1
|
Bribiescas RG. Reproductive endocrinology and aging in human males: An evolutionary perspective. Neurosci Biobehav Rev 2024; 167:105898. [PMID: 39293503 DOI: 10.1016/j.neubiorev.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Due to its important role in fertility, reproductive endocrine function has been subject to natural selection in all organisms including human males. Moreover, reproductive endocrine function is subject to change as males age. Indeed, the biology of aging is also subject to natural selection. As males age, hormone function such as variation in testosterone can change as the result of general somatic degradation. However these changes are not universal and can differ between human male populations depending on lifestyle and ecological context. The degree to which this variation is adaptive remains an open question but recent evolutionary anthropology research has provided some clarity. While knowledge of evolutionary approaches has limitations, the benefits of understanding the origins and comparative context of reproductive endocrine function in older human males are significant. This paper discusses our present comprehension of reproductive endocrinology and aging in human males, with a focus on human diversity across varied lifestyles, ecologies, and environments. In addition, comparative great ape research is examined. Current research challenges and future directions related to the importance of evolutionary biology and human diversity for understanding human male aging are discussed.
Collapse
Affiliation(s)
- R G Bribiescas
- Yale University, Department of Anthropology, 10 Sachem Street, New Haven, CT 06520, USA.
| |
Collapse
|
2
|
Trumble BC, Negrey J, Koebele SV, Thompson RC, Samuel Wann L, Allam AH, Beheim B, Linda Sutherland M, Sutherland JD, Eid Rodriguez D, Michalik DE, Rowan CJ, Lombardi GP, Garcia AR, Cummings DK, Seabright E, Alami S, Kraft TS, Hooper P, Buetow K, Irimia A, Gatz M, Stieglitz J, Gurven MD, Kaplan H, Thomas GS. Testosterone is positively associated with coronary artery calcium in a low cardiovascular disease risk population. Evol Med Public Health 2023; 11:472-484. [PMID: 38145005 PMCID: PMC10746324 DOI: 10.1093/emph/eoad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/11/2023] [Indexed: 12/26/2023] Open
Abstract
Background In industrialized populations, low male testosterone is associated with higher rates of cardiovascular mortality. However, coronary risk factors like obesity impact both testosterone and cardiovascular outcomes. Here, we assess the role of endogenous testosterone on coronary artery calcium in an active subsistence population with relatively low testosterone levels, low cardiovascular risk and low coronary artery calcium scores. Methodology In this cross-sectional community-based study, 719 Tsimane forager-horticulturalists in the Bolivian Amazon aged 40+ years underwent computed tomography (49.8% male, mean age 57.6 years). Results Coronary artery calcium levels were low; 84.5% had no coronary artery calcium. Zero-inflated negative binomial models found testosterone was positively associated with coronary artery calcium for the full sample (Incidence Rate Ratio [IRR] = 1.477, 95% Confidence Interval [CI] 1.001-2.170, P = 0.031), and in a male-only subset (IRR = 1.532, 95% CI 0.993-2.360, P = 0.053). Testosterone was also positively associated with clinically relevant coronary atherosclerosis (calcium >100 Agatston units) in the full sample (Odds Ratio [OR] = 1.984, 95% CI 1.202-3.275, P = 0.007) and when limited to male-only sample (OR = 2.032, 95% CI 1.118-4.816, P = 0.024). Individuals with coronary artery calcium >100 had 20% higher levels of testosterone than those with calcium <100 (t = -3.201, P = 0.007). Conclusions and Implications Among Tsimane, testosterone is positively associated with coronary artery calcium despite generally low normal testosterone levels, minimal atherosclerosis and rare cardiovascular disease (CVD) events. Associations between low testosterone and CVD events in industrialized populations are likely confounded by obesity and other lifestyle factors.
Collapse
Affiliation(s)
- Benjamin C Trumble
- Arizona State University, School of Human Evolution and Social Change, Center for Evolution and Medicine, Institute of Human Origins, Tempe, AZ, USA
| | - Jacob Negrey
- Arizona State University, School of Human Evolution and Social Change, Center for Evolution and Medicine, Institute of Human Origins, Tempe, AZ, USA
| | - Stephanie V Koebele
- Arizona State University, School of Human Evolution and Social Change, Center for Evolution and Medicine, Institute of Human Origins, Tempe, AZ, USA
| | - Randall C Thompson
- Saint Luke’s Mid America Heart Institute, Department of Cardiology, Kansas City, MO, USA
| | - L Samuel Wann
- University of New Mexico, School of Medicine, Albuquerque, NM, USA
| | - Adel H Allam
- Al Azhar University, School of Medicine, Cairo, Egypt
| | - Bret Beheim
- Max Planck Institute for Evolutionary Anthropology, Department of Human Behavior, Ecology and Culture, Leipzig, Germany
| | | | | | | | - David E Michalik
- University of California Irvine, School of Medicine, Irvine, CA, USA
- Miller Women’s and Children’s Hospital Long Beach, CA, USA
| | | | - Guido P Lombardi
- Universidad Peruana Cayetano Heredia, Laboratorio de Paleopatología, Lima, Peru
| | - Angela R Garcia
- Arizona State University, School of Human Evolution and Social Change, Center for Evolution and Medicine, Institute of Human Origins, Tempe, AZ, USA
| | | | - Edmond Seabright
- Mohammed VI Polytechnic University, School of Collective Intelligence, Ben Guerir, Morocco
| | - Sarah Alami
- Mohammed VI Polytechnic University, School of Collective Intelligence, Ben Guerir, Morocco
| | - Thomas S Kraft
- University of Utah, Anthropology Department, Salt Lake City, UT, USA
| | - Paul Hooper
- Chapman University, Economic Science Institute, Orange, CA, USA
| | - Kenneth Buetow
- Arizona State University, School of Human Evolution and Social Change, Center for Evolution and Medicine, Institute of Human Origins, Tempe, AZ, USA
| | - Andrei Irimia
- University of Southern California, Psychology Department, Los Angeles, CA, USA
| | - Margaret Gatz
- University of Southern California, Psychology Department, Los Angeles, CA, USA
| | - Jonathan Stieglitz
- Toulouse Scool of Economics, Institute for Advanced Study Toulouse, Toulouse, France
| | - Michael D Gurven
- University of California Santa Barbara, Department of Anthropology, Santa Barbara, CA, USA
| | - Hillard Kaplan
- Chapman University, Economic Science Institute, Orange, CA, USA
| | - Gregory S Thomas
- MemorialCare Health System, Fountain Valley, CA, USA
- University of California Irvine, Division of Cardiology, Orange, CA, USA
| | | |
Collapse
|
3
|
Trumble BC, Pontzer H, Stieglitz J, Cummings DK, Wood B, Emery Thompson M, Raichlen D, Beheim B, Yetish G, Kaplan H, Gurven M. Energetic costs of testosterone in two subsistence populations. Am J Hum Biol 2023; 35:e23949. [PMID: 37365845 PMCID: PMC10749987 DOI: 10.1002/ajhb.23949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVE Testosterone plays a role in mediating energetic trade-offs between growth, maintenance, and reproduction. Investments in a high testosterone phenotype trade-off against other functions, particularly survival-enhancing immune function and cellular repair; thus only individuals in good condition can maintain both a high testosterone phenotype and somatic maintenance. While these effects are observed in experimental manipulations, they are difficult to demonstrate in free-living animals, particularly in humans. We hypothesize that individuals with higher testosterone will have higher energetic expenditures than those with lower testosterone. METHODS Total energetic expenditure (TEE) was quantified using doubly labeled water in n = 40 Tsimane forager-horticulturalists (50% male, 18-87 years) and n = 11 Hadza hunter-gatherers (100% male, 18-65 years), two populations living subsistence lifestyles, high levels of physical activity, and high infectious burden. Urinary testosterone, TEE, body composition, and physical activity were measured to assess potential physical and behavioral costs associated with a high testosterone phenotype. RESULTS Endogenous male testosterone was significantly associated with energetic expenditure, controlling for fat free mass; a one standard deviation increase in testosterone is associated with the expenditure of an additional 96-240 calories per day. DISCUSSION These results suggest that a high testosterone phenotype, while beneficial for male reproduction, is also energetically expensive and likely only possible to maintain in healthy males in robust condition.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | | | - Daniel K Cummings
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, California, USA
| | - Brian Wood
- Department of Anthropology, University of California Los Angeles, Los Angeles, California, USA
| | | | - David Raichlen
- Department of Anthropology, University of Southern California, Los Angeles, California, USA
- Department of Biology, University of Southern California, Los Angeles, California, USA
| | - Bret Beheim
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Gandhi Yetish
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
| | - Hillard Kaplan
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, California, USA
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
4
|
Liu Y, Shao R, Suo T, Zhu J, Liu E, Wang Y, Miao L, Gao X. Traditional Chinese Medicine Danzhi qing'e decoction inhibits inflammation-associated prostatic hyperplasia via inactivation of ERK1/2 signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116354. [PMID: 36906158 DOI: 10.1016/j.jep.2023.116354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation plays a critical role during benign prostatic hyperplasia (BPH) development. Danzhi qing'e (DZQE) decoction is a traditional Chinese medicine that has been widely used for estrogen and androgen-related diseases. However, its effect on inflammation-related BPH remains unclear. AIM OF THE STUDY To investigate the effect of DZQE on inhibition of inflammation-related BPH, and further identify the possible mechanism involved. METHODS AND MATERIALS Experimental autoimmune prostatitis (EAP)-induced BPH was established and then 2.7 g/kg of DZQE was administrated orally for 4 weeks. The prostate sizes, weights and prostate index (PI) values were recorded. Hematoxylin and eosin (H&E) was performed for pathological analyses. Macrophage infiltrate was evaluated by Immunohistochemical (IHC). The inflammatory cytokine levels were measured by Rt-PCR and ELISA methods. The phosphorylation of ERK1/2 was examined by Western blot. The expression differences of mRNA expressions between EAP-induced and oestrogen/testosterone (E2/T)-induced BPH was investigated by RNA sequencing analyses. In vitro, human prostatic epithelial BPH-1 cells were stimulated with the conditioned medium from monocyte THP-1-derived M2 macrophages (M2CM), followed by treatment of Tanshinone IIA (Tan IIA), Bakuchiol (Ba), ERK1/2 antagonist PD98059 or ERK1/2 agonist C6-Ceramide. The ERK1/2 phosphorylation and cell proliferation were then detected by Western blotting and CCK8 assay. RESULTS DZQE significantly inhibited the prostate enlargement and decreased PI value in EAP rats. Pathological analysis showed that DZQE alleviated prostate acinar epithelial cell proliferation by decreasing and reduction of CD68+ and CD206+ macrophage infiltration in the prostate. The levels of cytokines TNF-α, IL-1β, IL-17, MCP-1, TGF-β, and IgG in EAP rats' prostate or serum were significantly suppressed by DZQE as well. Moreover, mRNA sequencing data showed that the expressions of inflammation-related genes were elevated in EAP-induced BPH but not in E2/T-induced BPH. ERK1/2-related genes expression has been found in both E2/T and EAP-induced BPH. ERK1/2 is one of the core signal pathways involved in EAP-induced BPH, which was activated in EAP group but inactivated in DZQE group. In vitro, two active components of DZQE Tan IIA and Ba inhibited M2CM-induced BPH-1 cell proliferation, similarly to ERK1/2 inhibitor PD98059 did. Meanwhile, Tan IIA and Ba inhibited M2CM-induced ERK1/2 signal activation in BPH-1 cells. When re-activated the ERK1/2 by its activator C6-Ceramide, the inhibitory effects of Tan IIA and Ba on BPH-1 cell proliferation were blocked. CONCLUSION DZQE suppressed inflammation-associated BPH via regulation of ERK1/2 signal by Tan IIA and Ba.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tongchuan Suo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Junjie Zhu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Erwei Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yajing Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Miao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Holst BS, Nilsson S. Age, weight and circulating concentrations of total testosterone are associated with the relative prostatic size in adult intact male dogs. Theriogenology 2023; 198:356-360. [PMID: 36640740 DOI: 10.1016/j.theriogenology.2022.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Prostatic hyperplasia (PH) is an androgen-dependent condition associated with increased prostatic size that is common in intact dogs, and similar to the condition in men. In dogs, the increase in prostatic size is most prominent the first years, and after approximately four years (in beagles), a plateau is reached, and further growth is slower. Why the prostate continues to grow more in some individuals is not clear. Most testosterone in the circulation is bound to albumin or sex hormone binding globulin (SHBG) and only a minor part is unbound and biologically active. The binding to SHBG has higher affinity than that to albumin. In addition, SHBG has own biological functions, modifying testosterone action. The aim of the present study was to investigate if there is an association between relative prostatic size and the variables total testosterone concentration, SHBG concentration, an estimation of bioavailable testosterone: the ratio between testosterone and SHBG (free androgen index, FAI), estradiol concentration, the estradiol/testosterone ratio, dog age and dog weight. Hormone concentrations were measured in serum from 79 intact male dogs aged ≥ four years, weighing ≥ five kg. The size of the prostate was estimated using ultrasonography, and relative prostate size, Srel, was calculated as the estimated size related to the normal size for a 4-year-old dog of the same weight. There as a negative correlation between testosterone concentration and age (ρ = -0.27, P = 0.018) and a positive correlation between age and Srel (ρ = 0.27, P = 0.016) and between SHBG and weight (ρ = 0.38, P = 0.001). The FAI was negatively correlated with dog weight (ρ = -0.32, P = 0.004). There were no significant correlations between Srel and SHBG or FAI or between estradiol or estradiol/testosterone and Srel, age or weight. A multiple regression analysis showed significant associations between log Srel and log testosterone concentration, log age and log weight of the dog, with an adjusted R2 of 9.5%. Although the variables total testosterone concentration, age and weight of the dog were all significantly associated with Srel, the coefficient of determination was low, indicating that they only explained a minor part of the prostatic size. The results support the analysis of total testosterone in studies of prostatic growth in the dog.
Collapse
Affiliation(s)
- Bodil Ström Holst
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07, Uppsala, Sweden.
| | - Sanna Nilsson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07, Uppsala, Sweden
| |
Collapse
|
6
|
Fricke C, Sanghvi K, Emery M, Lindenbaum I, Wigby S, Ramm SA, Sepil I. Timeless or tainted? The effects of male ageing on seminal fluid. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1066022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Reproductive ageing can occur due to the deterioration of both the soma and germline. In males, it has mostly been studied with respect to age-related changes in sperm. However, the somatic component of the ejaculate, seminal fluid, is also essential for maintaining reproductive function. Whilst we know that seminal fluid proteins (SFPs) are required for male reproductive success across diverse taxa, age-related changes in SFP quantity and composition are little understood. Additionally, only few studies have explored the reproductive ageing of the tissues that produce SFPs, and the resulting reproductive outcomes. Here we provide a systematic review of studies addressing how advancing male age affects the production and properties of seminal fluid, in particular SFPs and oxidative stress, highlighting many open questions and generating new hypotheses for further research. We additionally discuss how declines in function of different components of seminal fluid, such as SFPs and antioxidants, could contribute to age-related loss of reproductive ability. Overall, we find evidence that ageing results in increased oxidative stress in seminal fluid and a decrease in the abundance of various SFPs. These results suggest that seminal fluid contributes towards important age-related changes influencing male reproduction. Thus, it is essential to study this mostly ignored component of the ejaculate to understand male reproductive ageing, and its consequences for sexual selection and paternal age effects on offspring.
Collapse
|
7
|
Lea AJ, Garcia A, Arevalo J, Ayroles JF, Buetow K, Cole SW, Eid Rodriguez D, Gutierrez M, Highland HM, Hooper PL, Justice A, Kraft T, North KE, Stieglitz J, Kaplan H, Trumble BC, Gurven MD. Natural selection of immune and metabolic genes associated with health in two lowland Bolivian populations. Proc Natl Acad Sci U S A 2023; 120:e2207544120. [PMID: 36574663 PMCID: PMC9910614 DOI: 10.1073/pnas.2207544120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/21/2022] [Indexed: 12/28/2022] Open
Abstract
A growing body of work has addressed human adaptations to diverse environments using genomic data, but few studies have connected putatively selected alleles to phenotypes, much less among underrepresented populations such as Amerindians. Studies of natural selection and genotype-phenotype relationships in underrepresented populations hold potential to uncover previously undescribed loci underlying evolutionarily and biomedically relevant traits. Here, we worked with the Tsimane and the Moseten, two Amerindian populations inhabiting the Bolivian lowlands. We focused most intensively on the Tsimane, because long-term anthropological work with this group has shown that they have a high burden of both macro and microparasites, as well as minimal cardiometabolic disease or dementia. We therefore generated genome-wide genotype data for Tsimane individuals to study natural selection, and paired this with blood mRNA-seq as well as cardiometabolic and immune biomarker data generated from a larger sample that included both populations. In the Tsimane, we identified 21 regions that are candidates for selective sweeps, as well as 5 immune traits that show evidence for polygenic selection (e.g., C-reactive protein levels and the response to coronaviruses). Genes overlapping candidate regions were strongly enriched for known involvement in immune-related traits, such as abundance of lymphocytes and eosinophils. Importantly, we were also able to draw on extensive phenotype information for the Tsimane and Moseten and link five regions (containing PSD4, MUC21 and MUC22, TOX2, ANXA6, and ABCA1) with biomarkers of immune and metabolic function. Together, our work highlights the utility of pairing evolutionary analyses with anthropological and biomedical data to gain insight into the genetic basis of health-related traits.
Collapse
Affiliation(s)
- Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
| | - Angela Garcia
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ85287
| | - Jesusa Arevalo
- Department of Medicine, University of California, Los Angeles, CA90095
| | - Julien F. Ayroles
- Department of Ecology and Evolution, Princeton University, Princeton, NJ08544
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Kenneth Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ85287
- School of Life Sciences, Arizona State University, Tempe, AZ85287
| | - Steve W. Cole
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA90095
- Department of Medicine, University of California, Los Angeles, CA90095
| | | | | | - Heather M. Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27516
| | - Paul L. Hooper
- Economic Science Institute, Chapman University, Orange, CA92866
| | | | - Thomas Kraft
- Department of Anthropology, University of Utah, Salt Lake City, UT84112
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27516
| | | | - Hillard Kaplan
- Institute for Economics and Society, Chapman University, Orange, CA92866
| | - Benjamin C. Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ85287
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ85287
| | - Michael D. Gurven
- Department of Anthropology, University of California, Santa Barbara, CA93106
| |
Collapse
|
8
|
Siegel JM. Sleep function: an evolutionary perspective. Lancet Neurol 2022; 21:937-946. [PMID: 36115365 PMCID: PMC9670796 DOI: 10.1016/s1474-4422(22)00210-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/05/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
Prospective epidemiological studies in industrial societies indicate that 7 h of sleep per night in people aged 18 years or older is optimum, with higher and lower amounts of sleep predicting a shorter lifespan. Humans living a hunter-gatherer lifestyle (eg, tribal groups) sleep for 6-8 h per night, with the longest sleep durations in winter. The prevalence of insomnia in hunter-gatherer populations is low (around 2%) compared with the prevalence of insomnia in industrial societies (around 10-30%). Sleep deprivation studies, which are done to gain insights into sleep function, are often confounded by the effects of stress. Consideration of the duration of spontaneous daily sleep across species of mammals, which ranges from 2 h to 20 h, can provide important insights into sleep function without the stress of deprivation. Sleep duration is not related to brain size or cognitive ability. Rather, sleep duration across species is associated with their ecological niche and feeding requirements, indicating a role for wake-sleep balance in food acquisition and energy conservation. Brain temperature drops from waking levels during non-rapid eye movement (non-REM) sleep and rises during REM sleep. Average daily REM sleep time of homeotherm orders is negatively correlated with average body and brain temperature, with the largest amount of REM sleep in egg laying (monotreme) mammals, moderate amounts in pouched (marsupial) mammals, lower amounts in placental mammals, and the lowest amounts in birds. REM sleep might, therefore, have a key role in the regulation of temperature and metabolism of the brain during sleep and in the facilitation of alert awakening.
Collapse
Affiliation(s)
- Jerome M Siegel
- Department of Psychiatry and Brain Research Institute, University of California, Los Angeles, CA, USA; Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Dujon AM, Boutry J, Tissot S, Lemaître JF, Boddy AM, Gérard AL, Alvergne A, Arnal A, Vincze O, Nicolas D, Giraudeau M, Telonis-Scott M, Schultz A, Pujol P, Biro PA, Beckmann C, Hamede R, Roche B, Ujvari B, Thomas F. Cancer Susceptibility as a Cost of Reproduction and Contributor to Life History Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.861103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reproduction is one of the most energetically demanding life-history stages. As a result, breeding individuals often experience trade-offs, where energy is diverted away from maintenance (cell repair, immune function) toward reproduction. While it is increasingly acknowledged that oncogenic processes are omnipresent, evolving and opportunistic entities in the bodies of metazoans, the associations among reproductive activities, energy expenditure, and the dynamics of malignant cells have rarely been studied. Here, we review the diverse ways in which age-specific reproductive performance (e.g., reproductive aging patterns) and cancer risks throughout the life course may be linked via trade-offs or other mechanisms, as well as discuss situations where trade-offs may not exist. We argue that the interactions between host–oncogenic processes should play a significant role in life-history theory, and suggest some avenues for future research.
Collapse
|
10
|
Abstract
Aging occurs in all sexually reproducing organisms. That is, physical degradation over time occurs from conception until death. While the life span of a species is often viewed as a benchmark of aging, the pace and intensity of physical degradation over time varies owing to environmental influences, genetics, allocation of energetic investment, and phylogenetic history. Significant variation in aging within mammals, primates, and great apes, including humans, is therefore common across species. The evolution of aging in the hominin lineage is poorly known; however, clues can be derived from the fossil record. Ongoing advances continue to shed light on the interactions between life-history variables such as reproductive effort and aging. This review presents our current understanding of the evolution of aging in humans, drawing on population variation, comparative research, trade-offs, and sex differences, as well as tissue-specific patterns of physical degradation. Implications for contemporary health challenges and the future of human evolutionary anthropology research are also discussed.
Collapse
|
11
|
Trumble BC, Schneider-Crease I. Chronic diseases of aging in an evolutionary context. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 2020:84-85. [PMID: 32983533 PMCID: PMC7502265 DOI: 10.1093/emph/eoaa013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - India Schneider-Crease
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
12
|
Natri H, Garcia AR, Buetow KH, Trumble BC, Wilson MA. The Pregnancy Pickle: Evolved Immune Compensation Due to Pregnancy Underlies Sex Differences in Human Diseases. Trends Genet 2019; 35:478-488. [PMID: 31200807 PMCID: PMC6611699 DOI: 10.1016/j.tig.2019.04.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/16/2023]
Abstract
We hypothesize that, ancestrally, sex-specific immune modulation evolved to facilitate survival of the pregnant person in the presence of an invasive placenta and an immunologically challenging pregnancy - an idea we term the 'pregnancy compensation hypothesis' (PCH). Further, we propose that sex differences in immune function are mediated, at least in part, by the evolution of gene content and dosage on the sex chromosomes, and are regulated by reproductive hormones. Finally, we propose that changes in reproductive ecology in industrialized environments exacerbate these evolved sex differences, resulting in the increasing risk of autoimmune disease observed in females, and a counteracting reduction in diseases such as cancer that can be combated by heightened immune surveillance. The PCH generates a series of expectations that can be tested empirically and that may help to identify the mechanisms underlying sex differences in modern human diseases.
Collapse
Affiliation(s)
- Heini Natri
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Angela R Garcia
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth H Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Benjamin C Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
13
|
Tao R, Miao L, Yu X, Orgah JO, Barnabas O, Chang Y, Liu E, Fan G, Gao X. Cynomorium songaricum Rupr demonstrates phytoestrogenic or phytoandrogenic like activities that attenuates benign prostatic hyperplasia via regulating steroid 5-α-reductase. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:65-74. [PMID: 30708032 DOI: 10.1016/j.jep.2019.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cynomorium songaricum Rupr. (CS) belongs to the genus of parasitic perennial flowering plants, mostly used in Chinese traditional medicine for benign prostatic hyperplasia (BPH) treatment. BPH is a chronic disease in men that both androgen and estrogen play a crucial role in promoting its development via their receptors. Previously we have showed that compounds from CS have the phytoestrogenic and/or phytoandrogenic activities that may have the potential suppressive effects on BPH, while the mechanism remains unclear. AIM OF THE STUDY In this study, we aim to investigate the effect of CS and its derived compounds: luteolin (LUT), gallic acid (GA), protocatechuic acid (PA) and protocatechualdehyde (Pra) on inhibition of rat BPH and proliferation of BPH-1 cell line respectively, and further uncover whether it is related with the phytoestrogenic and / or phytoandrogenic activities. MATERIALS AND METHODS Estradiol/testosterone (1:100) was subcutaneous injected to induce BPH in a castrated rat model, and CS was orally administrated for 45 days. Then the weights of the body and prostate were recorded, the pathogenesis changes of prostate were analyzed by Hematoxylin and eosin (H&E) and immunohistochemical (IHC). The levels of 17β-estradiol (E2), testosterone, and dihydrotestosterone (DHT) from rats' serum were measured by enzyme-linked immunosorbent assay (ELISA). In vitro, human benign prostatic epithelial cell BPH-1 was cultured and treated with or without different CS compounds and DHT or E2. MTT and CCK-8 assays were performed to detect the regulatory effects on cell proliferation. The expressions of PCNA, AR, ERα, ERβ, and steroid 5-α-reductases (SRD5A1 and SRD5A2) were further analyzed by western blotting upon treatment. RESULTS Treatment with CS significantly inhibited rat prostate enlargement, improved the pathological feature and reduced the thickness of smooth muscle layer. The up-regulated AR and ERα expressions and down-regulated ERβ in BPH rat prostate were significantly blocked after CS administration. Moreover, the enhanced values of E2/testosterone and the level of DHT in serum were also strongly inhibited in CS group compared with those in BPH groups. In cellular level, LUT, GA, PA, or Pra significantly inhibited DHT- or E2- induced BPH-1 cell proliferation and PCNA expressions. Consistently with the data in vivo, compounds from CS interfered the DHT or E2-regulated AR, ERα and ERβ expressions in BPH-1 cells as well. Importantly, the dramatic increased SRD5A1 and SRD5A2 expressions were observed in BPH rat prostates and DHT or E2-stimulated BPH-1 cells. However, treatment with CS in rat or with compounds isolated from CS in BPH-1 cells significantly blocked the induction of SRD5A1 and SRD5A2. CONCLUSIONS CS suppressed BPH development through interfering with prostatic AR, ERα/β, and SRD5A1/2 expressions, which provided evidence of CS for BPH treatment.
Collapse
Affiliation(s)
- Rui Tao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lin Miao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiean Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - John Owoicho Orgah
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Oche Barnabas
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Erwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China.
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
14
|
Blackwell AD. Childhood conditions set the balance. Nat Ecol Evol 2018; 2:1061-1062. [DOI: 10.1038/s41559-018-0594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Kopp W. Diet-Induced Hyperinsulinemia as a Key Factor in the Etiology of Both Benign Prostatic Hyperplasia and Essential Hypertension? Nutr Metab Insights 2018; 11:1178638818773072. [PMID: 30455570 PMCID: PMC6238249 DOI: 10.1177/1178638818773072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/04/2018] [Indexed: 01/09/2023] Open
Abstract
Benign prostatic hyperplasia and hypertension are common age-related comorbidities. Although the etiology of benign prostatic hyperplasia (BPH) is still largely unresolved and poorly understood, a significant age-independent association was found between BPH and hypertension, indicating a common pathophysiological factor for both diseases. It has previously been suggested that the development of essential hypertension may be related to diet-induced hyperinsulinemia. This study follows the question, whether BPH may develop due to the same mechanism, thereby explaining the well-known comorbidity of these 2 disorders. The scientific evidence presented shows that BPH and hypertension share the same pathophysiological changes, with hyperinsulinemia as the driving force. It further shows that significant dietary changes during human history cause disruption of a finely tuned metabolic balance that has evolved over millions of years of evolution: high-insulinemic food, typical of current “Western” diets, has the potential to cause hyperinsulinemia and insulin resistance, as well as an abnormally increased activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, alterations that play a pivotal role in the pathogenesis of BPH and hypertension.
Collapse
Affiliation(s)
- Wolfgang Kopp
- Former head of the Diagnostikzentrum Graz, Graz, Austria
| |
Collapse
|
16
|
Ivanov N, Vuong J, Gray PB. A Content Analysis of Testosterone Websites: Sex, Muscle, and Male Age-Related Thematic Differences. Am J Mens Health 2018; 12:388-397. [PMID: 29025355 PMCID: PMC5818115 DOI: 10.1177/1557988317734667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 11/26/2022] Open
Abstract
Male testosterone supplementation is a large and growing industry. How is testosterone marketed to male consumers online? The present exploratory study entailed a content coding analysis of the home pages of 49 websites focused on testosterone supplementation for men in the United States. Four hypotheses concerning anticipated age-related differences in content coding were also tested: more frequent longevity content toward older men, and more frequent social dominance/physical formidability, muscle, and sex content toward younger men. Codes were created based on inductive observations and drawing upon the medical, life history, and human behavioral endocrinology literatures. Approximately half ( n = 24) of websites were oriented toward younger men (estimated audience of men 40 years of age or younger) and half ( n = 25) toward older men (estimated audience over 40 years of age). Results indicated that the most frequent content codes concerned online sales (e.g., product and purchasing information). Apart from sales information, the most frequent codes concerned, in order, muscle, sex/sexual functioning, low T, energy, fat, strength, aging, and well-being, with all four hypotheses also supported. These findings are interpreted in the light of medical, evolutionary life history, and human behavioral endocrinology approaches.
Collapse
Affiliation(s)
- Nicholas Ivanov
- Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Jimmy Vuong
- Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Peter B. Gray
- Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
17
|
Gurven M, Stieglitz J, Trumble B, Blackwell AD, Beheim B, Davis H, Hooper P, Kaplan H. The Tsimane Health and Life History Project: Integrating anthropology and biomedicine. Evol Anthropol 2017; 26:54-73. [PMID: 28429567 PMCID: PMC5421261 DOI: 10.1002/evan.21515] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/21/2022]
Abstract
The Tsimane Health and Life History Project, an integrated bio-behavioral study of the human life course, is designed to test competing hypotheses of human life-history evolution. One aim is to understand the bidirectional connections between life history and social behavior in a high-fertility, kin-based context lacking amenities of modern urban life (e.g. sanitation, banks, electricity). Another aim is to understand how a high pathogen burden influences health and well-being during development and adulthood. A third aim addresses how modernization shapes human life histories and sociality. Here we outline the project's goals, history, and main findings since its inception in 2002. We reflect on the implications of current findings and highlight the need for more coordinated ethnographic and biomedical study of contemporary nonindustrial populations to address broad questions that can situate evolutionary anthropology in a key position within the social and life sciences.
Collapse
Affiliation(s)
- Michael Gurven
- Department of AnthropologyUniversity of California‐Santa BarbaraSanta Barbara CA
| | | | - Benjamin Trumble
- Center for Evolution and Medicine; School of Human Evolution and Social ChangeArizona State UniversityTempeAZ
| | - Aaron D. Blackwell
- Department of AnthropologyUniversity of California‐Santa BarbaraSanta Barbara CA
| | - Bret Beheim
- Department of Human Behavior, Ecology and CultureMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Helen Davis
- Department of AnthropologyUniversity of UtahSalt Lake CityUT
| | | | - Hillard Kaplan
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNM
| |
Collapse
|
18
|
Asiedu B, Anang Y, Nyarko A, Doku DA, Amoah BY, Santa S, Ngala RA, Asare GA. The role of sex steroid hormones in benign prostatic hyperplasia. Aging Male 2017; 20:17-22. [PMID: 28084142 DOI: 10.1080/13685538.2016.1272101] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The etiology of benign prostatic hyperplasia (BPH) remains a mystery to scientists; estrogen/androgen imbalance in aged men has been implicated. METHODS Thirty (30) apparently healthy men and newly diagnosed BPH patients were recruited from the Ghana Police Hospital. Lower urinary tract syndrome (LUTS) and prostate volume were assessed via the prostate symptom score sheet (IPSS) and abdominopelvic scan, respectively. Laboratory assays for total prostate specific antigen (tPSA) and hormones [androstenedione (AED), testosterone (T), dihydrotestosterone (DHT), androstanedioladiol (3α-adiol), androstanediol (3β-diol), estrone (E1) and estradiol (E2)] were performed via ELISA techniques. Non-parametric analyses were employed. p < 0.05 was considered significant. RESULTS AED was significantly higher in controls compared to the BPH patients. AKRIC2 (3α-diol/DHT) was significantly higher in the BPH group (p < 0.001) whiles AKRIC1 (3β-diol/DHT) was significantly lower. Estradiol was significantly higher in BPH (p= 0.029). Age correlated negatively with T, while a negative correlation was observed between TIPSS and 3β-diol and AKRIC1. Also, prostate volume correlated negatively with fT.tPSA correlated positively with E2 and aromatase activity (E2/T) and negatively with fT. On multiple linear regression, DHT and 3β-diol remained independent predictors for TIPSS and fT for tPSA. CONCLUSION Estrogens and androstanediols seem to play a role in BPH development.
Collapse
Affiliation(s)
- Bernice Asiedu
- a Department of Medical Laboratory Sciences , University of Ghana School of Biomedical and Allied Health Sciences , Korle Bu , Accra , Ghana and
| | - Yvonne Anang
- a Department of Medical Laboratory Sciences , University of Ghana School of Biomedical and Allied Health Sciences , Korle Bu , Accra , Ghana and
| | - Adraina Nyarko
- b Department of Molecular Medicine , Kwame Nkrumah University of Science and Technology , Kumasi , Ghana
| | - Derek Amartey Doku
- a Department of Medical Laboratory Sciences , University of Ghana School of Biomedical and Allied Health Sciences , Korle Bu , Accra , Ghana and
| | - Brodrick Y Amoah
- a Department of Medical Laboratory Sciences , University of Ghana School of Biomedical and Allied Health Sciences , Korle Bu , Accra , Ghana and
| | - Sheila Santa
- a Department of Medical Laboratory Sciences , University of Ghana School of Biomedical and Allied Health Sciences , Korle Bu , Accra , Ghana and
| | - Robert A Ngala
- b Department of Molecular Medicine , Kwame Nkrumah University of Science and Technology , Kumasi , Ghana
| | - George A Asare
- a Department of Medical Laboratory Sciences , University of Ghana School of Biomedical and Allied Health Sciences , Korle Bu , Accra , Ghana and
| |
Collapse
|
19
|
Blackwell AD, Trumble BC, Maldonado Suarez I, Stieglitz J, Beheim B, Snodgrass JJ, Kaplan H, Gurven M. Immune function in Amazonian horticulturalists. Ann Hum Biol 2016; 43:382-96. [PMID: 27174705 DOI: 10.1080/03014460.2016.1189963] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Amazonian populations are exposed to diverse parasites and pathogens, including protozoal, bacterial, fungal and helminthic infections. Yet much knowledge of the immune system is based on industrialised populations where these infections are relatively rare. AIM This study examines distributions and age-related differences in 22 measures of immune function for Bolivian forager-horticulturalists and US and European populations. SUBJECTS AND METHODS Subjects were 6338 Tsimane aged 0-90 years. Blood samples collected between 2004-2014 were analysed for 5-part blood differentials, C-reactive protein, erythrocyte sedimentation rate (ESR) and total immunoglobulins E, G, A and M. Flow cytometry was used to quantify naïve and non-naïve CD4 and CD8 T cells, natural killer cells, and B cells. RESULTS Compared to reference populations, Tsimane have elevated levels of most immunological parameters, particularly immunoglobulins, eosinophils, ESR, B cells, and natural killer cells. However, monocytes and basophils are reduced and naïve CD4 cells depleted in older age groups. CONCLUSION Tsimane ecology leads to lymphocyte repertoires and immunoglobulin profiles that differ from those observed in industrialised populations. These differences have consequences for disease susceptibility and co-vary with patterns of other life history traits, such as growth and reproduction.
Collapse
Affiliation(s)
- Aaron D Blackwell
- a Department of Anthropology , University of California , Santa Barbara , CA , USA ;,b Tsimane Health and Life History Project , San Borja , Bolivia
| | - Benjamin C Trumble
- a Department of Anthropology , University of California , Santa Barbara , CA , USA ;,b Tsimane Health and Life History Project , San Borja , Bolivia ;,c Center for Evolutionary Medicine, Arizona State University , Tempe , AZ , USA ;,d School of Human Evolution and Social Change, Arizona State University , Tempe , AZ , USA
| | | | - Jonathan Stieglitz
- b Tsimane Health and Life History Project , San Borja , Bolivia ;,e Department of Anthropology , University of New Mexico , Albuquerque , NM , USA ;,f Institute for Advanced Study in Toulouse , Toulouse , France
| | - Bret Beheim
- b Tsimane Health and Life History Project , San Borja , Bolivia ;,e Department of Anthropology , University of New Mexico , Albuquerque , NM , USA
| | - J Josh Snodgrass
- g Department of Anthropology , University of Oregon , Eugene , OR , USA
| | - Hillard Kaplan
- b Tsimane Health and Life History Project , San Borja , Bolivia ;,e Department of Anthropology , University of New Mexico , Albuquerque , NM , USA
| | - Michael Gurven
- a Department of Anthropology , University of California , Santa Barbara , CA , USA ;,b Tsimane Health and Life History Project , San Borja , Bolivia
| |
Collapse
|