1
|
Rivera CF, Farra YM, Silvestro M, Medvedovsky S, Matz J, Pratama MY, Vlahos J, Ramkhelawon B, Bellini C. Mapping the unicellular transcriptome of the ascending thoracic aorta to changes in mechanosensing and mechanoadaptation during aging. Aging Cell 2024; 23:e14197. [PMID: 38825882 PMCID: PMC11320362 DOI: 10.1111/acel.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024] Open
Abstract
Aortic stiffening is an inevitable manifestation of chronological aging, yet the mechano-molecular programs that orchestrate region- and layer-specific adaptations along the length and through the wall of the aorta are incompletely defined. Here, we show that the decline in passive cyclic distensibility is more pronounced in the ascending thoracic aorta (ATA) compared to distal segments of the aorta and that collagen content increases in both the medial and adventitial compartments of the ATA during aging. The single-cell RNA sequencing of aged ATA tissues reveals altered cellular senescence, remodeling, and inflammatory responses accompanied by enrichment of T-lymphocytes and rarefaction of vascular smooth muscle cells, compared to young samples. T lymphocyte clusters accumulate in the adventitia, while the activation of mechanosensitive Piezo-1 enhances vasoconstriction and contributes to the overall functional decline of ATA tissues. These results portray the immuno-mechanical aging of the ATA as a process that culminates in a stiffer conduit permissive to the accrual of multi-gerogenic signals priming to disease development.
Collapse
Affiliation(s)
- Cristobal F. Rivera
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Yasmeen M. Farra
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| | - Michele Silvestro
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Steven Medvedovsky
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Jacqueline Matz
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| | - Muhammad Yogi Pratama
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - John Vlahos
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Bhama Ramkhelawon
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Chiara Bellini
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
2
|
Yue Z, Nie L, Zhao P, Ji N, Liao G, Wang Q. Senescence-associated secretory phenotype and its impact on oral immune homeostasis. Front Immunol 2022; 13:1019313. [PMID: 36275775 PMCID: PMC9581398 DOI: 10.3389/fimmu.2022.1019313] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 09/09/2023] Open
Abstract
The senescence-associated secretory phenotype (SASP), which accumulates over the course of normal aging and in age-related diseases, is a crucial driver of chronic inflammation and aging phenotypes. It is also responsible for the pathogenesis of multiple oral diseases. However, the pathogenic mechanism underlying SASP has not yet been fully elucidated. Here, relevant articles on SASP published over the last five years (2017-2022) were retrieved and used for bibliometric analysis, for the first time, to examine SASP composition. More than half of the relevant articles focus on various cytokines (27.5%), growth factors (20.9%), and proteases (20.9%). In addition, lipid metabolites (13.1%) and extracellular vesicles (6.5%) have received increasing attention over the past five years, and have been recognized as novel SASP categories. Based on this, we summarize the evidences demonstrating that SASP plays a pleiotropic role in oral immunity and propose a four-step hypothetical framework for the progression of SASP-related oral pathology-1) oral SASP development, 2) SASP-related oral pathological alterations, 3) pathological changes leading to oral immune homeostasis disruption, and 4) SASP-mediated immune dysregulation escalating oral disease. By targeting specific SASP factors, potential therapies can be developed to treat oral and age-related diseases.
Collapse
Affiliation(s)
- Ziqi Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Information Management, Department of Stomatology Informatics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Lotti R, Palazzo E, Quadri M, Dumas M, Schnebert S, Biondini D, Bianchini MA, Nizard C, Pincelli C, Marconi A. Isolation of an "Early" Transit Amplifying Keratinocyte Population in Human Epidermis: A Role for the Low Affinity Neurotrophin Receptor CD271. Stem Cells 2022; 40:1149-1161. [PMID: 36037263 PMCID: PMC9806768 DOI: 10.1093/stmcls/sxac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/16/2022] [Indexed: 01/12/2023]
Abstract
In the interfollicular epidermis (IFE), stem cells (KSC) generate transit amplifying (TA) cells that, after symmetric divisions, produce differentiating daughters. Here, we isolated and characterized the highly proliferative interfollicular epidermal basal cell population "early" TA (ETA) cells, based on their capacity to adhere to type IV collagen. Proliferation and colony-forming efficiency in ETA cells are lower than in KSC but higher than in "late" TA (LTA). Stemness, proliferation, and differentiation markers confirmed that ETA cells display a unique phenotype. Skin reconstructs derived from ETA cells present different features (epidermal thickness, Ki67, and Survivin expression), as compared to skin equivalents generated from either KSC or LTA cells. The low-affinity neurotrophin receptor CD271, which regulates the KSC to TA cell transition in the human epidermis through an on/off switch control mechanism, is predominantly expressed in ETA cells. Skin equivalents generated from siRNA CD271 ETA cells display a more proliferative and less differentiated phenotype, as compared to mock-derived reconstructs. Consistently, CD271 overexpression in LTA cells generates a more proliferative skin equivalent than mock LTA cells. Finally, the CD271 level declines with cellular senescence, while it induces a delay in p16INK4 expression. We conclude that ETA cells represent the first KSC progenitor with exclusive features. CD271 identifies and modulates ETA cells, thus participating in the early differentiation and regenerative capacity of the human epidermis.
Collapse
Affiliation(s)
- Roberta Lotti
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Palazzo
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marika Quadri
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marc Dumas
- LVMH Recherche, Life Sciences Department, Saint Jean de Braye, France
| | | | - Diego Biondini
- Pediatric Surgery Unit, Department of Pediatric Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Anastasia Bianchini
- Pediatric Surgery Unit, Department of Pediatric Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Carine Nizard
- LVMH Recherche, Life Sciences Department, Saint Jean de Braye, France
| | - Carlo Pincelli
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- Corresponding author: Alessandra Marconi, MSc in Biology, Specialist in Clinical Pathology, DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124 Modena, Italy. Tel: +39 059 4222812; Fax: +39 059 4224271;
| |
Collapse
|
4
|
Baek HS, Kwon TU, Shin S, Kwon YJ, Chun YJ. Steroid sulfatase deficiency causes cellular senescence and abnormal differentiation by inducing Yippee-like 3 expression in human keratinocytes. Sci Rep 2021; 11:20867. [PMID: 34675221 PMCID: PMC8531280 DOI: 10.1038/s41598-021-00051-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Human steroid sulfatase (STS) is an enzyme that catalyzes the hydrolysis of dehydroepiandrosterone sulfate (DHEAS), estrone sulfate (E1S), and cholesterol sulfate. Abnormal expression of STS causes several diseases including colorectal, breast, and prostate cancer and refractory skin disease. In particular, accumulation of intracellular cholesterol sulfate by STS deficiency leads to a skin disorder with abnormal keratinization called X-linked ichthyosis (XLI). To determine the detailed mechanisms of XLI, we performed RNA sequencing (RNA-seq) analysis using human keratinocyte HaCaT cells treated with cholesterol and cholesterol sulfate. Of the genes with expression changes greater than 1.5-fold, Yippee-like 3 (YPEL3), a factor expected to affect cell differentiation, was found. Induction of YPEL3 causes permanent growth arrest, cellular senescence, and inhibition of metastasis in normal and tumor cells. In this study, we demonstrate that YPEL3 expression was induced by STS deficiency and, using the CRISPR/Cas9 system, a partial knock-out (STS+/−) cell line was constructed to establish a disease model for XLI studies. Furthermore, we show that increased expression of YPEL3 in STS-deficient cell lines promoted cellular senescence and expression of keratinization-related proteins such as involucrin and loricrin. Our results suggest that upregulation of YPEL3 expression by STS deficiency may play a crucial role in inducing cellular senescence and abnormal differentiation in human keratinocytes.
Collapse
Affiliation(s)
- Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Sangyun Shin
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974.
| |
Collapse
|
5
|
The Balance between Differentiation and Terminal Differentiation Maintains Oral Epithelial Homeostasis. Cancers (Basel) 2021; 13:cancers13205123. [PMID: 34680271 PMCID: PMC8534139 DOI: 10.3390/cancers13205123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Oral cancer affecting the oral cavity represents the most common cancer of the head and neck region. Oral cancer develops in a multistep process in which normal cells gradually accumulate genetic and epigenetic modifications to evolve into a malignant disease. Mortality for oral cancer patients is high and morbidity has a significant long-term impact on the health and wellbeing of affected individuals, typically resulting in facial disfigurement and a loss of the ability to speak, chew, taste, and swallow. The limited scope to which current treatments are able to control oral cancer underlines the need for novel therapeutic strategies. This review highlights the molecular differences between oral cell proliferation, differentiation and terminal differentiation, defines terminal differentiation as an important tumour suppressive mechanism and establishes a rationale for clinical investigation of differentiation-paired therapies that may improve outcomes in oral cancer. Abstract The oral epithelium is one of the fastest repairing and continuously renewing tissues. Stem cell activation within the basal layer of the oral epithelium fuels the rapid proliferation of multipotent progenitors. Stem cells first undergo asymmetric cell division that requires tightly controlled and orchestrated differentiation networks to maintain the pool of stem cells while producing progenitors fated for differentiation. Rapidly expanding progenitors subsequently commit to advanced differentiation programs towards terminal differentiation, a process that regulates the structural integrity and homeostasis of the oral epithelium. Therefore, the balance between differentiation and terminal differentiation of stem cells and their progeny ensures progenitors commitment to terminal differentiation and prevents epithelial transformation and oral squamous cell carcinoma (OSCC). A recent comprehensive molecular characterization of OSCC revealed that a disruption of terminal differentiation factors is indeed a common OSCC event and is superior to oncogenic activation. Here, we discuss the role of differentiation and terminal differentiation in maintaining oral epithelial homeostasis and define terminal differentiation as a critical tumour suppressive mechanism. We further highlight factors with crucial terminal differentiation functions and detail the underlying consequences of their loss. Switching on terminal differentiation in differentiated progenitors is likely to represent an extremely promising novel avenue that may improve therapeutic interventions against OSCC.
Collapse
|
6
|
De Blander H, Morel AP, Senaratne AP, Ouzounova M, Puisieux A. Cellular Plasticity: A Route to Senescence Exit and Tumorigenesis. Cancers (Basel) 2021; 13:4561. [PMID: 34572787 PMCID: PMC8468602 DOI: 10.3390/cancers13184561] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
Senescence is a dynamic, multistep program that results in permanent cell cycle arrest and is triggered by developmental or environmental, oncogenic or therapy-induced stress signals. Senescence is considered as a tumor suppressor mechanism that prevents the risk of neoplastic transformation by restricting the proliferation of damaged cells. Cells undergoing senescence sustain important morphological changes, chromatin remodeling and metabolic reprogramming, and secrete pro-inflammatory factors termed senescence-associated secretory phenotype (SASP). SASP activation is required for the clearance of senescent cells by innate immunity. Therefore, escape from senescence and the associated immune editing would be a prerequisite for tumor initiation and progression as well as therapeutic resistance. One of the possible mechanisms for overcoming senescence could be the acquisition of cellular plasticity resulting from the accumulation of genomic alterations and genetic and epigenetic reprogramming. The modified composition of the SASP produced by these reprogrammed cancer cells would create a permissive environment, allowing their immune evasion. Additionally, the SASP produced by cancer cells could enhance the cellular plasticity of neighboring cells, thus hindering their recognition by the immune system. Here, we propose a comprehensive review of the literature, highlighting the role of cellular plasticity in the pro-tumoral activity of senescence in normal cells and in the cancer context.
Collapse
Affiliation(s)
- Hadrien De Blander
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
| | - Anne-Pierre Morel
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
| | - Aruni P. Senaratne
- UMR3664—Nuclear Dynamics, Development, Biology, Cancer, Genetics and Epigenetics, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Maria Ouzounova
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
- CNRS UMR3666, Inserm U1143, Cellular and Chemical Biology, Institut Curie, PSL Research University, 75005 Paris, France
| | - Alain Puisieux
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
- CNRS UMR3666, Inserm U1143, Cellular and Chemical Biology, Institut Curie, PSL Research University, 75005 Paris, France
| |
Collapse
|
7
|
Zhang C, Zhang X, Huang L, Guan Y, Huang X, Tian X, Zhang L, Tao W. ATF3 drives senescence by reconstructing accessible chromatin profiles. Aging Cell 2021; 20:e13315. [PMID: 33539668 PMCID: PMC7963335 DOI: 10.1111/acel.13315] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
Chromatin organization and transcriptional profiles undergo tremendous reordering during senescence. However, uncovering the regulatory mechanisms between chromatin reconstruction and gene expression in senescence has been elusive. Here, we depicted the landscapes of both chromatin accessibility and gene expression to reveal gene regulatory networks in human umbilical vein endothelial cell (HUVEC) senescence and found that chromatin accessibilities are redistributed during senescence. Particularly, the intergenic chromatin was massively shifted with the increased accessibility regions (IARs) or decreased accessibility regions (DARs), which were mainly enhancer elements. We defined AP‐1 transcription factor family as being responsible for driving chromatin accessibility reconstruction in IARs, where low DNA methylation improved binding affinity of AP‐1 and further increased the chromatin accessibility. Among AP‐1 transcription factors, we confirmed ATF3 was critical to reconstruct chromatin accessibility to promote cellular senescence. Our results described a dynamic landscape of chromatin accessibility whose remodeling contributes to the senescence program, we identified that AP‐1 was capable of reorganizing the chromatin accessibility profile to regulate senescence.
Collapse
Affiliation(s)
- Chao Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
- PKU‐Tsinghua‐NIBS Graduate Program School of Life Sciences Peking University Beijing China
| | - Xuebin Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| | - Li Huang
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| | - Yiting Guan
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| | - Xiaoke Huang
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| | - Xiao‐Li Tian
- Department of Human Population Genetics Human Aging Research Institute (HARI) and School of Life Sciences Nanchang University Nanchang China
| | - Lijun Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| | - Wei Tao
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| |
Collapse
|
8
|
Niklander SE, Crane HL, Darda L, Lambert DW, Hunter KD. The role of icIL-1RA in keratinocyte senescence and development of the senescence-associated secretory phenotype. J Cell Sci 2021; 134:jcs.252080. [PMID: 33526711 DOI: 10.1242/jcs.252080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022] Open
Abstract
There is compelling evidence that senescent cells, through the senescence-associated secretory phenotype (SASP), can promote malignant transformation and invasion. Interleukin-1 (IL-1) is a key mediator of this cytokine network, but the control of its activity in the senescence programme has not been elucidated. IL-1 signalling is regulated by IL-1RA, which has four variants. Here, we show that expression of intracellular IL-1RA type 1 (icIL-1RA1), which competitively inhibits binding of IL-1 to its receptor, is progressively lost during oral carcinogenesis ex vivo and that the pattern of expression is associated with keratinocyte replicative fate in vitro We demonstrate that icIL-1RA1 is an important regulator of the SASP in mortal cells, as CRISPR/Cas9-mediated icIL-1RA1 knockdown in normal and mortal dysplastic oral keratinocytes is followed by increased IL-6 and IL-8 secretion, and rapid senescence following release from RhoA-activated kinase inhibition. Thus, we suggest that downregulation of icIL-1RA1 in early stages of the carcinogenesis process can enable the development of a premature and deregulated SASP, creating a pro-inflammatory state in which cancer is more likely to arise.
Collapse
Affiliation(s)
- Sven E Niklander
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK.,Departamento de Cirugia y Patologia Oral, Facultad de Odontologia, Universidad Andres Bello, 2520000 Viña del Mar, Chile
| | - Hannah L Crane
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Lav Darda
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Daniel W Lambert
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Keith D Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK .,Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Schwartz RE, Shokhirev MN, Andrade LR, Gutkind JS, Iglesias-Bartolome R, Shadel GS. Insights into epithelial cell senescence from transcriptome and secretome analysis of human oral keratinocytes. Aging (Albany NY) 2021; 13:4747-4777. [PMID: 33601339 PMCID: PMC7950289 DOI: 10.18632/aging.202658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
Senescent cells produce chronic inflammation that contributes to the diseases and debilities of aging. How this process is orchestrated in epithelial cells, the origin of human carcinomas, is poorly understood. We used human normal oral keratinocytes (NOKs) to elucidate senescence programs in a prototype primary mucosal epithelial cell that senesces spontaneously. While NOKs exhibit several typical facets of senescence, they also display distinct characteristics. These include expression of p21WAF1/CIP1 at early passages, making this common marker of senescence unreliable in NOKs. Transcriptome analysis by RNA-seq revealed specific commonalities with and differences from cancer cells, explicating the tumor avoidance role of senescence. Repression of DNA repair genes that correlated with downregulation of E2F1 mRNA and protein was observed for two donors; a divergent result was seen for the third. Using proteomic profiling of soluble (non-vesicular) and extracellular vesicle (EV) associated secretions, we propose additions to the senescence associated secretory phenotype, including HSP60, which localizes to the surface of EVs. Finally, EVs from senescent NOKs activate interferon pathway signaling in THP-1 monocytes in a STING-dependent manner and associate with mitochondrial and nuclear DNA. Our results highlight senescence changes in epithelial cells and how they might contribute to chronic inflammation and age-related diseases.
Collapse
Affiliation(s)
- Rachael E Schwartz
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies and University of California - San Diego, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California - San Diego, La Jolla, CA 92093, USA
| | - Ramiro Iglesias-Bartolome
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gerald S Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies and University of California - San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Mints M, Landin D, Näsman A, Mirzaie L, Ursu RG, Zupancic M, Marklund L, Dalianis T, Munck-Wikland E, Ramqvist T. Tumour inflammation signature and expression of S100A12 and HLA class I improve survival in HPV-negative hypopharyngeal cancer. Sci Rep 2021; 11:1782. [PMID: 33469045 PMCID: PMC7815817 DOI: 10.1038/s41598-020-80226-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Hypopharyngeal squamous cell carcinoma (HPSCC) has a very poor prognosis. Local surgery may increase survival, but is often avoided due to significant post-op co-morbidities. Since prognostic markers are lacking, the aim was to find predictive biomarkers that identify patients whose response to oncological treatment is poor and who may benefit from primary surgery to increase survival. Pretreatment biopsies from 23 HPSCC patients, 3 human papillomavirus (HPV) positive and 20 HPV-negative, were analyzed for expression of 750 mRNAs using the Nanostring nCounter IO360 panel in relation to 3-year survival. Validation was performed through immunohistochemistry (IHC) for HLA class I and S100A12 in 74 HPV-negative HPSCC samples. Clustering identified a subset of HPV-negative HPSCC with favorable prognosis and a gene expression signature overexpressing calgranulins and immune genes, distinct from that of HPV-positive HPSCC. Enrichment analysis showed immune signaling, including the tumor inflammation signature, to be enriched in surviving patients. IHC validation confirmed high S100A12 and HLA class I expression to correlate with survival in HPV-negative HPSCC. This shows that immune activity is strongly related to survival in HPV-negative HPSCC. Enrichment of the tumor inflammation signature indicates a potential benefit of immunotherapy. Low expression of both HLA class I and S100A12 could be used to select patients for local surgery.
Collapse
Affiliation(s)
- Michael Mints
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - David Landin
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Otorhinolaryngology, Head and Neck Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64, Solna, Sweden.,Departement of Clinical Pathology and Cytology, Cancer Center Karolinska, R8:02, Karolinska University Hospital, Stockholm, Sweden
| | - Leila Mirzaie
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64, Solna, Sweden
| | - Ramona Gabriela Ursu
- Microbiology Department, University of Medicine sand Pharmacy, Grigore T Popa, Iasi, Romania
| | - Mark Zupancic
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64, Solna, Sweden
| | - Linda Marklund
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Otorhinolaryngology, Head and Neck Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64, Solna, Sweden
| | - Eva Munck-Wikland
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Otorhinolaryngology, Head and Neck Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Torbjörn Ramqvist
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden. .,Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64, Solna, Sweden.
| |
Collapse
|
11
|
Kinker GS, Greenwald AC, Tal R, Orlova Z, Cuoco MS, McFarland JM, Warren A, Rodman C, Roth JA, Bender SA, Kumar B, Rocco JW, Fernandes PACM, Mader CC, Keren-Shaul H, Plotnikov A, Barr H, Tsherniak A, Rozenblatt-Rosen O, Krizhanovsky V, Puram SV, Regev A, Tirosh I. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat Genet 2020; 52:1208-1218. [PMID: 33128048 PMCID: PMC8135089 DOI: 10.1038/s41588-020-00726-6] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
Cultured cell lines are the workhorse of cancer research, but the extent to which they recapitulate the heterogeneity observed among malignant cells in tumors is unclear. Here we used multiplexed single-cell RNA-seq to profile 198 cancer cell lines from 22 cancer types. We identified 12 expression programs that are recurrently heterogeneous within multiple cancer cell lines. These programs are associated with diverse biological processes, including cell cycle, senescence, stress and interferon responses, epithelial-mesenchymal transition and protein metabolism. Most of these programs recapitulate those recently identified as heterogeneous within human tumors. We prioritized specific cell lines as models of cellular heterogeneity and used them to study subpopulations of senescence-related cells, demonstrating their dynamics, regulation and unique drug sensitivities, which were predictive of clinical response. Our work describes the landscape of heterogeneity within diverse cancer cell lines and identifies recurrent patterns of heterogeneity that are shared between tumors and specific cell lines.
Collapse
Affiliation(s)
- Gabriela S Kinker
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
| | - Alissa C Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Tal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zhanna Orlova
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael S Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James M McFarland
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Allison Warren
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Rodman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer A Roth
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samantha A Bender
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - James W Rocco
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | | - Hadas Keren-Shaul
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Plotnikov
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Haim Barr
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Aviad Tsherniak
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Expression pattern and association analysis of porcine matrix metallopeptidase 9 (MMP9) with diarrhea and performance traits in piglets. Res Vet Sci 2019; 129:53-58. [PMID: 31931263 DOI: 10.1016/j.rvsc.2019.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/25/2019] [Accepted: 12/22/2019] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinase 9 (MMP9) plays critical roles in multiple biological processes, such as reproduction, cell proliferation and differentiation, and host defenses. The aim of this study was to evaluate whether MMP9 is a candidate gene for resistance to diarrhea in piglets. In this study, quantitative real-time PCR was used to analyze the expression of MMP9 mRNA in different tissues of specific pathogen-free piglets. MMP9 was expressed in all the tissues (heart, liver, spleen, lung, kidney, stomach, duodenum, jejunum, ileum, and colon) analyzed. An association analysis between MMP9 polymorphisms and piglet diarrhea score and performance traits were performed in Min (Chinese indigenous breed) and Landrace populations. In the statistical analysis, at the g.48178429 G>A locus, AA piglets had a lower diarrhea score than that of GA in the Min population (P < .05), whereas GG had higher day-35 body weight and average daily gain (ADG) than AA in the Landrace breed (P < .05). At the rs336583561 locus, Min piglets with the GG genotype have a lower diarrhea score than AG piglets (P < .05). At g.48184777C>T, CC animals have higher body weight than TC Landrace piglets (P < .05 or P < .01). A 5' flanking deletion assay indicated that g.48178429 G>A was not located in the MMP9 promoter region. Our results suggest that the A allele at the g.48178429 G>A locus and the G allele at rs336583561 are resistance alleles in Min pigs. Before these markers are used in pig breeding programs, more studies in larger populations are needed.
Collapse
|
14
|
IRF2 is a master regulator of human keratinocyte stem cell fate. Nat Commun 2019; 10:4676. [PMID: 31611556 PMCID: PMC6791852 DOI: 10.1038/s41467-019-12559-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 09/14/2019] [Indexed: 12/25/2022] Open
Abstract
Resident adult epithelial stem cells maintain tissue homeostasis by balancing self-renewal and differentiation. The stem cell potential of human epidermal keratinocytes is retained in vitro but lost over time suggesting extrinsic and intrinsic regulation. Transcription factor-controlled regulatory circuitries govern cell identity, are sufficient to induce pluripotency and transdifferentiate cells. We investigate whether transcriptional circuitry also governs phenotypic changes within a given cell type by comparing human primary keratinocytes with intrinsically high versus low stem cell potential. Using integrated chromatin and transcriptional profiling, we implicate IRF2 as antagonistic to stemness and show that it binds and regulates active cis-regulatory elements at interferon response and antigen presentation genes. CRISPR-KD of IRF2 in keratinocytes with low stem cell potential increases self-renewal, migration and epidermis formation. These data demonstrate that transcription factor regulatory circuitries, in addition to maintaining cell identity, control plasticity within cell types and offer potential for therapeutic modulation of cell function. Epidermal homeostasis requires long term stem cell function. Here, the authors apply transcriptional circuitry analysis based on integrated epigenomic profiling of primary human keratinocytes with high and low stem cell function to identify IRF2 as a negative regulator of stemness.
Collapse
|
15
|
Ebersole JL, Orraca L, Novak MJ, Kirakodu S, Gonzalez-Martinez J, Gonzalez OA. Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:143-163. [PMID: 31732940 DOI: 10.1007/978-3-030-28524-1_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cells and functions of the epithelium are critical to the health of the oral cavity. We used a nonhuman primate model to profile the transcriptome of gingival tissues in health across the lifespan and hypothesized that in older animals, epithelial-related transcriptome patterns would reflect epithelial cells that are aggressively responsive to the surrounding environment and less able to modulate and resolve the noxious challenge from the bacteria. Rhesus monkeys (n = 34) with a healthy periodontium were distributed into four groups: ≤3 years (young), 3-7 years (adolescent), 12-16 years (adult), and 18-23 years (aged), and a buccal gingival sample from the premolar/molar region of each animal was obtained. RNA was subjected to a microarray analysis (GeneChip® Rhesus Macaque Genome Array, Affymetrix), and 336 genes examined that are linked to epithelium and epithelial cell functions categorized into 9 broad functional groups: extracellular matrix and cell structure; extracellular matrix remodeling enzymes; cell adhesion molecules, cytoskeleton regulation; inflammatory response; growth factors; kinases/cell signaling; cell surface receptors; junction associated molecules; autophagy/apoptosis; antimicrobial peptides; and transcription factors. Total of 255 genes displayed a normalized signal >100, and differences across the age groups were observed primarily in extracellular matrix and cell structure, cell adhesion molecules, and cell surface receptor gene categories with elevations in the aged tissues. Keratins 2, 5, 6B, 13, 16, 17 were all significantly increased in healthy-aged tissues versus adults, and keratins 1 and 2 were significantly decreased in young animals. Approximately 15 integrins are highly expressed in the gingival tissues across the age groups with only ITGA8, ITGAM (CD11b), and ITGB2 significantly increased in the aged tissues. Little impact of aging on desmosomal/hemidesmosomal genes was noted. These results suggest that healthy gingival aging has a relatively limited impact on the broader functions of the epithelium and epithelial cells, with some effects on genes for extracellular matrix and cell adhesion molecules (e.g., integrins). Thus, while there is a substantial impact of aging on immune system targets even in healthy gingiva, it appears that the epithelial barrier remains reasonably molecularly intact in this model system.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - L Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - M J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Division of Periodontology, University College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Division of Periodontology, University College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - J Gonzalez-Martinez
- Caribbean Primate Research Center, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
16
|
Silva VDO, Pereira LJ, Pasetto S, da Silva MP, Meyers JC, Murata RM. Effects of Monolaurin on Oral Microbe-Host Transcriptome and Metabolome. Front Microbiol 2018; 9:2638. [PMID: 30467497 PMCID: PMC6237204 DOI: 10.3389/fmicb.2018.02638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
The aim of this in vitro study was to evaluate the effects of monolaurin against Aggregatibacter actinomycetemcomitans (Aa) and determine their effects on the host transcriptome and metabolome, using an oral cell/bacteria co-culture dual-chamber model to mimic the human periodontium. For this, the Aa, was applied to cross the monolayer of epithelial keratinocytes (OBA-9) to reach the fibroblasts layer (HGF-1) in the basal chamber. The Monolaurin treatments (25 or 50 μM) were added immediately after the inoculation of the dual-chamber with Aa. After 24 h, the transcriptional factors and metabolites produced were quantified in the remaining cell layers (insert and basal chamber) and in supernatant released from the cells. The genes IL-1α, IL-6, IL-18, and TNF analyzed in HGF-1 concentrations showed a decreased expression when treated with both concentration of Monolaurin. In keratinocytes, the genes IL-6, IL-18, and TNF presented a higher expression and the expression of IL-1α decreased when treated with the two cited concentrations. The production of glycerol and pyruvic acid increased, and the 2-deoxytetronic acid NIST, 4-aminobutyric acid, pinitol and glyceric acid, presented lower concentrations because of the treatment with 25 and/or 50 μM of Monolaurin. Use of monolaurin modulated the immune response and metabolite production when administered for 24 h in a dual-chamber model inoculated with A. actinomycetemcomitans. In summary, this study indicates that monolaurin had antimicrobial activity and modulated the host immune response and metabolite production when administered for 24 h in a dual-chamber model inoculated with A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Viviam de Oliveira Silva
- Department of Veterinary Medicine, Federal University of Lavras, Lavras, Brazil.,Division of Periodontology, Diagnostic Sciences, Dental Hygiene and Biomedical Science, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | | | - Silvana Pasetto
- Division of Periodontology, Diagnostic Sciences, Dental Hygiene and Biomedical Science, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - Maike Paulino da Silva
- Division of Periodontology, Diagnostic Sciences, Dental Hygiene and Biomedical Science, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - Jered Cope Meyers
- Department Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Ramiro Mendonça Murata
- Department Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States.,Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
17
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
18
|
Nowwarote N, Osathanon T. Dysregulation of Notch signaling related genes in oral lichen planus. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
19
|
Abstract
Keratin 24 (K24) is a new kind of keratin genes, which encodes a novel keratin protein, K24 that bears high similarity to the type I keratins and displays a unique expression profile. However, the role of K24 is incompletely understood. In our study, we investigated the localization of K24 within the epidermis and possible functions. Keratin 24 was found to be modestly overexpressed in senescent keratinocytes and was mainly restricted to the upper stratum spinosum of epidermis. The protein was required for terminal differentiation upon CaCl2-induced differentiation. In vitro results showed that increased K24 in keratinocytes dramatically changed the differentiation of primary keratinocytes. It also inhibited cell survival by G1/S phase cell cycle arrest and induced senescence, autophagy and apoptosis of keratinocytes. In addition, K24 activated PKCδ signal pathway involving in cellular survival. In summary, K24 may be suggested as a potential differentiation marker and anti-proliferative factor in the epidermis.
Collapse
|
20
|
Shi Y, Shu B, Yang R, Xu Y, Xing B, Liu J, Chen L, Qi S, Liu X, Wang P, Tang J, Xie J. Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Res Ther 2015; 6:120. [PMID: 26076648 PMCID: PMC4501079 DOI: 10.1186/s13287-015-0103-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 01/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction Wnt and Notch signaling pathways are critically involved in relative cell fate decisions within the development of cutaneous tissues. Moreover, several studies identified the above two pathways as having a significant role during wound healing. However, their biological effects during cutaneous tissues repair are unclear. Methods We employed a self-controlled model (Sprague–Dawley rats with full-thickness skin wounds) to observe the action and effect of Wnt/β-catenin and Notch signalings in vivo. The quality of wound repair relevant to the gain/loss-of-function Wnt/β-catenin and Notch activation was estimated by hematoxylin-and-eosin and Masson staining. Immunofluorescence analysis and Western blot analysis were used to elucidate the underlying mechanism of the regulation of Wnt and Notch signaling pathways in wound healing. Meanwhile, epidermal stem cells (ESCs) were cultured in keratinocyte serum-free medium with Jaggedl or in DAPT (N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl) to investigate whether the interruption of Notch signaling contributes to the expression of Wnt/β-catenin signaling. Results The results showed that in vivo the gain-of-function Wnt/β-catenin and Notch activation extended the ability to promote wound closure. We further determined that activation or inhibition of Wnt signaling and Notch signaling can affect the proliferation of ESCs, the differentiation and migration of keratinocytes, and follicle regeneration by targeting c-Myc and Hes1, which ultimately lead to enhanced or delayed wound healing. Furthermore, Western blot analysis suggested that the two pathways might interact in vivo and in vitro. Conclusion These results suggest that Wnt and Notch signalings play important roles in cutaneous repair by targeting c-Myc and Hes1 separately. What’s more, interaction between the above two pathways might act as a vital role in regulation of wound healing.
Collapse
Affiliation(s)
- Yan Shi
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan road, Guangzhou, 510080, China.
| | - Bin Shu
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan road, Guangzhou, 510080, China.
| | - Ronghua Yang
- Department of Burns, Fo Shan Hospital of Sun Yat-Sen University, Lingnan avenue, Foshan, 528000, China.
| | - Yingbin Xu
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan road, Guangzhou, 510080, China.
| | - Bangrong Xing
- Department of Burns, Third Affiliated Hospital of Sun Yat-sen University, Tianhe road, Guangzhou, 510620, China.
| | - Jian Liu
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan road, Guangzhou, 510080, China.
| | - Lei Chen
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan road, Guangzhou, 510080, China.
| | - Shaohai Qi
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan road, Guangzhou, 510080, China.
| | - Xusheng Liu
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan road, Guangzhou, 510080, China.
| | - Peng Wang
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan road, Guangzhou, 510080, China.
| | - Jinming Tang
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan road, Guangzhou, 510080, China.
| | - Julin Xie
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan road, Guangzhou, 510080, China.
| |
Collapse
|
21
|
Kozlowski MR. Senescent retinal pigment epithelial cells are more sensitive to vascular endothelial growth factor: implications for "wet" age-related macular degeneration. J Ocul Pharmacol Ther 2014; 31:87-92. [PMID: 25453983 DOI: 10.1089/jop.2014.0071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Senescence of the retinal pigment epithelial (RPE) cell layer has been implicated in the occurrence of age-related macular degeneration (AMD). The present study examines whether the ability of vascular endothelial growth factor (VEGF) to decrease the barrier function of RPE cells is enhanced in senescent RPE cells, which could contribute to the pathology of "wet" AMD. METHODS Low or high population doubling level (PDL) range ARPE-19 human RPE cells were cultured in 6-well plates on membrane-containing inserts. After 2 weeks, the cells were treated with either VEGF or its vehicle and their transepithelial electrical resistance (TEER) was measured. One week later, the cells were stained for senescence-associated β-galactosidase (SABG) activity. RESULTS VEGF was significantly more effective in reducing the TEER of the high PDL ARPE-19 cell layers than the low PDL layers (25% decrease vs. 6% decrease; t-test, P=0.0013). The low PDL cell layers had a modest uniform level of SABG staining. In contrast, the high PDL layers displayed darker and more mottled SABG staining indicative of the presence of senescent cells. CONCLUSIONS The present results show that the ability of VEGF to reduce the barrier function of RPE cell layers is greater in high PDL layers, which display signs of senescence, than in low PDL layers. Senescence-induced changes in the responsiveness of RPE cell layers to VEGF could contribute to the pathology of AMD. Agents that strengthen the barrier properties of RPE cells or reduce their responsiveness to VEGF could be effective in treating "wet" AMD.
Collapse
|