francesco Passaro
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Carmine Turco
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Simone Morra
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Francesco Mastrangelo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Antonio Scarpato
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Ugo Amicuzi
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Vincenzo Morgera
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Lorenzo Romano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Francesco Paolo Calace
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Savio Domenico Pandolfo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Luigi De Luca
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Achille Aveta
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Enrico Sicignano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Massimiliano Trivellato
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Gianluca Spena
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Carlo D’Alterio
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Giovanni Maria Fusco
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| | - Raffaele Vitale
- Division of Urology, AORN “San Giuseppe Moscati”, 83100 Avellino, Italy;
| | - Davide Arcaniolo
- Urology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, 80131 Naples, Italy;
| | - Felice Crocetto
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (B.B.); (M.A.); (L.C.); (P.R.); (F.P.); (C.T.); (S.M.); (F.M.); (A.S.); (U.A.); (V.M.); (L.R.); (F.P.C.); (S.D.P.); (L.D.L.); (A.A.); (E.S.); (M.T.); (G.S.); (C.D.); (G.M.F.); (F.C.)
| |
Collapse
|
20
|
Kim JT, Roberts K, Dunlap G, Perry R, Washington T, Wolchok JC. Nandrolone supplementation does not improve functional recovery in an aged animal model of volumetric muscle loss injury. J Tissue Eng Regen Med 2022; 16:367-379. [PMID: 35113494 DOI: 10.1002/term.3286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 11/12/2022]
Abstract
Aging hinders the effectiveness of regenerative medicine strategies targeting the repair of volumetric muscle loss (VML) injury. Anabolic steroids have been shown to improve several factors which contribute to the age-related decline in muscle's regenerative capacity. In this study, the impact of exogenous nandrolone decanoate (ND) administration on the effectiveness of a VML regenerative repair strategy was explored using an aged animal model. Unilateral tibialis anterior VML injuries were repaired in 18-month-aged animal models (male Fischer 344 rat) using decellularized human skeletal muscle scaffolds supplemented with autologous minced muscle. The contralateral limb was left untreated/uninjured. Following repair, ND(+) or a carrier control (ND-) was delivered via weekly injection for a period of 8 weeks. At 8 weeks, muscle isometric torque, gene expression, and tissue structure were assessed. ND(+) treatment did not improve contractile torque recovery following VML repair when compared to carrier only ND(-) injection controls. Peak isometric torque in the ND(+) VML repair group remained significantly below contralateral uninjured control values (4.69 ± 1.18vs. 7.46 ± 1.53 N mm/kg) and was statistically indistinguishable from carrier only ND(-) VML repair controls (4.47 ± 1.18 N mm/kg). Gene expression for key myogenic genes (Pax7, MyoD, MyoG, IGF-1) were not significantly elevated in response to ND injection, suggesting continued age related myogenic impairment even in the presence of ND(+) treatment. ND injection did reduce the histological appearance of fibrosis at the site of VML repair, and increased expression of the collagen III gene, suggesting some positive effects on repair site matrix regulation. Overall, the results presented in this study suggest that a decline in regenerative capacity with aging may present an obstacle to regenerative medicine strategies targeting VML injury and that the delivery of anabolic stimuli via ND administration was unable to overcome this decline.
Collapse
Affiliation(s)
- John T Kim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kevin Roberts
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Grady Dunlap
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Richard Perry
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyrone Washington
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
21
|
Anabolic Androgenic Steroids in Orthopaedic Surgery: Current Concepts and Clinical Applications. J Am Acad Orthop Surg Glob Res Rev 2022; 6:01979360-202201000-00001. [PMID: 34982051 PMCID: PMC8735789 DOI: 10.5435/jaaosglobal-d-21-00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
Despite the well-documented effects of testosterone and its synthetic derivatives—collectively termed anabolic androgenic steroids (AASs)—on the musculoskeletal system, the therapeutic use of these agents has received limited investigation within the field of orthopaedic surgery. In the last 2 decades, preclinical and clinical research has started to identify promising applications of the short-term use of AASs in the perioperative period. There is evidence to suggest that AASs may improve postoperative recovery after anterior cruciate ligament reconstruction and total joint arthroplasty. In addition, AASs may augment the biological healing environment in specific clinical scenarios including muscle injury, fracture repair, and rotator cuff repair. Current literature fails to present strong evidence for or against the use of AASs in orthopaedics, but there is continuous research on this topic. The purpose of this study was to provide a comprehensive overview of the current status of AAS applications in orthopaedic surgery, with an emphasis on preclinical data, clinical studies, and future directions.
Collapse
|
22
|
Huang LT, Wang JH. The Therapeutic Intervention of Sex Steroid Hormones for Sarcopenia. Front Med (Lausanne) 2021; 8:739251. [PMID: 34760899 PMCID: PMC8573092 DOI: 10.3389/fmed.2021.739251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Sarcopenia, characterized by the excessive loss of skeletal muscle mass, strength, and function, is associated with the overall poor muscle performance status of the elderly, and occurs more frequently in those with chronic diseases. The causes of sarcopenia are multifactorial due to the inherent relationship between muscles and molecular mechanisms, such as mitochondrial function, inflammatory pathways, and circulating hormones. Age-related changes in sex steroid hormone concentrations, including testosterone, estrogen, progesterone, and their precursors and derivatives, are an important aspect of the pathogenesis of sarcopenia. In this review, we provide an understanding of the treatment of sarcopenia through the regulation of sex steroid hormones. The potential benefits and future research emphasis of each sex steroid hormone therapeutic intervention (testosterone, SARMs, estrogen, SERMs, DHEA, and progesterone) for sarcopenia are discussed. Enhanced understanding of the role of sex steroid hormones in the treatment for sarcopenia could lead to the development of hormone therapeutic approaches in combination with specific exercise and nutrition regimens.
Collapse
Affiliation(s)
- Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Yoon JH, Kwon KS. Receptor-Mediated Muscle Homeostasis as a Target for Sarcopenia Therapeutics. Endocrinol Metab (Seoul) 2021; 36:478-490. [PMID: 34218646 PMCID: PMC8258343 DOI: 10.3803/enm.2021.1081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcopenia is a disease characterized by age-related decline of skeletal muscle mass and function. The molecular mechanisms of the pathophysiology of sarcopenia form a complex network due to the involvement of multiple interconnected signaling pathways. Therefore, signaling receptors are major targets in pharmacological strategies in general. To provide a rationale for pharmacological interventions for sarcopenia, we herein describe several druggable signaling receptors based on their role in skeletal muscle homeostasis and changes in their activity with aging. A brief overview is presented of the efficacy of corresponding drug candidates under clinical trials. Strategies targeting the androgen receptor, vitamin D receptor, Insulin-like growth factor-1 receptor, and ghrelin receptor primarily focus on promoting anabolic action using natural ligands or mimetics. Strategies involving activin receptors and angiotensin receptors focus on inhibiting catabolic action. This review may help to select specific targets or combinations of targets in the future.
Collapse
Affiliation(s)
- Jong Hyeon Yoon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
- Aventi Inc., Daejeon, Korea
| |
Collapse
|
24
|
Testosterone improves muscle function of the extensor digitorum longus in rats with sepsis. Biosci Rep 2021; 40:221929. [PMID: 31967292 PMCID: PMC7000367 DOI: 10.1042/bsr20193342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/05/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Among patients with intensive care unit-acquired weakness (ICUAW), skeletal muscle strength often decreases significantly. The present study aimed to explore the effects of testosterone propotionate on skeletal muscle using rat model of sepsis. Male SD rats were randomly divided into experimental group, model control group, sham operation group and blank control group. Rats in experimental group were given testosterone propionate two times a week, 10 mg/kg for 3 weeks. Maximal contraction force, fatigue index and cross-sectional area of the extensor digitorum longus (EDL) were measured. Myosin, IGF-1, p-AKT and p-mTOR levels in EDL were detected by Western blot. Histological changes of the testis and prostate were detected by hematoxylin and eosin staining. We found that maximal contraction force and fatigue index of EDL in experimental group were significantly higher than in model control group. Cross-sectional area of fast MHC muscle fiber of EDL in group was significantly higher than in model control group. The levels of myosin, IGF-1, p-AKT and p-mTOR of EDL in experimental group were significantly higher than in model control group. In addition, no testicle atrophy and prostate hyperplasia were detected in experimental group. In conclusion, these results suggest that testosterone propionate can significantly improve skeletal muscle strength, endurance and volume of septic rats, and the mechanism may be related to the activation of IGF-1/AKT pathway. Moreover, testosterone propionate with short duration does not cause testicular atrophy and prostate hyperplasia in septic rats. Therefore, testosterone propionate is a potential treatment for muscle malfunction in ICUAW patients.
Collapse
|
25
|
Priego T, Martín AI, González-Hedström D, Granado M, López-Calderón A. Role of hormones in sarcopenia. VITAMINS AND HORMONES 2021; 115:535-570. [PMID: 33706961 DOI: 10.1016/bs.vh.2020.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging involves numerous changes in body composition that include a decrease in skeletal muscle mass. The gradual reduction in muscle mass is associated with a simultaneous decrease in muscle strength, which leads to reduced mobility, fragility and loss of independence. This process called sarcopenia is secondary to several factors such as sedentary lifestyle, inadequate nutrition, chronic inflammatory state and neurological alterations. However, the endocrine changes associated with aging seem to be of special importance in the development of sarcopenia. On one hand, advancing age is associated with a decreased secretion of the main hormones that stimulate skeletal muscle mass and function (growth hormone, insulin-like growth factor 1 (IGFI), testosterone and estradiol). On the other hand, the alteration of the IGF-I signaling along with decreased insulin sensitivity also have an important impact on myogenesis. Other hormones that decline with aging such as the adrenal-derived dehydroepiandrosterone, thyroid hormones and vitamin D seem to also be involved in sarcopenia. Adipokines released by adipose tissue show important changes during aging and can affect muscle physiology and metabolism. In addition, catabolic hormones such as cortisol and angiotensin II can accelerate aged-induced muscle atrophy, as they are involved in muscle wasting and their levels increase with age. The role played by all of these hormones and the possible use of some of them as therapeutic tools for treating sarcopenia will be discussed.
Collapse
Affiliation(s)
- T Priego
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - A I Martín
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - D González-Hedström
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Pharmactive Biotech Products S.L. Parque Científico de Madrid. Avenida del Doctor Severo Ochoa, 37 Local 4J, 28108 Alcobendas, Madrid, Spain
| | - M Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición. Instituto de Salud Carlos III, Madrid, Spain
| | - A López-Calderón
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
26
|
Dawson JK, Dorff TB, Tuzon C, Rice JC, Schroeder ET, Lane CJ, Gross ME, Dieli-Conwright CM. Effect of Periodized Resistance Training on Skeletal Muscle During Androgen Deprivation Therapy for Prostate Cancer: A Pilot Randomized Trial. Integr Cancer Ther 2021; 20:15347354211035442. [PMID: 34301165 PMCID: PMC8312192 DOI: 10.1177/15347354211035442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Prostate cancer survivors (PCS) receive androgen deprivation therapy (ADT) as treatment for recurrent cancer, yet ADT is associated with loss of skeletal muscle and physical function. Resistance training can counter both muscle and physical function loss; however, an understanding of the molecular responses of skeletal muscle to resistance training during ADT is still undefined. This sub-analysis of the original randomized, controlled pilot trial investigated effects of 12 weeks of periodized resistance training on mRNA expression of the anabolic genes IGF-1, myogenin, PGC-1α4 and the catabolic genes myostatin and MuRF-1 in skeletal muscle of PCS on ADT. Secondary aims investigated if changes in lean mass and physical function correlated with changes in mRNA expression. METHODS PCS on ADT (n = 17) were randomized to 12 weeks of supervised resistance training (EXE, n = 9) or home-based stretching (STRETCH, n = 8) 3 days per week. Outcomes were assessed at baseline and post-intervention. Muscle biopsies were analyzed by RT-PCR for mRNA expression. Body composition was assessed through dual-energy X-ray absorptiometry, and physical function through muscular strength, timed up and go, stair climb, and 400 m walk. RESULTS MuRF-1 mRNA expression was significantly greater in EXE compared to STRETCH post-intervention (P = .005). Change in MuRF-1 mRNA expression significantly correlated with improvements in strength and physical function (P < .05), while change in IGF-1 expression correlated with change in lean mass (P = .015). CONCLUSION Twelve weeks of resistance training increased mRNA expression of MuRF-1 in skeletal muscle of PCS on ADT. Elevations in resting mRNA expression of IGF-1, myogenin and PGC-1α4, and reduction in mRNA expression of myostatin that are typically expected following resistance training were not observed.
Collapse
Affiliation(s)
- Jacqueline K. Dawson
- California State University, Long Beach, Long Beach, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Judd C. Rice
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
27
|
Febuxostat attenuates testosterone-induced benign prostatic hyperplasia in rats via inhibiting JAK/STAT axis. Life Sci 2020; 260:118414. [PMID: 32926929 DOI: 10.1016/j.lfs.2020.118414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 01/27/2023]
Abstract
AIM To investigate the possible modulatory effect of febuxostat in testosterone-induced benign prostatic hyperplasia (BPH) in rats with emphasis on xanthine oxidase (XO)/Janus Kinases (JAK)/signal transducer and activator of transcription (STAT) axis. MAIN METHODS Male Wistar rats were treated with testosterone with/out febuxostat. Effect of febuxostat on BPH was assessed at the structural level by histopathology and determination of prostate weight/index. Cyclin D1 protein expression was assessed immunohistochemically and the ratio of Bax/Bcl-2 mRNA expression was determined by real time polymerase chain reaction analysis (RT-PCR). Besides, uric acid serum level was determined colorimetrically. Prostatic XO activity, as well as oxidative stress and inflammatory markers were evaluated. Additionally, western blot analysis was performed for determination of JAK-1 and phosphorylated form of STAT-3 expression in tissues. KEY FINDINGS Results revealed that febuxostat inhibited the increase in prostatic weight and index compared to testosterone-treated group. Additionally, febuxostat ameliorated testosterone-induced histopathological changes, prevented the rise in cyclin D1 expression and enhanced Bax/Bcl2 ratio. Febuxostat suppressed testosterone induced- increase in XO activity in prostates and serum level of uric acid. Moreover, it regulated oxidative stress markers including; malondialdehyde (MDA), superoxide dismutase (SOD) activity and glutathione (GSH) content. Also, it inhibited the increase in prostate contents of interleukin-6 (IL-6), interleukin-1β (IL-1 β), tumor necrosis factor (TNF-α) and nuclear factor (NF-κB). Interestingly, febuxostat markedly reduced JAK-1 and subsequent phosphorylation of STAT-3 protein expression. SIGNIFICANCE Febuxostat ameliorates testosterone-induced BPH via suppressing XO/JAK/STAT axis. This may help to re-purpose the use of XO inhibitors.
Collapse
|
28
|
Effects of letrozole administration on growth and reproductive performance in Markhoz goat bucklings. Theriogenology 2020; 147:183-191. [PMID: 31785859 DOI: 10.1016/j.theriogenology.2019.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 08/14/2019] [Accepted: 11/17/2019] [Indexed: 11/22/2022]
Abstract
This study evaluated the growth performance, testicular and semen characteristics, and hormonal profile of Markhoz (Iranian Angora) bucklings injected with letrozole (LTZ). Twenty-eight 4-4.5 month old bucks were randomly assigned into four groups and received either 0.25 mg/kg body weight (BW) LTZ subcutaneously (sc LTZ) or intramuscularly (im LTZ), and also sc (sc CONT) or im (im CONT) controls every week for 3 months. The study was performed at the beginning of the breeding season in Sanandaj Animal Husbandry Research Station (46.99 °E, 35.31 °N). The results showed that LTZ causes increased final body weight (25.78 ± 1.61 kg), higher average daily gain (104 ± 0.03 g/days), and decreased feed conversion ratio (7.81 ± 2.57) (P < 0.05). The pre-slaughter, hot, and cold carcass weights (27.56 ± 2.40, 11.45 ± 1.07 and 11.11 ± 1.05 kg, respectively) were (P < 0.05) heavier in LTZ groups while other carcass characteristics did not differ between groups. No differences occurred between the groups in biochemical parameters, except high-density lipoprotein levels (35.47 ± 2.43 mg/dL) which was higher in LTZ treatments (P < 0.05). LTZ-treated bucks had larger scrotal circumference (20.12 ± 5.75 cm), higher relative testicular weight (560.91 ± 78.59 mg/100 g BW) and volume (175.5 ± 29.71 cm3), greater diameter of seminiferous tubules (224.5 ± 5.21 μm), and number of Sertoli cells (8.39 ± 0.77) (P < 0.05). Semen volume (0.74 ± 0.16 mL), sperm concentration (2.64 ± 0.19 × 10-9/mL), total sperm per ejaculate (1.95 ± 0.49 × 10-9), and semen index (1248 ± 323) increased (P < 0.05) by LTZ treatments, while semen pH (6.77), motility (80.91%), progressive motility (76.75%), viability (83.35%), abnormality (13.70%), acrosome integrity (78.06%), and membrane integrity (80.05%) of sperm remained unaffected. Intratesticular and serum testosterone (T) levels (7.97 ± 0.89 ng/mg protein and 2.47 ± 0.59 ng/mL, respectively), serum luteinizing hormone (LH), growth hormone (GH) levels (1.71 ± 0.24 and 3.62 ± 0.33 ng/mL, respectively) of LTZ groups were elevated, whereas intratesticular and serum estradiol (E2) levels (84.14 ± 8.15 pg/mg protein and 32.33 ± 2.16 pg/mL, respectively) decreased (P < 0.05). No differences were recorded between the sc and im routes of LTZ administration in the measured parameters. To conclude, we have found that LTZ treatment improves growth and reproductive functions of goat bucklings associated with increased serum LH and GH, elevated T and reduced E2 levels in both serum and testis.
Collapse
|
29
|
Li D, Wang Q, Shi K, Lu Y, Yu D, Shi X, Du W, Yu M. Testosterone Promotes the Proliferation of Chicken Embryonic Myoblasts Via Androgen Receptor Mediated PI3K/Akt Signaling Pathway. Int J Mol Sci 2020; 21:ijms21031152. [PMID: 32050491 PMCID: PMC7037377 DOI: 10.3390/ijms21031152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 01/18/2023] Open
Abstract
Testosterone (T) is essential for muscle fiber formation and growth. However, the specific mechanism by which T regulates skeletal muscle development in chicken embryos remains unclear. In this study, the role of T in myoblast proliferation both in vivo and in vitro was investigated. Results showed that the T administration significantly increased the ratio of breast muscle and leg muscle. T induced a significant increase in the cross-sectional area (CSA) and density of myofiber and the ratio of PAX7-positive cells in the skeletal muscle. Exogenous T also induced the upregulation of myogenic regulatory factors (MRFs) and cyclin-dependent kinases (CDK2)/Cyclin D1 (CCND1) and protein levels of androgen receptor (AR), p-Akt and PAX7. Furthermore, T treatment significantly promoted myoblasts cultured in vitro entering a new cell cycle and increased PAX7-positive cells. The mRNA and protein expression of AR and PAX7 were upregulated when treated with T compared to that of the control. The addition of T induced proliferation accompanied by increasing AR level as well as PI3K (Phosphoinositide 3-kinase)/Akt activation. However, T-induced proliferation was attenuated by AR, PI3K, and Akt-specific inhibitors. These data indicated that the pro-proliferative effect of T was regulated though AR in response to the activation of PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Dongfeng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (Q.W.); (K.S.); (Y.L.); (D.Y.); (W.D.)
| | - Qin Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (Q.W.); (K.S.); (Y.L.); (D.Y.); (W.D.)
| | - Kai Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (Q.W.); (K.S.); (Y.L.); (D.Y.); (W.D.)
| | - Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (Q.W.); (K.S.); (Y.L.); (D.Y.); (W.D.)
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (Q.W.); (K.S.); (Y.L.); (D.Y.); (W.D.)
| | - Xiaoli Shi
- National Experimental Teaching Demonstration Center for Animal Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wenxing Du
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (Q.W.); (K.S.); (Y.L.); (D.Y.); (W.D.)
| | - Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (Q.W.); (K.S.); (Y.L.); (D.Y.); (W.D.)
- Correspondence: ; Tel.: +86-25-84395036
| |
Collapse
|
30
|
Mackay K, González C, Zbinden-Foncea H, Peñailillo L. Effects of oral contraceptive use on female sexual salivary hormones and indirect markers of muscle damage following eccentric cycling in women. Eur J Appl Physiol 2019; 119:2733-2744. [PMID: 31686212 DOI: 10.1007/s00421-019-04254-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/31/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine the effects of oral contraceptive (OC) use on salivary concentrations of testosterone, estrogen, progesterone, and its effects on the changes in indirect markers of muscle damage following eccentric cycling in women. METHODS 10 oral contraceptive users at follicular phase (OC-FOL), 10 non-oral contraceptives users at follicular phase (NOC-FOL), and 10 non-oral contraceptives users at ovulation phase (NOC-OV) participated. Subjects performed 30 min of eccentric cycling at 90% of their maximal concentric power output (PO). Maximal voluntary isometric contraction (MVC), creatine kinase activity (CK), muscle soreness (SOR), and pain pressure threshold of vastus lateralis (PPT-VL) was assessed before, immediately after, and 24-96 h after cycling. Salivary estrogen, progesterone and testosterone concentrations were measured before, 72 and 96 h after exercise. RESULTS No difference in estrogen levels between users and non-users was observed. Testosterone was 45% lower in OC-FOL than NOC-FOL at 96 h post-exercise (P = 0.01). Progesterone was 30.8-fold higher in NOC-OV than OC-FOL and 9.7-fold higher than NOC-FOL at 96 h post-exercise. The NOC-FOL recovered all indirect markers of muscle damage by 72 h post-exercise (P > 0.05). NOC-OV recovered MVC strength and muscle soreness (SOR and PPT-VL) by 96 h post-exercise (P > 0.05). OC-FOL did not recover baseline values of MVC, SOR, CK, and PPT-VL by 96 h. CONCLUSION These results suggest that recovery after exercise-induced muscle damage took longer in OC-FOL, followed by NOC-OV and by NOC-FOL, respectively. Furthermore, testosterone and progesterone levels may affect recovery of indirect markers of muscle damage in women.
Collapse
Affiliation(s)
- Karen Mackay
- Exercise Science Laboratory, School of Kinesiology, Finis Terrae University, 1509 Pedro de Valdivia Av., Providencia, Santiago, Chile
| | - Cristopher González
- Exercise Science Laboratory, School of Kinesiology, Finis Terrae University, 1509 Pedro de Valdivia Av., Providencia, Santiago, Chile
| | - Hermann Zbinden-Foncea
- Exercise Science Laboratory, School of Kinesiology, Finis Terrae University, 1509 Pedro de Valdivia Av., Providencia, Santiago, Chile
| | - Luis Peñailillo
- Exercise Science Laboratory, School of Kinesiology, Finis Terrae University, 1509 Pedro de Valdivia Av., Providencia, Santiago, Chile.
| |
Collapse
|
31
|
Feng Y, Wu J, Cheng Z, Zhang J, Lu J, Shi R. Mechanical stretch enhances sex steroidogenesis in C 2C 12 skeletal muscle cells. Steroids 2019; 150:108434. [PMID: 31278919 DOI: 10.1016/j.steroids.2019.108434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Skeletal muscle contains estrogens and estrogen synthesis-related enzymes. However, it has not been reported whether myoblasts cultured in vitro also express these enzymes. The purpose of the current study was to address these issues and to explore the effects of mechanical stretch on the enzyme system. The in vitro cultured C2C12 mouse myoblasts were divided into the control, stretch, testosterone and stretch plus testosterone groups. Cells in the stretch and stretch plus testosterone groups were mechanically stretched with the Flexercell cell stress loading device at an amplitude of 10% and in a frequency of 0.5 Hz for 8 h. Cells in the testosterone and stretch plus testosterone groups were incubated with 100 nM testosterone for 24 h before distraction. Following the treatments, cell proliferation and estradiol levels, as well as the expressions of 17β-hydroxysteroid (17β-HSD), 3β-hydroxysteroid (3β-HSD) and aromatase were analyzed. Compared to the control, the cell proliferation in all experimental groups increased significantly, the estradiol levels in the mechanically stretched groups were significantly higher, and, moreover, the estradiol levels were positively correlated with the cell proliferation (r = 0.615, p < 0.01). Additionally, analyses of aromatase protein and mRNA showed that, compared to the control, their levels were significantly increased upon stretching and testosterone exposure. Similarly, the protein and mRNA levels of both 3β-HSD and 17β-HSD in the stretched cells differed significantly from the control. In the presence of aromatase and 5α-reductase inhibitors, the protein and mRNA levels of these enzymes altered significantly compared to the control. Conclusions: Steroid synthases were detected in the C2C12 myoblasts cultured in vitro, the synthesized estrogen was closely related to the cell proliferation, and mechanical stretch was the external factor that affected the expression of the estrogen synthesis-related enzymes.
Collapse
Affiliation(s)
- Yu Feng
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Shanghai 200438, China
| | - Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Huaihai Middle Road, Shanghai 200031, China
| | - Zepeng Cheng
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Shanghai 200438, China
| | - Jin Zhang
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Shanghai 200438, China
| | - Jianqiang Lu
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Shanghai 200438, China
| | - Rengfei Shi
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Shanghai 200438, China.
| |
Collapse
|
32
|
Seo JY, Kim JH, Kong YY. Unraveling the Paradoxical Action of Androgens on Muscle Stem Cells. Mol Cells 2019; 42:97-103. [PMID: 30759971 PMCID: PMC6399011 DOI: 10.14348/molcells.2019.0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Androgens act in almost all tissues throughout the lifetime and have important roles in skeletal muscles. The levels of androgens increase during puberty and remain sustained at high levels in adulthood. Because androgens have an anabolic effect on skeletal muscles and muscle stem cells, these increased levels of androgens after puberty should lead to spontaneous muscle hypertrophy and hyperplasia in adulthood. However, the maintenance of muscle volume, myonuclei number per myofiber, and quiescent state of satellite cells in adulthood despite the high levels of androgens produces paradoxical outcomes. Our recent study revealed that the physiological increase of androgens at puberty initiates the transition of muscle stem cells from proliferation to quiescence by the androgen-Mindbomb1-Notch signaling axis. This newly discovered androgen action on skeletal muscles underscores the physiological importance of androgens on muscle homeostasis throughout life. This review will provide an overview of the new androgen action on skeletal muscles and discuss the paradoxical effects of androgens suggested in previous studies.
Collapse
Affiliation(s)
- Ji-Yun Seo
- School of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
33
|
Liao Y, Peng Z, Chen L, Zhang Y, Cheng Q, Nüssler AK, Bao W, Liu L, Yang W. Prospective Views for Whey Protein and/or Resistance Training Against Age-related Sarcopenia. Aging Dis 2019; 10:157-173. [PMID: 30705776 PMCID: PMC6345331 DOI: 10.14336/ad.2018.0325] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/25/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle aging is characterized by decline in skeletal muscle mass and function along with growing age, which consequently leads to age-related sarcopenia, if without any preventive timely treatment. Moreover, age-related sarcopenia in elder people would contribute to falls and fractures, disability, poor quality of life, increased use of hospital services and even mortality. Whey protein (WP) and/or resistance training (RT) has shown promise in preventing and treating age-related sarcopenia. It seems that sex hormones could be potential contributors for gender differences in skeletal muscle and age-related sarcopenia. In addition, skeletal muscle and the development of sarcopenia are influenced by gut microbiota, which in turn is affected by WP or RT. Gut microbiota may be a key factor for WP and/or RT against age-related sarcopenia. Therefore, focusing on sex hormones and gut microbiota may do great help for preventing, treating and better understanding age-related sarcopenia.
Collapse
Affiliation(s)
- Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qian Cheng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Andreas K. Nüssler
- Department of Traumatology, BG Trauma center, University of Tübingen, Tübingen, Germany.
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Franco I, Fernandez-Gonzalo R, Vrtačnik P, Lundberg TR, Eriksson M, Gustafsson T. Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:157-200. [DOI: 10.1016/bs.ircmb.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Gu X, Fan L, Ke R, Chen Y. rHGF interacts with rIGF-1 to activate the satellite cells in the striated urethral sphincter in rats: a promising treatment for urinary incontinence? Arch Gynecol Obstet 2018; 298:1149-1157. [PMID: 30306312 PMCID: PMC6244645 DOI: 10.1007/s00404-018-4930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 11/11/2022]
Abstract
Purpose There are multitudes of factors contributing to urinary incontinence (UI). Dysfunction of the urethral sphincter is one of the common variables. Fortunately, satellite cells, which have the characteristics of stem cells, exist in the striated urethral sphincter. The purpose of the study was to seek whether rHGF combined with rIGF-1 owns the ability to promote the activation, proliferation, and differentiation of satellite cells to potentially improve urinary incontinence. Methods The SD rats were randomly divided into four groups and injected with 10 μl rIGF-1, the concentration of which was 50 μg/ml into the urethral wall of the urethral sphincter. Meanwhile, three groups were additionally treated with 10 μl rHGF, the concentration of which was 20, 50, 100 μg/ml. The group injected only with rIGF-1 was used as a control. 30 days later, the urethral tissues were harvested and serially sectioned. Immunofluorescent staining and HE staining were used to detect the activation, proliferation, and differentiation condition of satellite cells. The real-time RT-PCR analysis was applied to explore the potential signaling pathways. Result Anti-c-Met antibody-positive cells were discovered in the striated urethral sphincter. Positive expression of c-Met was relatively higher with the treatment of 100 μg/ml rHGF compared to other concentration of rHGF. A similar result was found in additional immunofluorescent staining. The number of newborn myofibers with central nuclei increased as the concentration of rHGF becoming higher. The mRNA expression of ERK1, ERK2 and AKT was comparatively higher with the injection of 50 μg/ml rHGF. Conclusion There is supposed to be a synergistic effect between rHGF and rIGF-1 to promote satellite cell to activate, proliferate and differentiate into muscle cells. The urethral sphincter may be induced to renew by the injection of rHGF and rIGF-1 into the urethral wall. It can be used to develop a new therapy for UI.
Collapse
Affiliation(s)
- Xijie Gu
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lailai Fan
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Runjiang Ke
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yinghe Chen
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
36
|
Murach KA, Englund DA, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Myonuclear Domain Flexibility Challenges Rigid Assumptions on Satellite Cell Contribution to Skeletal Muscle Fiber Hypertrophy. Front Physiol 2018; 9:635. [PMID: 29896117 PMCID: PMC5986879 DOI: 10.3389/fphys.2018.00635] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
Satellite cell-mediated myonuclear accretion is thought to be required for skeletal muscle fiber hypertrophy, and even drive hypertrophy by preceding growth. Recent studies in humans and rodents provide evidence that challenge this axiom. Specifically, Type 2 muscle fibers reliably demonstrate a substantial capacity to hypertrophy in the absence of myonuclear accretion, challenging the notion of a tightly regulated myonuclear domain (i.e., area that each myonucleus transcriptionally governs). In fact, a “myonuclear domain ceiling”, or upper limit of transcriptional output per nucleus to support hypertrophy, has yet to be identified. Satellite cells respond to muscle damage, and also play an important role in extracellular matrix remodeling during loading-induced hypertrophy. We postulate that robust satellite cell activation and proliferation in response to mechanical loading is largely for these purposes. Future work will aim to elucidate the mechanisms by which Type 2 fibers can hypertrophy without additional myonuclei, the extent to which Type 1 fibers can grow without myonuclear accretion, and whether a true myonuclear domain ceiling exists.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Davis A Englund
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - John J McCarthy
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Charlotte A Peterson
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
37
|
Why is Skeletal Muscle Regeneration Impaired after Myonecrosis Induced by Viperid Snake Venoms? Toxins (Basel) 2018; 10:toxins10050182. [PMID: 29723952 PMCID: PMC5983238 DOI: 10.3390/toxins10050182] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle regeneration after myonecrosis involves the activation, proliferation and fusion of myogenic cells, and a coordinated inflammatory response encompassing phagocytosis of necrotic cell debris, and the concerted synthesis of cytokines and growth factors. Myonecrosis often occurs in snakebite envenomings. In the case of venoms that cause myotoxicity without affecting the vasculature, such as those of many elapid snakes, regeneration proceeds successfully. In contrast, in envenomings by most viperid snakes, which affect the vasculature and extracellular matrix in addition to muscle fibers, regeneration is largely impaired and, therefore, the muscle mass is reduced and replaced by fibro-adipose tissue. This review discusses possible causes for such poor regenerative outcome including: (a) damage to muscle microvasculature, which causes tissue hypoxia and affects the inflammatory response and the timely removal of necrotic tissue; (b) damage to intramuscular nerves, which results in atrophy of regenerating fibers; (c) degradation of muscle cell basement membrane, compromising the spatial niche for proliferating myoblasts; (d) widespread degradation of the extracellular matrix; and (e) persistence of venom components in the damaged tissue, which may affect myogenic cells at critical points in the regenerative process. Understanding the causes of poor muscle regeneration may pave the way for the development of novel therapeutic interventions aimed at fostering the regenerative process in envenomed patients.
Collapse
|
38
|
Klose A, Liu W, Paris ND, Forman S, Krolewski JJ, Nastiuk KL, Chakkalakal JV. Castration induces satellite cell activation that contributes to skeletal muscle maintenance. JCSM RAPID COMMUNICATIONS 2018; 1:e00040. [PMID: 29782610 PMCID: PMC5959044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Sarcopenia, the age-related loss of skeletal muscle, is a side effect of androgen deprivation therapy (ADT) for prostate cancer patients. Resident stem cells of skeletal muscle, satellite cells (SCs), are an essential source of progenitors for the growth and regeneration of skeletal muscle. Decreased androgen signaling and deficits in the number and function of SCs are features of aging. Although androgen signaling is known to regulate skeletal muscle, the cellular basis for ADT-induced exacerbation of sarcopenia is unknown. Furthermore, the consequences of androgen deprivation on SC fate in adult skeletal muscle remain largely unexplored. METHODS We examined SC fate in an androgen-deprived environment using immunofluorescence and fluorescence-activated cell sorting (FACS) with SC-specific markers in young castrated mice. To study the effects of androgen deprivation on SC function and skeletal muscle regenerative capacity, young castrated mice were subjected to experimental regenerative paradigms. SC-derived-cell contributions to skeletal muscle maintenance were examined in castrated Pax7CreER/+; ROSA26mTmG/+ mice. SCs were depleted in Pax7CreER/+; ROSA26DTA/+ mice to ascertain the consequences of SC ablation in sham and castrated skeletal muscles. Confocal immunofluorescence analysis of neuromuscular junctions (NMJs), and assessment of skeletal muscle physiology, contractile properties, and integrity were conducted. RESULTS Castration led to SC activation, however this did not result in a decline in SC function or skeletal muscle regenerative capacity. Surprisingly, castration induced SC-dependent maintenance of young skeletal muscle. The functional dependence of skeletal muscles on SCs in young castrated mice was demonstrated by an increase in SC-derived-cell fusion within skeletal muscle fibers. SC depletion was associated with further atrophy and functional decline, as well as the induction of partial innervation and the loss of NMJ-associated myonuclei in skeletal muscles from castrated mice. CONCLUSION The maintenance of skeletal muscles in young castrated mice relies on the cellular contributions of SCs. Considering the well-described age-related decline in SCs, the results in this study highlight the need to devise strategies that promote SC maintenance and activity to attenuate or reverse the progression of sarcopenia in elderly androgen-deprived individuals.
Collapse
Affiliation(s)
- Alanna Klose
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Wenxuan Liu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Nicole D. Paris
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Sophie Forman
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - John J. Krolewski
- Department of Cancer Genetics & Genomics, and Center for Personalized Medicine, Roswell Park Cancer Institute; Buffalo, NY USA
| | - Kent L. Nastiuk
- Department of Cancer Genetics & Genomics, and Department of Urology, Roswell Park Cancer Institute; Buffalo, NY USA
| | - Joe V. Chakkalakal
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY USA
- The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
39
|
The effect of calorie restriction on mouse skeletal muscle is sex, strain and time-dependent. Sci Rep 2017; 7:5160. [PMID: 28698572 PMCID: PMC5505993 DOI: 10.1038/s41598-017-04896-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
Loss of skeletal muscle mass and function occurs with increasing age. Calorie restriction (CR) increases the lifespan of C57Bl/6 mice, but not in the shorter-lived DBA/2 strain. There is some evidence that calorie restriction reduces or delays many of the age-related defects that occur in rodent skeletal muscle. We therefore investigated the effect of short (2.5 month) and longer term (8.5 and 18.5 months) CR on skeletal muscle in male and female C57Bl/6 and DBA/2 mice. We found that short-term CR increased the satellite cell number and collagen VI content of muscle, but resulted in a delayed regenerative response to injury.Consistent with this, the in vitro proliferation of satellite cells derived from these muscles was reduced by CR. The percentage of stromal cells, macrophages, hematopoietic stem cells and fibroadipogenic cells in the mononucleated cell population derived from skeletal muscle was reduced by CR at various stages. But overall, these changes are neither consistent over time, nor between strain and sex. The fact that changes induced by CR do not persist with time and the dissimilarities between the two mouse strains, combined with sex differences, urge caution in applying CR to improve skeletal muscle function across the lifespan in humans.
Collapse
|
40
|
Gentil P, de Lira CAB, Paoli A, dos Santos JAB, da Silva RDT, Junior JRP, da Silva EP, Magosso RF. Nutrition, Pharmacological and Training Strategies Adopted by Six Bodybuilders: Case Report and Critical Review. Eur J Transl Myol 2017; 27:6247. [PMID: 28458804 PMCID: PMC5391526 DOI: 10.4081/ejtm.2017.6247] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to report and analyze the practices adopted by bodybuilders in light of scientific evidence and to propose evidence-based alternatives. Six (four male and two female) bodybuilders and their coaches were directly interviewed. According to the reports, the quantity of anabolic steroids used by the men was 500-750 mg/week during the bulking phase and 720-1160 mg during the cutting phase. The values for women were 400 and 740 mg, respectively. The participants also used ephedrine and hydrochlorothiazide during the cutting phase. Resistance training was designed to train each muscle once per week and all participants performed aerobic exercise in the fasted state in order to reduce body fat. During the bulking phase, bodybuilders ingested ~2.5 g of protein/kg of body weight. During the cutting phase, protein ingestion increased to ~3 g/kg and carbohydrate ingestion decreased by 10-20%. During all phases, fat ingestion corresponded to ~15% of the calories ingested. The supplements used were whey protein, chromium picolinate, omega 3 fatty acids, branched chain amino acids, poly-vitamins, glutamine and caffeine. The men also used creatine in the bulking phase. In general, the participants gained large amounts of fat-free mass during the bulking phase; however, much of that fat-free mass was lost during the cutting phase along with fat mass. Based on our analysis, we recommend an evidence-based approach by people involved in bodybuilding, with the adoption of a more balanced and less artificial diet. One important alert should be given for the combined use of anabolic steroids and stimulants, since both are independently associated with serious cardiovascular events. A special focus should be given to revisiting resistance training and avoiding fasted cardio in order to decrease the reliance on drugs and thus preserve bodybuilders' health and integrity.
Collapse
Affiliation(s)
- Paulo Gentil
- College of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil
| | | | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | - Rodrigo Ferro Magosso
- Post Graduation Program in Movement Sciences, UNESP – Universidade Estadual Paulista, Rio Claro, Brazil
| |
Collapse
|
41
|
Luk HY, McFarlin BK, Vingren JL. Using image-based flow cytometry to monitor satellite cells proliferation and differentiation in vitro. Methods 2017; 112:175-181. [DOI: 10.1016/j.ymeth.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 02/03/2023] Open
|
42
|
Redelsperger F, Raddi N, Bacquin A, Vernochet C, Mariot V, Gache V, Blanchard-Gutton N, Charrin S, Tiret L, Dumonceaux J, Dupressoir A, Heidmann T. Genetic Evidence That Captured Retroviral Envelope syncytins Contribute to Myoblast Fusion and Muscle Sexual Dimorphism in Mice. PLoS Genet 2016; 12:e1006289. [PMID: 27589388 PMCID: PMC5010199 DOI: 10.1371/journal.pgen.1006289] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/10/2016] [Indexed: 01/28/2023] Open
Abstract
Syncytins are envelope genes from endogenous retroviruses, “captured” for a role in placentation. They mediate cell-cell fusion, resulting in the formation of a syncytium (the syncytiotrophoblast) at the fetomaternal interface. These genes have been found in all placental mammals in which they have been searched for. Cell-cell fusion is also pivotal for muscle fiber formation and repair, where the myotubes are formed from the fusion of mononucleated myoblasts into large multinucleated structures. Here we show, taking advantage of mice knocked out for syncytins, that these captured genes contribute to myoblast fusion, with a >20% reduction in muscle mass, mean muscle fiber area and number of nuclei per fiber in knocked out mice for one of the two murine syncytin genes. Remarkably, this reduction is only observed in males, which subsequently show muscle quantitative traits more similar to those of females. In addition, we show that syncytins also contribute to muscle repair after cardiotoxin-induced injury, with again a male-specific effect on the rate and extent of regeneration. Finally, ex vivo experiments carried out on murine myoblasts demonstrate the direct involvement of syncytins in fusion, with a >40% reduction in fusion index upon addition of siRNA against both syncytins. Importantly, similar effects are observed with primary myoblasts from sheep, dog and human, with a 20–40% reduction upon addition of siRNA against the corresponding syncytins. Altogether, these results show a direct contribution of the fusogenic syncytins to myogenesis, with a demonstrated male-dependence of the effect in mice, suggesting that these captured genes could be responsible for the muscle sexual dimorphism observed in placental mammals. Syncytins are “captured” genes of retroviral origin, corresponding to the fusogenic envelope gene of endogenized retroviruses. They are present in all placental mammals in which they have been searched for, where they play an essential role in placentation via their cell-cell fusion activity. Here we show that they also contribute to myoblast fusion and muscle formation in development and repair after injury, using both in vivo knock-out mouse models and ex vivo primary myoblast cell cultures from several mammals, including humans, carnivores and ruminants. Interestingly, the effects observed in mice are sex-dependent, thus suggesting that the added “collateral” effect of syncytins on myogenesis could be responsible for the muscle sexual dimorphism observed in placental mammals.
Collapse
Affiliation(s)
- François Redelsperger
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Najat Raddi
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Agathe Bacquin
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Cécile Vernochet
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Virginie Mariot
- UPMC Université-Paris 6, UM 76, Paris, France
- INSERM U974, Paris, France
- CNRS UMR 7215, Paris, France
- Institut de Myologie, Paris, France
| | - Vincent Gache
- INSERM IMRB U955-E10, Créteil, France
- Université Paris-Est, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France
- Université Paris-Est Créteil, Faculté de médecine, Créteil, France
| | - Nicolas Blanchard-Gutton
- INSERM IMRB U955-E10, Créteil, France
- Université Paris-Est, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France
- Université Paris-Est Créteil, Faculté de médecine, Créteil, France
| | - Stéphanie Charrin
- INSERM U935, Villejuif, France
- Université Paris-Sud, Institut André Lwoff, Villejuif, France
| | - Laurent Tiret
- INSERM IMRB U955-E10, Créteil, France
- Université Paris-Est, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France
- Université Paris-Est Créteil, Faculté de médecine, Créteil, France
| | - Julie Dumonceaux
- UPMC Université-Paris 6, UM 76, Paris, France
- INSERM U974, Paris, France
- CNRS UMR 7215, Paris, France
- Institut de Myologie, Paris, France
| | - Anne Dupressoir
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Thierry Heidmann
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- * E-mail:
| |
Collapse
|
43
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
44
|
Angulo J, El Assar M, Rodríguez-Mañas L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol Aspects Med 2016; 50:1-32. [PMID: 27370407 DOI: 10.1016/j.mam.2016.06.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022]
Abstract
Frailty is a functional status that precedes disability and is characterized by decreased functional reserve and increased vulnerability. In addition to disability, the frailty phenotype predicts falls, institutionalization, hospitalization and mortality. Frailty is the consequence of the interaction between the aging process and some chronic diseases and conditions that compromise functional systems and finally produce sarcopenia. Many of the clinical manifestations of frailty are explained by sarcopenia which is closely related to poor physical performance. Reduced regenerative capacity, malperfusion, oxidative stress, mitochondrial dysfunction and inflammation compose the sarcopenic skeletal muscle alterations associated to the frailty phenotype. Inflammation appears as a common determinant for chronic diseases, sarcopenia and frailty. The strategies to prevent the frailty phenotype include an adequate amount of physical activity and exercise as well as pharmacological interventions such as myostatin inhibitors and specific androgen receptor modulators. Cell response to stress pathways such as Nrf2, sirtuins and klotho could be considered as future therapeutic interventions for the management of frailty phenotype and aging-related chronic diseases.
Collapse
Affiliation(s)
- Javier Angulo
- Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mariam El Assar
- Instituto de Investigación Sanitaria de Getafe, Getafe, Madrid, Spain
| | | |
Collapse
|
45
|
Wu J, Hadoke PWF, Takov K, Korczak A, Denvir MA, Smith LB. Influence of Androgen Receptor in Vascular Cells on Reperfusion following Hindlimb Ischaemia. PLoS One 2016; 11:e0154987. [PMID: 27159530 PMCID: PMC4861284 DOI: 10.1371/journal.pone.0154987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/23/2016] [Indexed: 01/30/2023] Open
Abstract
Aims Studies in global androgen receptor knockout (G-ARKO) and orchidectomised mice suggest that androgen accelerates reperfusion of the ischaemic hindlimb by stimulating angiogenesis. This investigation used novel, vascular cell-specific ARKO mice to address the hypothesis that the impaired hindlimb reperfusion in G-ARKO mice was due to loss of AR from cells in the vascular wall. Methods and Results Mice with selective deletion of AR (ARKO) from vascular smooth muscle cells (SM-ARKO), endothelial cells (VE-ARKO), or both (SM/VE-ARKO) were compared with wild type (WT) controls. Hindlimb ischaemia was induced in these mice by ligation and removal of the femoral artery. Post-operative reperfusion was reduced in SM-ARKO and SM/VE-ARKO mice. Immunohistochemistry indicated that this was accompanied by a reduced density of smooth muscle actin-positive vessels but no change in the density of isolectin B4-positive vessels in the gastrocnemius muscle. Deletion of AR from the endothelium (VE-ARKO) did not alter post-operative reperfusion or vessel density. In an ex vivo (aortic ring culture) model of angiogenesis, AR was not detected in vascular outgrowths and angiogenesis was not altered by vascular ARKO or by exposure to dihydrotestosterone (DHT 10−10–10-7M; 6 days). Conclusion These results suggest that loss of AR from vascular smooth muscle, but not from the endothelium, contributes to impaired reperfusion in the ischaemic hindlimb of G-ARKO. Impaired reperfusion was associated with reduced collateral formation rather than reduced angiogenesis.
Collapse
Affiliation(s)
- Junxi Wu
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Patrick W. F. Hadoke
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Kaloyan Takov
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Agnieszka Korczak
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Martin A. Denvir
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Lee B. Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
de Rooy C, Grossmann M, Zajac JD, Cheung AS. Targeting muscle signaling pathways to minimize adverse effects of androgen deprivation. Endocr Relat Cancer 2016; 23:R15-26. [PMID: 26432470 DOI: 10.1530/erc-15-0232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2015] [Indexed: 01/05/2023]
Abstract
Androgen deprivation therapy (ADT) is a highly effective treatment used in ∼30% of men with prostate cancer. Adverse effects of ADT on muscle are significant with consistent losses in muscle mass. However, effects of ADT on muscle strength and physical function, of most relevance to the patient, are less well understood. This is in part due to the fact that muscle effects of ADT at the cellular, genetic and protein level, critical to the understanding of the pathophysiology of sarcopenia, have come into focus only recently. This review highlights the complexity of androgen-dependent signaling in muscle with an emphasis on recent findings in the regulation of muscle growth and muscle atrophy pathways. Furthermore, the effects of ADT and testosterone on skeletal muscle histology, gene expression and protein transcription are discussed. A better mechanistic understanding of the regulation of muscle mass and function by androgens should not only pave the way for developing targeted promyogenic interventions for men with prostate cancer receiving ADT but also may have wider implications for age-associated sarcopenia in the general population.
Collapse
Affiliation(s)
- Casey de Rooy
- Department of MedicineUniversity of Melbourne, Heidelberg, Victoria, AustraliaDepartment of EndocrinologyAustin Health, Studley Road Heidelberg, Victoria, 3084, Australia
| | - Mathis Grossmann
- Department of MedicineUniversity of Melbourne, Heidelberg, Victoria, AustraliaDepartment of EndocrinologyAustin Health, Studley Road Heidelberg, Victoria, 3084, Australia Department of MedicineUniversity of Melbourne, Heidelberg, Victoria, AustraliaDepartment of EndocrinologyAustin Health, Studley Road Heidelberg, Victoria, 3084, Australia
| | - Jeffrey D Zajac
- Department of MedicineUniversity of Melbourne, Heidelberg, Victoria, AustraliaDepartment of EndocrinologyAustin Health, Studley Road Heidelberg, Victoria, 3084, Australia Department of MedicineUniversity of Melbourne, Heidelberg, Victoria, AustraliaDepartment of EndocrinologyAustin Health, Studley Road Heidelberg, Victoria, 3084, Australia
| | - Ada S Cheung
- Department of MedicineUniversity of Melbourne, Heidelberg, Victoria, AustraliaDepartment of EndocrinologyAustin Health, Studley Road Heidelberg, Victoria, 3084, Australia Department of MedicineUniversity of Melbourne, Heidelberg, Victoria, AustraliaDepartment of EndocrinologyAustin Health, Studley Road Heidelberg, Victoria, 3084, Australia
| |
Collapse
|
47
|
Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors. Biogerontology 2015; 17:619-39. [PMID: 26538344 PMCID: PMC4889645 DOI: 10.1007/s10522-015-9621-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022]
Abstract
We have previously highlighted the ability of testosterone (T) to improve differentiation and myotube hypertrophy in fusion impaired myoblasts that display reduced myotube hypertrophy via multiple population doublings (PD) versus their parental controls (CON); an observation which is abrogated via PI3K/Akt inhibition (Deane et al. 2013). However, whether the most predominant molecular mechanism responsible for T induced hypertrophy occurs directly via androgen receptor or indirectly via IGF-IR/PI3K/Akt pathway is currently debated. PD and CON C2C12 muscle cells were exposed to low serum conditions in the presence or absence of T (100 nM) ± inhibitors of AR (flutamide/F, 40 μm) and IGF-IR (picropodophyllin/PPP, 150 nM) for 72 h and 7 days (early/late muscle differentiation respectively). T increased AR and Akt abundance, myogenin gene expression, and myotube hypertrophy, but not ERK1/2 activity in both CON and PD cell types. Akt activity was not increased significantly in either cell type with T. Testosterone was also unable to promote early differentiation in the presence of IGF-IR inhibitor (PPP) yet still able to promote appropriate later increases in myotube hypertrophy and AR abundance despite IGF-IR inhibition. The addition of the AR inhibitor powerfully attenuated all T induced increases in differentiation and myotube hypertrophy with corresponding reductions in AR abundance, phosphorylated Akt, ERK1/2 and gene expression of IGF-IR, myoD and myogenin with increases in myostatin mRNA in both cell types. Interestingly, despite basally reduced differentiation and myotube hypertrophy, PD cells showed larger T induced increases in AR abundance vs. CON cells, a response abrogated in the presence of AR but not IGF-IR inhibitors. Furthermore, T induced increases in Akt abundance were sustained despite the presence of IGF-IR inhibition in PD cells only. Importantly, flutamide alone reduced IGF-IR mRNA in both cell types across time points, with an observed reduction in activity of ERK and Akt, suggesting that IGF-IR was transcriptionally regulated by AR. However, where testosterone increased AR protein content there was no increases observed in IGF-IR gene expression. This suggested that sufficient AR was important to enable normal IGF-IR expression and downstream signalling, yet elevated levels of AR due to testosterone had no further effect on IGF-IR mRNA, despite testosterone increasing Akt abundance in the presence of IGF-IR inhibitor. In conclusion, testosterones ability to improve differentiation and myotube hypertrophy occurred predominately via increases in AR and Akt abundance in both CON and PD cells, with fusion impaired cells (PD) showing an increased responsiveness to T induced AR levels. Finally, T induced increases in myotube hypertrophy (but not early differentiation) occurred independently of upstream IGF-IR input, however it was apparent that normal AR function in basal conditions was required for adequate IGF-IR gene expression and downstream ERK/Akt activity.
Collapse
|
48
|
Carson JA, Manolagas SC. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone 2015; 80:67-78. [PMID: 26453497 PMCID: PMC4600533 DOI: 10.1016/j.bone.2015.04.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
Estrogens and androgens influence the growth and maintenance of bones and muscles and are responsible for their sexual dimorphism. A decline in their circulating levels leads to loss of mass and functional integrity in both tissues. In the article, we highlight the similarities of the molecular and cellular mechanisms of action of sex steroids in the two tissues; the commonality of a critical role of mechanical forces on tissue mass and function; emerging evidence for an interplay between mechanical forces and hormonal and growth factor signals in both bones and muscles; as well as the current state of evidence for or against a cross-talk between muscles and bone. In addition, we review evidence for the parallels in the development of osteoporosis and sarcopenia with advancing age and the potential common mechanisms responsible for the age-dependent involution of these two tissues. Lastly, we discuss the striking difference in the availability of several drug therapies for the prevention and treatment of osteoporosis, as compared to none for sarcopenia. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- James A Carson
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|
49
|
MacKrell JG, Yaden BC, Bullock H, Chen K, Shetler P, Bryant HU, Krishnan V. Molecular targets of androgen signaling that characterize skeletal muscle recovery and regeneration. NUCLEAR RECEPTOR SIGNALING 2015; 13:e005. [PMID: 26457071 PMCID: PMC4599140 DOI: 10.1621/nrs.13005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 09/05/2015] [Indexed: 01/25/2023]
Abstract
The high regenerative capacity of adult skeletal muscle relies on a self-renewing depot of adult stem cells, termed muscle satellite cells (MSCs). Androgens, known mediators of overall body composition and specifically skeletal muscle mass, have been shown to regulate MSCs. The possible overlapping function of androgen regulation of muscle growth and MSC activation has not been carefully investigated with regards to muscle regeneration.Therefore, the aim of this study was to examine coinciding androgen-mediated genetic changes in an in vitro MSC model and clinically relevant in vivo models. A gene signature was established via microarray analysis for androgen-mediated MSC engagement and highlighted several markers including follistatin (FST), IGF-1, C-X-C chemokine receptor 4 (CXCR4), hepatocyte growth factor (HGF) and glucocorticoid receptor (GR). In an in vivo muscle atrophy model, androgen re-supplementation significantly increased muscle size and expression of IGF-1, FST, and HGF, while significantly decreasing expression of GR. Biphasic gene expression profiles over the 7-day re-supplementation period identified temporal androgen regulation of molecular targets involved in satellite cell engagement into myogenesis. In a muscle injury model, removal of androgens resulted in delayed muscle recovery and regeneration. Modifications in the androgen signaling gene signature, along with reduced Pax7 and MyoD expression, suggested that limited MSC activation and increased inflammation contributed to the delayed regeneration. However, enhanced MSC activation in the androgen-deplete mouse injury model was driven by an androgen receptor (AR) agonist. These results provide novel in vitro and in vivo evidence describing molecular targets of androgen signaling, while also increasing support for translational use of AR agonists in skeletal muscle recovery and regeneration.
Collapse
Affiliation(s)
- James G MacKrell
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Benjamin C Yaden
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Heather Bullock
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Keyue Chen
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Pamela Shetler
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Henry U Bryant
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Venkatesh Krishnan
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| |
Collapse
|
50
|
Thorley M, Malatras A, Duddy W, Le Gall L, Mouly V, Butler Browne G, Duguez S. Changes in Communication between Muscle Stem Cells and their Environment with Aging. J Neuromuscul Dis 2015; 2:205-217. [PMID: 27858742 PMCID: PMC5240546 DOI: 10.3233/jnd-150097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging is associated with both muscle weakness and a loss of muscle mass, contributing towards overall frailty in the elderly. Aging skeletal muscle is also characterised by a decreasing efficiency in repair and regeneration, together with a decline in the number of adult stem cells. Commensurate with this are general changes in whole body endocrine signalling, in local muscle secretory environment, as well as in intrinsic properties of the stem cells themselves. The present review discusses the various mechanisms that may be implicated in these age-associated changes, focusing on aspects of cell-cell communication and long-distance signalling factors, such as levels of circulating growth hormone, IL-6, IGF1, sex hormones, and inflammatory cytokines. Changes in the local environment are also discussed, implicating IL-6, IL-4, FGF-2, as well as other myokines, and processes that lead to thickening of the extra-cellular matrix. These factors, involved primarily in communication, can also modulate the intrinsic properties of muscle stem cells, including reduced DNA accessibility and repression of specific genes by methylation. Finally we discuss the decrease in the stem cell pool, particularly the failure of elderly myoblasts to re-quiesce after activation, and the consequences of all these changes on general muscle homeostasis.
Collapse
Affiliation(s)
- Matthew Thorley
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Apostolos Malatras
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - William Duddy
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Laura Le Gall
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Gillian Butler Browne
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Stéphanie Duguez
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| |
Collapse
|